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,e problem of unmeasured parameters estimation for distributed control systems is studied in this paper. ,e Takagi–Sugeno
fuzzy model which can appropriate any nonlinear systems is employed, and based on the model, an observer-based fuzzy H∞
filter which has robustness against time-delay, external noise, and system uncertainties is designed.,e sufficient condition for the
existence of the desired filter is derived in terms of linear matrix inequalities (LMIs) solutions. Moreover, the underdetermined
estimation problem in which the number of sensors available is typically less than the number of state variables to be estimated is
specifically addressed. A systematic method is proposed to produce a model tuning parameter vector of appropriate dimension for
the estimation of the filter, and the optimal transformationmatrix is selected via iterative solution tominimize the estimated error.
Finally, a simulation example for turbofan aeroengine is given to illustrate the effectiveness of the proposed method, and the
estimated error is less than 2.5%.

1. Introduction

Along with the continuous development of computer and
network technology, distributed control systems (DCSs)
have gradually become a new trend and attract much at-
tention [1, 2]. Compared with traditional point-to-point
control systems, DCSs have advantages such as high reli-
ability, reduced weight, low cost, and ease of maintenance
[3, 4]. ,e DCSs provide the low-level processing function
via intelligent unit and are more conductive to the
implementation of complex control algorithms [5, 6].
However, the signal of DCSs is transmitted via bus net-
work, which brings new challenges, such as networked-
induced time-delay, packet dropout, and packet
disordering.

In practice, many parameters are difficult to obtain due
to the limitation of the system itself (for example, the
sensors cannot be installed in poor working conditions) or
cost constraints. ,us, the estimation of unmeasured
system parameters is significantly important, since the

estimated parameters can not only be used in the design of
controller but also for online monitoring [7, 8]. For the
estimation problem of unmeasured system parameters,
there are two main methods: (1) high-precision mathe-
matical model [9]; (2) filtering technique and its extension
methods [10]. ,e first method is to establish the mathe-
matical model based on the structure of system to solve the
unmeasured parameters. However, the modeling process is
often cumbersome and complicated. And for some systems,
the structure is extremely complicated and cannot be ac-
curately modeled. Moreover, since this method generally
requires iterative calculation, the amount of calculation is
large.

For the second method, the estimation of unmeasured
parameters is based on the value of measurable parameters
using the filtering technique. Because this method uses a
recursive algorithm, it is easy to implement on computer
and meet the requirements of accuracy and real-time.
Among the filters, the H∞ filter stands out because it has
robust stability against external noise without priori

Hindawi
Complexity
Volume 2020, Article ID 7518039, 15 pages
https://doi.org/10.1155/2020/7518039

mailto:15129822645@163.com
https://orcid.org/0000-0003-0387-8655
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/7518039


knowledge of noise and precise mathematical model
[11–13].

However, in some cases, the number of sensors
available is typically less than the number of state vari-
ables to be estimated, which is an underdetermined es-
timation problem and cannot be solved directly. A
common approach to address this shortcoming is to
estimate a subset of the unknown parameters and as-
suming that others remain unchanged [14–16]. Although
this approach enables online filter-based estimation, it
will introduce error in the accuracy of overall estimation
application. If any of the parameters which are assumed
unchanged moves away from their nominal values, the
estimates can no longer represent the true parameters.
Litt [17] presented a novel approach based on singular
value decomposition (SVD) that selects a model tuning
parameter vector of low enough dimension. ,e model
tuning parameter vector is constructed as a linear
combination of all unmeasured parameters and the
transformation matrix is generated by selecting the k
most significant terms of singular values, where k is the
number of available sensors. Similarly, the SVD is also
used in [18] to determine which parts of the systems are
observable if the whole system is unobservable. However,
the unaccounted terms of singular values may also have
great importance on the accuracy of overall estimation
application even if they are small under some
circumstances.

Furthermore, in [19], the transformation matrix is
selected to minimize the theoretical mean squared esti-
mation error at a steady-state open-loop linear design
point. But the estimation results are affected by the pa-
rameter perturbation, and there are many limitations in
application. Moreover, all the approaches above do not
consider the impact of time-delay and uncertainties of the

system. ,us, it has great significance and practical value to
propose a novel approach for the underdetermined esti-
mation problem.

Besides, due to the strong nonlinear fitting character-
istics of complex nonlinear systems, the Takagi–Sugeno (T-
S) fuzzy model has been widely used in the study of non-
linear systems since it was proposed [20–22]. ,us in this
paper, an observer-based fuzzyH∞ filter is constructed, and
the unmeasured parameters estimation problem for T-S
fuzzy distributed control systems with time-delay and pa-
rameters perturbation is studied.

,e contributions of this paper can be concluded as
follows: (i) a model tuning parameter vector of appropriate
dimension is produced for the estimation of the filter; (ii) a
systematic method is proposed for the selection of optimal
transformation matrix to minimize the estimated error via
iterative solution; (iii) the parameter perturbation is con-
sidered, so that the designed filter has a certain range of
margins of disturbance.

,e remainder of this paper is organized as follows.
Section 2 introduces the modeling method of DCSs and the
observer-based fuzzy H∞ filter. ,e main results are pre-
sented in Section 3, including the analysis and synthesis of
the filtering error system.Section 4 presents the approach of
optimal transformation matrix selection. Numerical simu-
lation results are shown in Section 5 and finally conclusion
and a discussion of further application of the method are
presented.

2. Problem Formulation

Consider the DCSs with time-delay, which can be described
by a class of T-S fuzzy model as follows:

Plant rule i: If f1(t) is Φi
1 and · · · fg(t) is Φi

g, then

_x(t) � Ai + ΔAi( x(t) + Bi + ΔBi( u(t − τ(t)) + Lih(t) + E1i + ΔE1i( w(t),

y(t) � Ci + ΔCi( x(t) + Di + ΔDi( u(t − τ(t)) + Mih(t) + E2i + ΔE2i( w(t),

z(t) � Fi + ΔFi( x(t) + Gi + ΔGi( u(t − τ(t)) + Nih(t)

x(t) � ϕ(t),

t ∈ −τm, 0 ,

(1)

where Ωi
j(i � 1, . . . , r; j � 1, . . . , g) denotes the fuzzy set, r

denotes the number of IF-THEN rules, and fj(t) denotes
the premise variable.x(t) ∈ Rn is the vector of state variables;
u(t) ∈ Rm is the vector of control inputs; y(t) ∈ Rp is the
vector of measured outputs; z(t) ∈ Rl is the vector of un-
measured outputs and w(t) is noise signal which belongs to
L2(0,∞]. Ai,Bi,Ci,Di,E1i,E2i, Fi,Gi, Li,Mi,Ni are matrices
with appropriate dimension. ΔAi,ΔBi,ΔCi, ΔDi,ΔE1i,ΔE2i,

ΔFi,ΔGi are unknown matrices which represent the time-
varying uncertainties of the system. h(t) ∈ Rq is the health
parameters of system, which represents the physical char-
acteristics of each component.

Remark 1. ,e health parameters are considered in this
paper, because the performance degradation of each
component in the system is inevitable during the

2 Complexity



working process. And the system’s performance is af-
fected by the level of degradation, which is generally
described in terms of unmeasured health parameters
such as efficiencies and capacities related to each major
module in most cases. If the health parameters move
away from their nominal values, the shift in other per-
formance variables will be induced. ,ey may be treated
as a set of biases and can be augmented to the system
states.

It is assumed that both sensors and actuators are time-
driven. ,e data has timestamp and is transmitted in a
single-packet, and incorrect order of the data packet does
not exist. Since time-delay is related to the bus load at a
certain moment, it is assumed that the time-delay has an
upper bound, which is τ(t)≤ τm (under the above as-
sumption, the upper bound of time-delay can be estimated;
see [23] in detail). As a consequence, τ(t) can be modeled as
a finite state Markov stochastic process on a finite set
Λ � 1, 2, . . . , τm . ,e transition probability from τ(t) � i

at time t to τ(t) � j(j≠ i) at time t + Δt is

Pr(τ(t + Δt) � j | τ(t) � i) �
πijΔt + o(Δt), i≠ j,

1 + πijΔt + o(Δt), i � j,

⎧⎨

⎩

(2)

where Δt> 0 and limΔt⟶0(o(Δt)/Δt) � 0. πij ≥ 0 is the
transition probability rates from τ(t) � i at time t to τ(t) �

j(j≠ i) at time t + Δt, and there is 
τm

j�1,j≠iπij � −πii.
,e state feedback controller is applied in this paper,

which is u(t) � Kcx(t). ,en, by fuzzy blending, the
global fuzzy augmented model can be obtained as
follows:

_xh(t) � 
r

i�1
hi(f(t)) Ahi + ΔAhi( xh(t) + Bhi + ΔBhi( xh

·(t − τ(t)) + Eh1i + ΔEh1i( w(t),

y(t) � 
r

i�1
hi(f(t)) Chi + ΔChi( xh(t) + Dhi + ΔDhi( xh

·(t − τ(t)) + E2i + ΔE2i( w(t),

z(t) � 
r

i�1
hi(f(t)) Fhi + ΔFhi( xh(t) + Ghi + ΔGhi( 

· xh(t − τ(t)),

xh(t) �

ϕ(t)

0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

t ∈ −τm, 0 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where

x(t) �
x(t)

h(t)

⎡⎢⎣ ⎤⎥⎦,

Ahi �
Ai Li

0 I
⎡⎢⎣ ⎤⎥⎦,

Bhi �
BiKc 0

0 0
⎡⎢⎣ ⎤⎥⎦,

ΔAhi �
ΔAi 0

0 0
⎡⎢⎣ ⎤⎥⎦,

ΔBhi �
ΔBiKc 0

0 0
⎡⎢⎣ ⎤⎥⎦,

Eh1i �
E1i

0
⎡⎢⎣ ⎤⎥⎦,

Chi � Ci Mi ,

ΔChi � ΔCi 0 ,

ΔEh1i �
ΔE1i

0
⎡⎢⎣ ⎤⎥⎦,

Dhi � DiKc 0 ,

ΔDhi � ΔDiKc 0 ,

Eh2i � E2i,

ΔEh2i � ΔE2i,

Fhi � Fi Ni ,

Ghi � GiKc 0 ,

ΔFhi � ΔFi 0 ,

ΔGhi � ΔGiKc 0 ,

hi(f(t)) �
ϑi(f(t))


r
i�1ϑi(f(t))

,

ϑi(f(t)) � 
2

j�1
Ωi

j(f(t)).

(4)

For the underdetermined estimation problem, a low-
dimensional model tuning parameter vector q(t) is pro-
duced to represent the information of high-dimensional
health parameter vector h(t). ,e model tuning parameter
vector q(t) is constructed as a linear combination of all
health parameters, given by

q(t) � V∗h(t), (5)
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where h(t) ∈ Rq, q(t) ∈ Rk, k< q, and V∗ is a k × q trans-
formation matrix, which is applied to construct the tuning
parameter vector. ,e selection of optimal V∗ is obtained in
Section 4.

,us, the estimation of the health parameters h can be
obtained as

h � V∗†q, (6)

where V∗† is the pseudoinverse of V∗.
,e final augmented dynamic fuzzy model can be re-

written as

_xq(t) � 
r

i�1
hi(f(t)) Aqi + ΔAqi xq(t) + Bqi + ΔBqi xq(t − τ(t)) + Eq1i + ΔEq1i w(t) ,

y(t) � 
r

i�1
hi(f(t)) Cqi + ΔCqi xq(t) + Dqi + ΔDqi xq(t − τ(t)) + E2i + ΔE2i( w(t) ,

z(t) � 
r

i�1
hi(f(t)) Fqi + ΔFqi xq(t) + Gqi + ΔGqi xq(t − τ(t)) ,

xq(t) �
ϕ(t)

0
 ,

t ∈ −τm, 0 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where

xq(t) �
x(t)

q(t)
⎡⎣ ⎤⎦,

Aqi �
Ai LiV∗†

0 I
⎡⎣ ⎤⎦,

Eq1i �
E1i

0
⎡⎣ ⎤⎦,

ΔAqi �
ΔAi 0

0 0
⎡⎣ ⎤⎦,

Bqi �
BiKc 0

0 0
⎡⎣ ⎤⎦,

ΔBqi �
ΔBiKc 0

0 0
⎡⎣ ⎤⎦,

ΔEq1i �
ΔE1i

0
⎡⎣ ⎤⎦,

Cqi � Ci MiV∗† ,

ΔCqi � ΔCi 0 ,

Dqi � DiKc 0 ,

ΔDqi � ΔDiKc 0 ,

Eq2i � E2i,

ΔEq2i � ΔE2i,

Fqi � Fi NiV∗† ,

Gqi � GiKc 0 ,

ΔFqi � ΔFi 0 ,

ΔGqi � ΔGiKc 0 .

(8)

Remark 2. If the model tuning parameter vector is of ap-
propriate dimension, the augmented system (7) is observable
and the observer-based filter can be used to estimate the
unknown health and performance parameters. And the key
of the estimation is to find the optimal transformation
matrix so that the low dimension tuning vector can rep-
resent as much of the information as possible. Moreover,
different from the method in [17–19], the solution of the
optimal transformation matrix is transformed into an op-
timization problem.

It is assumed that the uncertainties of the system can be
described in the following form:

ΔAqi ΔBqi ΔEq1i ΔFT
qi

ΔCqi ΔDqi ΔEq2i ΔGT
qi

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �
U1i

U2i

 Si V1i V2i V3i V4i ,

(9)

where U1i,U2i,V1i,V2i,V3i,V4i are known matrices and Si is
a time-varying unknown matrix which satisfies

ST
i Si ≤ I. (10)

,en the following observer-based fuzzy filter is
constructed:

_x(t) � 

r

i�1
hi(f(t)) Aqi + ΔAqi x(t)

+ Bqi + ΔBqi x(t − τ(t)) + Ki(y(t) − y(t)),

y(t) � 
r

i�1
hi(f(t)) Cqi + ΔCqi x(t) + Dqi + ΔDqi x(t − τ(t)) ,

z(t) � 
r

i�1
hi(f(t)) Fqi + ΔFqi x(t) + Gqi + ΔGqi x(t − τ(t)) ,

(11)
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where x(t) is the filter state, and y(t) and z(t) are the filter
outputs. Ki is the filter parameter to be determined.

,e estimation error of state is

x(t) � xq(t) − x(t)

� Aqi − KiCqi + ΔAqi − KiΔCqi x(t)

+ Bqi − KiDqi + ΔBqi − KiΔDqi x(t − τ(t))

+ Eq1i − KiE2i + ΔEq1i − KiΔE2i w(t).

(12)

Define ξ(t) � xT
q xT(t) 

T
and e(t) � z(t) − z(t), and

the filtering error system is given by

_ξ(t) � 
r

i�1
hi(f(t)) Ai + ΔAi( ξ(t) + Bi + ΔBi( ξ(t − τ(t))

+ Ei + ΔEi( w(t)],

_e(t) � 
r

i�1
hi(f(t)) Fi + ΔFi( ξ(t) + Gi + ΔGi( ξ(t − τ(t)) ,

(13)

where

Ai �
Aqi 0

0 Aqi − KiCqi

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Bi �
Bqi 0

0 Bqi − KiDqi

⎡⎢⎢⎣ ⎤⎥⎥⎦,

ΔAi �
ΔAqi 0

0 ΔAqi − KiΔCqi

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Ei �
Eq1i

Eq1i − KiE2i

⎡⎢⎢⎣ ⎤⎥⎥⎦,

ΔBi �
ΔBqi 0

0 ΔBqi − KiΔDqi

⎡⎢⎢⎣ ⎤⎥⎥⎦,

ΔEi �
ΔEq1i

ΔEq1i − KiΔE2i

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Fi � 0 Fqi ,

ΔFi � 0 ΔFqi ,

Gi � 0 Gqi ,

ΔGi � 0 ΔGqi .

(14)

Define the following parameters:

A � 
r

i�1
hi(f(t))Ai,

ΔA � 
r

i�1
hi(f(t))ΔAi,

B � 
r

i�1
hi(f(t))Bi,

ΔB � 
r

i�1
hi(f(t))ΔBi,

E � 
r

i�1
hi(f(t))Ei,

ΔE � 

r

i�1
hi(f(t))ΔEi,

F � 
r

i�1
hi(f(t))Fi,

ΔF � 
r

i�1
hi(f(t))ΔFi,

G � 
r

i�1
hi(f(t))Gi,

ΔG � 
r

i�1
hi(f(t))ΔGi.

(15)

,e goal is to design a filter in form of (11) so that the
filtering error system can meet the following requirements
simultaneously:

(1) ,e filtering error system is asymptotically stable
when w(t) � 0

(2) Under the zero initial condition, the filtering error
system satisfies

‖e(t)‖2 ≤ c‖w(t)‖2, (16)

for any nonzero w(t) ∈ L2(0,∞].

3. Main Results

In this section, the sufficient condition for the existence of
the desired filter is derived in terms of LMIs solutions.
Before proceeding with the study, the following Lemma is
needed.

Lemma 1 (see [24]). D,E,F are real matrices with appro-
priate dimensions, and F is a time-varying unknown matrix
which satisfies FTF≤ I. ,en for a scalar ε> 0, the following
inequality

Complexity 5



DF E + ETFTDT ≤ ε− 1DDT
+ εETE, (17)

always holds.

Theorem 1. If there exist positive matrices
P> 0,Q> 0,R> 0, and matrix W such that the following
inequality holds:

ψ �

Γ P(B + ΔB) + W P(E + ΔE) τmW τm(A + ΔA)TR (F + ΔF)T

∗ −Q 0 0 τm(B + ΔB)TR (G + ΔG)T

∗ ∗ −c2I 0 τm(E + ΔE)TR 0

∗ ∗ ∗ −τmR 0 0

∗ ∗ ∗ ∗ −τmR 0

∗ ∗ ∗ ∗ ∗ −I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (18)

where

Γ � P(A + ΔA) +(A + ΔA)
TP + Q − W − WT

, (19)

then the filtering error system is asymptotically stable and the
prescribed H∞ performance c can be guaranteed.

Proof. Select the Lyapunov function as

V(t) � V1(t) + V2(t) + V3(t), (20)

where

V1(t) � ξT
(t)Pξ(t),

V2(t) � 
t

t−τ(t)
ξT

(α)Qξ(α)dα,

V3(t) � 
0

−τm


t

t+β
_ξ

T
(α)R _ξ(α)dα dβ.

(21)

When w(t) � 0, the derivation of V(t) is
_V1(t) � 2ξT

(t)P((A + ΔA)ξ(t) +(B + ΔB)ξ(t − τ(t))),

_V2(t)≤ ξT
(t)Qξ(t) − ξT

(t − τ(t))Qξ(t − τ(t)),

_V3(t)≤ τm
_ξ

T
(t)R _ξ(t) − 

t

t−τ(t)

_ξ
T
(α)R _ξ(α)dα.

(22)

It is obvious that there is

ξ(t − τ(t)) � ξ(t) − 
t

t−τ(t)

_ξ
T
(α)dα. (23)

,us, V(t) can be further rewritten as

_V(t)≤ 2ξT
(t)P((A + ΔA)ξ(t) +(B + ΔB)ξ(t − τ(t))) + ξT

(t)Qξ(t) − ξT
(t − τ(t))Qξ(t − τ(t))

+ τm
_ξ

T
(t)R _ξ(t) − 

t

t−τ(t)

_ξ
T
(α)R _ξ(α)dα + 2ξT

(t)W ξT
(t − τ(t)) − ξT

(t) + 
t

t−τ(t)

_ξ
T
(α)dα 

≤
1

τ(t)


t

t−τ(t)

ξ(t)

ξ(t − τ(t))

_ξ(α)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Ψ0

ξ(t)

ξ(t − τ(t))

_ξ(α)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(24)

where

Ψ0 �

Γ P(B + ΔB) + W τmW

∗ −Q 0

∗ ∗ −τmR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + τm

(A + ΔA)T

(B + ΔB)T

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
R

(A + ΔA)T

(B + ΔB)T

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (25)

By the Schur complement, if the inequality (24) holds, it
can be obtained that there is Ψ0 < 0. ,us, there is _V(t)< 0
and the filtering error system is asymptotically stable.

Secondly, define a new function

J � 
T

0
eT

(t)e(t) − c
2wT

(t)w(t) dt, (26)

where T is a scalar which satisfies T> 0.
,us, under the zero initial condition, there is
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J � 
T

0
eT

(t)e(t) − c
2wT

(t)w(t) + _V(t) dt − V(T)

≤ 
T

0
eT

(t)e(t) − c
2wT

(t)w(t) + _V(t) dt

≤

ξ(t)

ξ(t − τ(t))

w(t)

_ξ(α)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

ψ1

ξ(t)

ξ(t − τ(t))

w(t)

_ξ(α)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(27)

where

ψ1 �

Γ P(B + ΔB) + W P(E + ΔE) τmW
∗ −Q 0 0
∗ ∗ −c2I 0
∗ ∗ ∗ −τmR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ τm

(A + ΔA)T

(B + ΔB)T

(E + ΔE)T

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
R

(A + ΔA)T

(B + ΔB)T

(E + ΔE)T

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

+

(F + ΔF)T

(G + ΔG)T

0
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(F + ΔF)T

(G + ΔG)T

0
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

(28)

According to the Schur complement, it follows that

ψ1 < 0⇔ψ< 0. (29)

,us, if the inequality ψ< 0 holds, there is J< 0 and
equation (16) holds for any nonzero w(t) ∈ L2[0,∞]. ,e
proof is completed.

Theorem 2. For a given scalar c> 0, the filtering problem is
solvable under the conditions above with a H∞ performance
level c, if there exist positive matrices P1,P2,Q1,Q2,R1,R2,
matrices W1,W2,Zi and scalars
ε1i, ε2i, ε3ij, ε4i, ε5i > 0(1≤ i≤ j≤ r) such that the following
inequalities hold:

Ωii < 0, i � 1, 2, . . . , r, (30)

Ωij + Ωji < 0, i< j, i, j � 1, 2, . . . , r, (31)

where

Θ1i � P1Ui1( 
T P2Ui1( 

T 0 0 0 0 0 τmR1U1i( 
T τmR2U1i( 

T 0 
T
,

Ξ1i � V1i 0 V2i 0 V3i 0 0 0 0 0 ,

Θ2i � 0 P2U1i( 
T 0 0 0 0 0 0 τmR2U1i( 

T 0 
T
,

Ξ2i � 0 V1i 0 V2i 0 0 0 0 0 0 ,

Θ3ij � 0 P2KiU2i( 
T 0 0 0 0 0 0 τmR2KiU2i( 

T 0 
T
,

Ξ3i � 0 V1i 0 V2i V3i 0 0 0 0 0 ,

Θ4i � 0 0 0 0 0 0 0 0 0 UT
1i 

T
,

Ξ4i � 0 V4i 0 0 0 0 0 0 0 0 ,

Θ5i � 0 0 0 0 0 0 0 0 0 UT
2i 

T
,

Ξ5i � 0 0 0 V4i 0 0 0 0 0 0 ,

Γ11 � P1Aqi + AT
qiP1 + Q1 − W1 − WT

1 ,

Γ22 � P2Aqi − Z1iCqi + AT
qiP2 − CT

qiZ
T
1i + Q2 − W2 − WT

2 ,

Γ13 � P1Bqi + W1,

Γ24 � P2Bqi − Z1iDqi + W2,

Γ25 � P2Eq1i − Z1iE2i,

Ωij �

Ω0ij + ε1iΞT
1iΞ1i + ε2iΞT

2iΞ2i − ε3ijΞT
3iΞ3i + ε4iΞT

4iΞ4i + ε5iΞT
5iΞ5i Θ1i Θ2i Θ3ij Θ4i Θ5i

∗ −ε1i 0 0 0 0
∗ ∗ −ε1i2 0 0 0
∗ ∗ ∗ ε3ij 0 0
∗ ∗ ∗ ∗ −ε4i 0
∗ ∗ ∗ ∗ ∗ −ε5i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Ω0ij �

Γ11 0 Γ13 0 P1Eq1i τmW1 0 τmAT
qiR1 0 0

∗ Γ22 0 Γ24 Γ25 0 τmW2 0 τm AT
qiR2 − CT

qiZ2i  FT
qi

∗ ∗ −Q1 0 0 0 0 τmBT
qiR 0 0

∗ ∗ ∗ −Q2 0 0 0 0 τm BT
qiR2 − DT

qiZ2i  GT
qi

∗ ∗ ∗ ∗ −c2I 0 0 τmET
q1iR1 τm ET

q1iR2 − ET
2iZ2i  0

∗ ∗ ∗ ∗ ∗ −τmR1 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −τmR2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −τmR1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −τmR2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (32)

Moreover, the filter parameter can be solved by

Ki � P−1
2 Z1i. (33)

Proof. Let
P � diag P1,P2 ,

Q � diag Q1,Q2 ,

R � diag R1,R2 ,

W � diag W1,W2 .

(34)

,en ψ can be rewritten as

ψ �

Υ11 Υ12 Υ13 τmW τmΥ15 (F + ΔF)T

∗ −Q 0 0 τmΥ25 (G + ΔG)T

∗ ∗ −c2I 0 τmΥ35 0
∗ ∗ ∗ −τmR 0 0
∗ ∗ ∗ ∗ −τmR 0
∗ ∗ ∗ ∗ ∗ −I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (35)

where

Υ11 � diag δ1, δ2 ,

δ1 � P1 Aqi + ΔAqi  + Aqi + ΔAqi 
T
P1 + Q1 − W1 − WT

1 ,

δ2 � P2 Aqi + ΔAqi  − P2Ki Cqi + ΔCqi  + Aqi + ΔAqi 
T

· P2 − Cqi + ΔCqi 
T
KT

i P2 + Q2 − W2 − WT
2 ,

Υ12 � diag P1 Bqi + ΔBqi  + W1,P2 Bqi + ΔBqi 

− P2Ki Dqi + ΔDqi  + W2,

Υ13 �
P1 Eq1i + ΔEq1i 

P2 Eq1i + ΔEq1i  − P2Ki E2i + ΔE2i( 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

Υ15 � diag Aqi + ΔAqi 
T
R1, Aqi + ΔAqi 

T
R2 − Cqi + ΔCqi 

T
KT

i R2 ,

Υ25 � diag Bqi + ΔBqi 
T
R1 Bqi + ΔBqi 

T
R2 − Dqi + ΔDqi 

T
KT

i R2 ,

Υ35 � Eq1i + ΔEq1i 
T
R1 Eq1i + ΔEq1i 

T
R2 − E2i + ΔE2i( 

TKT
i R2 .

(36)

,en, for further analysis, based on equation (9) and
Lemma 1, equation (35) can be decomposed into

ψ � 
r

i�1


r

j�1
hi(f(t))hj(f(t)) Ω0ij + Θ1iSiΞ1i + ΞT

1iS
T
i Θ

T
1i

+ Θ2iSiΞ2i + ΞT
2iS

T
i Θ

T
2i − Θ3ijSiΞ3i − ΞT

3iS
T
i Θ

T
3ij

+ Θ4iSiΞ4i + ΞT
4iS

T
i Θ

T
4i + Θ5iSiΞ5i + ΞT

5iS
T
i Θ

T
5i

≤ 
r

i�1


r

j�1
hi(f(t))hj(f(t)) Ω0ij +

1
ε1i

Θ1iΘ
T
1i + ε1iΞ

T
1iΞ1i

+
1
ε2i

Θ2iΘ
T
2i + ε2iΞ

T
2iΞ2i −

1
ε3ij

Θ3ijΘ
T
3ij − ε3ijΞ

T
3iΞ3i

+
1
ε4i

Θ4iΘ
T
4i + ε4iΞ

T
4iΞ4i +

1
ε5i

Θ5iΘ
T
5i + ε5iΞ

T
5iΞ5i.

(37)

Moreover, define

Z1i � P2Ki,

Z2i � KT
i R2.

(38)

By applying the Schur complement, equation (37) is
equivalent to



r

i�1
h
2
i (f(t))Ωii + 

r

i<j
hi(f(t))hj(f(t)) Ωij + Ωji < 0.

(39)

,us, the inequalities (30) and (31) hold. ,e proof is
completed.

4. Optimal Transformation Matrix Selection

It can readily be obtained that the estimation precision is
directly affected by the estimation of the unknown states
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(health parameters). ,us, the key of the parameters esti-
mation is to find an optimal transformation matrix V∗,
which can ensure that the low-dimensional tuning vector q
can represent as much of the information of the health
parameters as possible.

In this paper, the optimization objective is to find an
optimal transformation matrix V∗, which can ensure that
the estimation error of the measured outputs
ρ � (y − y)T(y − y) is minimum.

,us, the optimization problem can be described as
min ρ

s.t. ρ � (y − y)T(y − y).
(40)

And the method based on iterative solution is used in
this paper, and the process of optimal transformation matrix
selection is shown in Figure 1:

(1) To begin with, the initial value of V∗ is given ran-
domly. And during the estimation process, the op-
timal V∗ of the last moment is used as the initial
value to reduce the quantity of calculation. In order
to avoid the calculation converging to a poorly scaled
result, the Frobenius norm of V∗ must satisfy
‖V∗‖F � 1.

(2) With reference to equation (7), construct the re-
duced-order state-space model.

(3) Solve the parameters of the H∞ filter.
(4) Calculate estimated error using equation (40).
(5) Determine whether the estimated error ρ achieves

convergence within a tolerance (user-specified):

(1) If converged, skip step 6 and proceed directly to
step 7.

(2) If not converged, proceed to step 6.
(3) If the number of iterations exceeds 100, skip step

6 and proceed directly to step 7 to meet the real-
time requirements.

(6) Use the MATLAB lsqnonlin function to update V∗,
and the new value still needs to satisfy ‖V∗‖F � 1.

(7) Return the optimal value of V∗, and ends.

5. Simulation Example

Before proceeding with the simulation, the high-precision
aero-thermodynamicmathematical model of aeroengine in full
envelope is the basis of the simulation. It can not only build the
small deviation dynamic state space models, but can also re-
place the real engine in simulation. ,e detailed modeling
process is carried out by reference to [25, 26].,is paper takes a
type of double-rotor turbofan engine as research object and
uses modeling method based on component characteristics.
,e afterburner is not considered in this engine model. For
greater adaptability, faster calculation speed, and stronger
convergence, the self-tuning Broyden quasi-Newton method
[27] is used to solve equilibrium equations in the component-

level mathematical model. And the small deviation dynamic
model is solved by fitting method [28–30].

Assuming that the aeroengine works in the maximum
state and then based on the methods of flight envelop
division in [31–33], a T-S fuzzy model is constructed and
the initial membership function is shown in Figure 2. In
this paper, the T-S fuzzy model has two state variables,
four health parameters, two control inputs, five measured
outputs, and three unmeasured outputs, all shown in
Table 1.

,en the four T-S fuzzy rules with the selection of Hf

and Ma can be obtained as follows:

Rule 1. If Hf is about 0 km and Ma is about 0, then

Start

Initial guess for V∗

Construct reduced order
state-space model

Estimation by Robust H∞ filter

Calculate sum of squared
estimation error

Converged?

Return optimal V∗

Update V∗ 
through multivarriable

gradient search

Figure 1: Flowchart of V∗ iterative search.

Rule 1
Rule 2

Rule 3
Rule 4
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Figure 2: Initial membership function.
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A1 �
−1.26 1.02
−0.14 −1.24

 ,

B1 �
0.35 0.54
0.36 0.32

 ,

L1 �
−1.02 0.90 −0.62 0.51
−0.26 −0.11 0.28 0.23

 ,

E11 �
−0.5
1.0

 ,

C1 �

1 0
0 1

0.55 −0.29
0.51 −0.07
0.36 0.54

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D1 �

0 0
0 0

0.19 −0.82
0.05 −0.22
0.04 −0.16

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M1 �

0 0 0 0
0 0 0 0

0.94 −0.18 0.02 −0.07
0.24 −0.39 0.01 −0.02
0.13 −0.23 −0.09 −0.08

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

E21 �

0
0
0.2
0.1
0.15

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

F1 �

0.25 −0.54
−0.14 1.27
0.40 0.04

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

G1 �

0.45 0.09
−0.10 0.39
0.24 0.40

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

N1 �

−0.23 −0.29 0.07 −0.18
−0.09 0.26 −0.33 −0.19
0.81 −0.08 0.04 −0.08

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(41)

Rule 2. If Hf is about 4.8 km andMa is about 1.24, then

A2 �
−2.66 1.10
−0.61 −1.39 ,

B2 �
0.39 0.42
0.36 0.33 ,

L2 �
−0.86 0.87 −0.64 0.52
−0.28 −0.10 0.27 0.23 ,

E12 �
−0.3
0.1 ,

C2 �

1 0
0 1

2.03 −0.34
0.66 −0.06
0.42 0.58

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D2 �

0 0
0 0

0.14 −0.67
0.02 −0.11
0.02 −0.10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M2 �

0 0 0 0
0 0 0 0

0.92 −0.16 0.02 −0.05
0.15 −0.30 0 −0.01
0.08 −0.18 −0.09 −0.07

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

E22 �

0
0
0.3
0.25
0.1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

F2 �

−0.34 −0.52
−0.06 1.26
2.10 0.12

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

G2 �

0.45 0.09
−0.10 0.43
0.54 −0.57

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

N2 �

−0.31 −0.22 0.08 −0.17
0 0.19 −0.34 −0.19

0.94 −0.18 0.09 −0.19

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦.

(42)

Table 1: Variables of aeroengine T-S fuzzy model.

State variables Health parameters Control inputs Measured outputs Unmeasured outputs
nl—low-pressure spool
speed

Low-pressure compressor (LPC)
efficiency wf—fuel flow nl—low-pressure spool

speed
T5—LPT exit total

temperature

nh—high-pressure spool
speed

LPC flow capacity

A8—nozzle
area

nh—high-pressure spool
speed Fn—net thrust

Low-pressure turbine (LPT)
efficiency

P2b—LPC exit total
pressure

ΠT—turbine pressure ratio
LPT flow capacity

T2b—LPC exit total
temperature

T3—HPC exit total
temperature
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Rule 3. If Hf is about 12.8 km andMa is about 0.7, then

A3 �
−0.31 0.19

−0.05 −0.28
⎡⎣ ⎤⎦,

B3 �
0.11 0.11

0.09 0.09
⎡⎣ ⎤⎦,

L3 �
−0.24 0.21 −0.16 0.13

−0.07 −0.02 0.07 0.06
⎡⎣ ⎤⎦,

E13 �
0.2

0.3
⎡⎣ ⎤⎦,

C3 �

1 0

0 1

0.53 −0.18

0.49 −0.04

0.35 0.55

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D3 �

0 0

0 0

0.19 −0.84

0.05 −0.21

0.04 −0.15

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M3 �

0 0 0 0

0 0 0 0

0.94 −0.17 0.02 −0.08

0.23 −0.41 0.01 −0.02

0.13 −0.25 −0.10 −0.09

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

E23 �

0

0

0.1

0.2

0.1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

F3 �

0.22 −0.31

−0.10 1.04

0.59 0.12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G3 �

0.45 0.12

−0.08 0.36

0.45 −0.58

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

N3 �

−0.25 −0.25 0.07 −0.20

−0.07 0.21 −0.34 −0.19

1.05 −0.15 0.07 −0.17

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(43)

Rule 4. If Hf is about 18.8 km and Ma is about 1.72,
then

A4 �
−0.63 0.24

−0.13 −0.29
⎡⎣ ⎤⎦,

B4 �
0.08 0.10

0.08 0.07
⎡⎣ ⎤⎦,

L4 �
−0.20 0.19 −0.14 0.11

−0.06 −0.02 0.06 0.05
⎡⎣ ⎤⎦,

E14 �
0.3

0.5
⎡⎣ ⎤⎦,

C4 �

1 0

0 1

2.29 −0.36

0.73 −0.07

0.46 0.58

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D4 �

0 0

0 0

0.14 −0.66

0.03 −0.12

0.03 −0.11

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M4 �

0 0 0 0

0 0 0 0

0.95 −0.16 0.02 −0.05

0.18 −0.30 0 −0.01

0.09 −0.17 −0.09 −0.08

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

E24 �

0

0

0.2

0.1

0.1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

F4 �

−0.37 −0.50

−0.07 1.25

2.00 0.14

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G4 �

0.46 0.05

−0.11 0.47

0.61 −0.43

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

N4 �

−0.28 −0.21 0.07 −0.18

−0.02 0.18 −0.33 −0.18

0.79 −0.20 0.09 −0.22

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(44)
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Moreover, the uncertainties of the system are

U1i � 0.2 −0.3 0 0 0 
T
,

V4i � −0.1 0.2 0.15 ,

U2i � 0.1 0.3 −0.1 0.2 0.05 
T
,

V3i � 0.1,

V1i � 0.1 0.5 0 0 0 ,

V2i � 0.2 −0.1 0 0 0 ,

(i � 1, 2, 3, 4).

(45)

,e system sampling period is set as T � 20ms, and the
external disturbance w(t) is

w(t) �
0.3 sin(0.8t)

5 sin(6t) + 3 cos(8t)
. (46)

,e state space of time-delay is τ(t) ∈ 1, 2, 3{ }, and the
state transition matrix of τ(t) is

Π �

−0.6 0.4 0.2

0.3 −0.5 0.2

0.1 0.4 −0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (47)

,e working condition is chosen as H� 5 km and
Ma� 0.3. ,e given value of c is c � 2.

Two types of performance degradation are selected to
simulate, which are slow varying and sudden change of
health parameters. For the sudden change type (Type I),
there is a step change for health parameters, and this type is
used to represent the sudden damage, such as foreign objects
damage. And the slow varying type (Type II) is defined as the
linear variation of health parameters to represent the gradual
performance degradation during using process. ,ese two
types can cover almost all the health parameters changes in
practice, and they are simulated respectively to illustrate the
effectiveness of the method proposed in this paper.

,e results are shown in Figures 3–6. It can be seen that
the method proposed in this paper can effectively simulate
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Figure 3: ,e estimation of health parameters for Type I.
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Figure 4: ,e estimation of health parameters for Type II.
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the health and performance parameters of the aeroengine.
,e estimated values can accurately track the changes as the
health parameters shift.

By comparing the results of the two types of health
parameters change, it can be concluded that the estimated
values for slow varying type are more accurate. For the type
of sudden change, it takes a while for the estimated values to
stabilize and the overshoot is slightly larger.

Table 2 shows the average estimated error of the health
and performance parameters. It can be seen that the esti-
mated error is within 2.5% for all types. At the same time, the
results are more accurate except for the beginning of
simulation.

Furthermore, the results show that the method pro-
posed in this paper can accurately estimate most system
parameters of interest. On this basis, the method can also
be used in the investigations of direct control, fault diag-
nosis, health management, and online monitoring. And for
aeroengine, there are already some researches which in-
dicate that the changes of health parameters can charac-
terize specific faults, allowing for online monitoring and
alerting [34–36].

6. Conclusion

In this paper, a method is proposed for the underdetermined
estimation problem of the distributed control systems. First,
the T-S fuzzy model for DCSs is constructed and a model
tuning parameter vector of appropriate dimension is pro-
duced. ,en an observer-based fuzzy filter is designed and
the sufficient condition for the existence of the designed filter
is derived in terms of LMIs solutions. Besides, the method
based on iterative solution is used to select the optimal
transformation matrix to minimize the estimated error.
Finally, the results of the simulation show that the proposed
method can effectively estimate unmeasured parameters of
the aeroengine and the estimated error is less than 2.5%.
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Figure 5: ,e estimation of performance parameter for Type I.
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Figure 6: ,e estimation of performance parameter for Type II.

Table 2: Estimated errors of health and performance parameters.

Estimated error Type I (%) Type II (%)
h1 0.46 0.40
h2 0.38 0.31
T5 1.27 0.98
Fn 1.95 1.57
ΠT 2.46 2.03
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