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�is paper studies the control of a class of 3D chaotic systems with uncertain parameters and external disturbances. A newmethod
which is referred as the analytical solution approach is �rstly proposed for constructing Lyapunov function.�en, for suppressing
the trajectories of the 3D chaotic system to its equilibrium point 0(0, 0, 0), a novel fast convergence controller containing
parameter λ which determines the convergence rate of the system is presented. By using the designed Lyapunov function, the
stability of the closed-loop system is proved via the Lyapunov stability theorem. Computer simulations are employed to a new
chaotic system to illustrate the e�ectiveness of the theoretical results.

1. Introduction

Chaos is a very fascinating phenomenon which often appears
in some nonlinear systems of physics, mathematics, psy-
chology, engineering, and so on. A system is called as the
chaotic system, provided that it exhibits chaos phenomenon.
Due to its powerful potential applications in secure com-
munications, biological systems, information processing, etc.,
the control of chaotic system has attracted extensive attention
of scholars in recent 20 years, and many e�cient approaches
have been presented for controlling chaos, such as OGY
control [1], impulsive control [2], fuzzy control [3, 4], sliding
mode control [5, 6], adaptive control [7, 8], composite learning
control [9, 10], and so on. Nowadays, many papers about
controlling chaotic systems have been published. For instance,
in [11], an adaptive control scheme is presented to realize the
control and synchronization of the uncertain Liu chaotic
dynamical system. In papers [12, 13], the control of the uni�ed
chaotic system is investigated by using the output feedback
control strategy and the passivity-based control method, re-
spectively. �e authors in paper [14] propose an adaptive
control approach for controlling the chaotic power systems via
the passivity-based control method and �nite-time stability
theory. In paper [15], a conventional adaptive controller is

presented for stabilizing the uncertain chaotic Zhang system
via a Lyapunov-like approach. Paper [16] discusses the control
of fractional-order nonlinear systems by the composite
learning adaptive method. A fractional dynamic surface is
introduced to avoid the explosion of complexity of the
designed controller. �e adaptive fuzzy backstepping control
for a class of uncertain fractional-order nonlinear systems with
unknown external disturbances is investigated in [17], where
the stability is analyzed by using the Lyapunov function.

It is easy to see that these control schemes presented in
papers [11–15] are only valid for one kind of chaotic system,
which limits their range of application. In addition, the
proposed methods do not consider the e�ect of uncertain
parameters and external disturbances which exist widely in
practical systems. Moreover, the controllers proposed in
papers [11–17] do not contain the parameters that can
change the convergence rate of the controlled system which
means once the controller is given, the convergence rate of
the controlled system is �xed. From the practical viewpoint
of application, it is desired that the chaos control or chaos
synchronization process can be accomplished quickly in a
short time. �us, how to design a controller such that the
process of chaos control or synchronization can be com-
pleted quickly in a short time is an important issue.
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Motivated by the above discussions, in this paper we
investigate the control of a class of 3D chaotic systems with
uncertain parameters and external disturbances. A novel fast
convergence control scheme for controlling 3D chaotic sys-
tem to its equilibrium point 0(0, 0, 0) is presented. Numerical
simulations verify the effectiveness of the presented method.

,e main contributions of this paper can be summarized
into three aspects. First, a new method which is referred as
the analytical solution approach is proposed. ,is technique
has two advantages: (a) the rate of the convergence can be
known by the designer; (b) a Lyapunov function for the
controlled system can be easily constructed. Second, a new
3D chaotic model with fractional power terms of state xi is
proposed. ,ird, a novel controller for controlling 3D
chaotic system to its equilibrium point 0(0, 0, 0) is pre-
sented. ,e proposed controller contains parameter λ which
determines the convergence rate of the system. In general,
the larger the value of |λ|, the faster the rate of convergence.

,e rest of the paper is organized as follows. In the next
section, the problem formulation and assumption are in-
troduced. ,e main theoretical results are presented in
Section 3. In Section 4, the control of a novel chaotic
attractor and its simulation results are given. Concluding
remarks are finally given Section 5.

2. The Problem Formulation

Consider the following chaotic systems with three inputs
described by

_x1 � f1(x) + αT
1 g1(x) + d1 + u1,

_x2 � f2(x) + αT
2 g2(x) + d2 + u2,

_x3 � f3(x) + αT
3 g3(x) + d3 + u3,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where f1(x) � a11x
m11
1 + a12x

m12
2 , f2(x) � a21x

m21
1 +

a22x
m22
2 + a23x

m23
1 x

m24
2 + a24x

m25
3 , f3(x) is a continuous

function. α1 � (α11, α12, . . . , α1m1
)T, α2 � (α21, α22,

. . . , α2m2
)T, and α3 � (α31, α32, . . . , α3m3

)T are unknown
parameter vectors. g1(x) � (g11(x), g11(x), . . . , g1m1

(x))T,

g2(x) � (g21(x), g22(x), . . . , g2m2
(x))T, and g3(x) �

(g31(x), g32(x), . . . , g3m3
(x))T are continuous functions,

m1, m2, m3 are positive integers. di is external disturbance, ui

is the controller, i � 1, 2, 3. In addition, a11, a12(≠ 0),

a21, a22, a23, a24(≠ 0) are parameters. m11, m12(� p1/q1),
m21, m22, m23, m24, m25(� p2/q2) are positive constants.
p1, p2, q1, q2 are positive odd numbers.

,e control aim of this paper is to design some adaptive
control laws, in the presence of the uncertain parameters and
unknown disturbances, such that the states of system (1) are
asymptotically stable for any given initial conditions, i.e.,
limt⟶∞x1 � limt⟶∞x2 � limt⟶∞x3 � 0.

Before proceeding to the main results, we make the
following Assumption 1.

Assumption 1. ,ere exists a positive number M(> 0) such
that |di|≤M, i � 1, 2, 3.

3. The Main Results

In order to obtain some adaptive controllers, we first con-
sider the control problem of the following system:

_x1 � f1(x),

_x2 � f2(x),

_x3 � u0,

⎧⎪⎪⎨

⎪⎪⎩
(2)

where u0 is the controller to be designed such that the
equilibrium point (0, 0, 0) of system (2) is asymptotically
stable.

,e purpose of considering system (2) firstly is that
through designing controller u0, one can get the analytical
solution of system (2). By using the obtained analytical
solution, we can easily construct the Lyapunov function
which is helpful in proving ,eorem 2.

Theorem 1. !e equilibrium point (0, 0, 0) of system (2) is
asymptotically stable if u0 is chosen as

u0 �
− λ3w1/2􏼐 􏼑 − λ3 + 3λ2 − 3λ − 1􏼐 􏼑 w2/2( 􏼁 − λ3 − 3λ2 − 3λ + 1􏼐 􏼑 w3/2( 􏼁

a12m12x
m12− 1
2 a24m25x

m25 − 1
1

−
a12m12 m12 − 1( 􏼁x

m12− 2
2 f2(x)2 + a11m11 m11 − 1( 􏼁f1(x)2

a12m12x
m12− 1
2 a24m25x

m25 − 1
3

−
a11m11x

m11− 1
1 a11m11x

m11 − 1
1 f1(x) + a12m12x

m12− 1
2 f2(x)􏼐 􏼑

a24m25x
m25− 1
3

−
a21m21x

m21− 1
1 + a23m23x

m23− 1
1 x

m24
2􏼐 􏼑f1(x)

a24m25x
m25 − 1
3

−
a22m22x

m22− 1
2 + a23m24x

m23
1 x

m24− 1
2􏼐 􏼑f2(x)

a24m25x
m25 − 1
3

,

(3)
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where λ< 0 and

w1 �

x1 1 1

a11x
m11
1 + a12x

m12
2 λ + 1 λ − 1

ρ λ2 + 2λ − 1 λ2 − 2λ − 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

w2 �

1 x1 1

λ a11x
m11
1 + a12x

m12
2 λ − 1

λ2 ρ λ2 − 2λ − 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

w3 �

1 1 x1

λ λ + 1 a11x
m11
1 + a12x

m12
2

λ2 λ2 + 2λ − 1 ρ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

ρ � a11m11x
m11− 1
1 f1(x) + a12m12x

m12− 1
2 f2(x).

(4)

Proof. ,eorem 1 will be proved by constructing the exact
analytical solutions of system (2).

Let

x1 � e
λt

(1 + cos t + sin t), (5)

be a solution of system (2), where λ< 0. Obviously, we have
limt⟶∞x2 � 0.

Taking the derivative on both sides of equation (5), we
have

_x1 � λe
λt

(1 + cos t + sin t) + e
λt

(cos t − sin t)

� e
λt

(λ +(λ + 1)cos t +(λ − 1)sin t).
(6)

Since _x1 � f1(x), we get

e
λt

(λ +(λ + 1)cos t +(λ − 1)sin t) � a11x
m11
1 + a12x

m12
2 .

(7)

,en, we obtain

a12x
m12
2 � e

λt
(λ +(λ + 1)cos t +(λ − 1)sin t) − a11x

m11
1 .

(8)

Taking the derivative on both sides of the above equa-
tion, it yields

a12m12x
m12− 1
2 _x2 � e

λt λ2 + λ2 + 2λ − 1􏼐 􏼑cos t + λ2 − 2λ − 1􏼐 􏼑sin t􏼐 􏼑

− a11m11x
m11− 1
1 a11x

m11
1 + a12x

m12
2( 􏼁.

(9)

i.e.,

e
λt λ2 + λ2 + 2λ − 1􏼐 􏼑cos t + λ2 − 2λ − 1􏼐 􏼑sin t􏼐 􏼑 � a11m11x

m11− 1
1

a11x
m11
1 + a12x

m12
2( 􏼁 + a12m12x

m12− 1
2 a21x

m21
1 + a22x

m22
2(

+ a23x
m23
1 x

m24
2 + a24x

m25
3 􏼁.

(10)

According to (5), (7), and (10), we have

eλt(1 + cos t + sin t) � x1,

eλt(λ +(λ + 1)cos t +(λ − 1)sin t) � a11x
m11
1 + a12x

m12
2 ,

eλt λ2 + λ2 + 2λ − 1􏼐 􏼑cos t + λ2 − 2λ − 1􏼐 􏼑sin t􏼐 􏼑 � ρ.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

By using Cramer’s rule, the solution of system (11) is
easily obtained as

eλt � −
w1

2
,

cos teλt � −
w2

2
,

sin teλt � −
w3

2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Calculating the derivative on both sides of equation (10),
we derive

e
λt λ3 + λ3 + 3λ2 − 3λ − 1􏼐 􏼑cos t + λ3 − 3λ2 − 3λ + 1􏼐 􏼑sin t􏼐 􏼑 � a11m11 m11 − 1( 􏼁x

m11 − 2
1 f1(x)

2

+ a11m11x
m11− 1
1 a11m11x

m11 − 1
1 f1(x) + a12m12x

m12− 1
2 f2(x)􏼐 􏼑 + a12m12 m12 − 1( 􏼁x

m12 − 2
2 f2(x)

2

+ a12m12x
m12− 1
2 a21m21x

m21− 1
1 + a23m23x

m23− 1
1 x

m24
2􏼐 􏼑f1(x) + a22m22x

m22− 1
2 + a23m24x

m23
1 x

m24 − 1
2􏼐 􏼑f2(x) + a24m25x

m25− 1
3 _x3􏼐 􏼑.

(13)
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Based on equation (13), we get
_x3 � u0, (14)

where

u0 �
eλt λ3 + λ3 + 3λ2 − 3λ − 1􏼐 􏼑cos t + λ3 − 3λ2 − 3λ + 1􏼐 􏼑sin t􏼐 􏼑

a12m12x
m12 − 1
2 a24m25x

m25− 1
3

−
a12m12 m12 − 1( 􏼁x

m12− 2
2 f2(x)2 + a11m11 m11 − 1( 􏼁x

m11− 2
1 f1(x)2

a12m12x
m12− 1
2 a24m25x

m25− 1
3

−
a11m11x

m11− 1
1 a11m11x

m11 − 1
1 f1(x) + a12m12x

m12− 1
2 f2(x)􏼐 􏼑

a24m25x
m25− 1
3

−
a21m21x

m21− 1
1 + a23m23x

m23− 1
1 x

m24
2􏼐 􏼑f1(x)

a24m25x
m25 − 1
3

−
a22m22x

m22− 1
2 + a23m24x

m23
1 x

m24− 1
2􏼐 􏼑f2(x)

a24m25x
m25 − 1
3

�
− λ3w1/2􏼐 􏼑 − λ3 + 3λ2 − 3λ − 1􏼐 􏼑 w2/2( 􏼁 − λ3 − 3λ2 − 3λ + 1􏼐 􏼑 w3/2( 􏼁

a12m12x
m12− 1
2 a24m25x

m25 − 1
1

−
a12m12 m12 − 1( 􏼁x

m12− 2
2 f2(x)2 + a11m11 m11 − 1( 􏼁x

m11− 2
1 f1(x)2

a12m12x
m12− 1
2 a24m25x

m25− 1
3

−
a11m11x

m11− 1
1 a11m11x

m11 − 1
1 f1(x) + a12m12x

m12− 1
2 f2(x)􏼐 􏼑

a24m25x
m25− 1
3

−
a21m21x

m21− 1
1 + a23m23x

m23− 1
1 x

m24
2􏼐 􏼑f1(x)

a24m25x
m25 − 1
3

−
a22m22x

m22− 1
2 + a23m24x

m23
1 x

m24− 1
2􏼐 􏼑f2(x)

a24m25x
m25 − 1
3

.

(15)

According to (14), we know that if u0 is taken as (15),
then equation (11) is the solution of system (2). From (11), it
is obvious that the equilibrium point (0, 0, 0) of system (2) is
asymptotically stable. □

Remark 1. ,eorem 1 is proved without using the Lya-
punov stability theory. In fact, ,eorem 1 can also be
proved by using the Lyapunov stability theory. To show
this, we choose the following function as the Lyapunov
candidate:

V0 �
w2

1
|λ|

+
w2

2
4

+
w2

3
9

. (16)

,is is because V0 can be rewritten as

V0 � 4
e2λt

|λ|
+

cos teλt

2
􏼠 􏼡

2

+
sin teλt

3
􏼠 􏼡

2
⎛⎝ ⎞⎠

� 4e
2λt 1

|λ|
+

cos2 t

4
􏼠 􏼡 +

sin2 t

9
􏼠 􏼡􏼠 􏼡.

(17)
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,e derivative of V0 along system (2) is

_V0 � 8λe
2λt 1

|λ|
+

cos2 t

4
􏼠 􏼡 +

sin2 t

9
􏼠 􏼡􏼠 􏼡 + 4e

2λt

· −
sin 2 t

4
􏼒 􏼓 +

sin 2 t

9
􏼒 􏼓􏼓

� 4e
2λt

− 2 + 2λ
cos2 t

4
+
sin2 t

9
􏼠 􏼡 −

sin 2 t

4
+
sin 2 t

9
􏼠 􏼡.

(18)

Since λ< 0, we have _V0 < 0. According the Lyapunov
stability theory, we derive limt⟶∞w1 � limt⟶∞
w2 � limt⟶∞w3 � 0 which implies that the equilibrium
point (0, 0, 0) of system (2) is asymptotically stable.

Remark 2. It is easy to see that the Lyapunov function V0 is
constructed according to the analytical solutions. So, in this
paper, the new method of obtaining Lyapunov function is
referred as the analytical solution approach. ,is new
technique can be applied to other chaotic systems for de-
signing Lyapunov function.

Remark 3. By (11), one can see that system (2) is globally
exponentially stable at the origin and the rate of the con-
vergence is determined by λ. ,e larger the value of |λ|, the
faster the speed of convergence.

With the help of V0 described by (17), we are now in a
position to discuss the control of system (1).

Theorem 2. Suppose that Assumption 1 holds. If controllers
u1, u2, u3 are taken as

u1 � − αT
1 g1(x) − Msign

zV0

zx1
􏼠 􏼡,

u2 � − αT
2 g2(x) − Msign

zV0

zx2
􏼠 􏼡,

u3 � − f3(x) + u0 − αT
3 g3(x) − Msign

zV0

zx3
􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

with the update laws:

_α1 �
zV0

zx1
g1(x),

_α2 �
zV0

zx2
g2(x),

_α3 �
zV0

zx3
g3(x),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

!en, the equilibrium point (0, 0, 0) of system (1) is as-
ymptotically stable, where α1, α2, α3 are the estimated values
of α1, α2, α3, respectively.

Proof. Plugging (19) into system (1) yields

_x1 � f1(x) + α1 − α1( 􏼁
T

g1(x) + d1 − Msign
zV0

zx1
􏼠 􏼡,

_x2 � f2(x) + α2 − α2( 􏼁
T

g2(x) + d2 − Msign
zV0

zx2
􏼠 􏼡,

_x3 � u0 + α3 − α3( 􏼁
T
g3(x) + d3 − Msign

zV0

zx3
􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Now, consider the following Lyapunov candidate:

V � V0 +
1
2

α1 − α1( 􏼁
T α1 − α1( 􏼁 + α2 − α2( 􏼁

T α2 − α2( 􏼁􏼐

+ α3 − α3( 􏼁
T α3 − α3( 􏼁􏼑.

(22)

,e derivative of (22) along system (21) is

_V �
zV0

zx1
_x1 +

zV0

zx2
_x2 +

zV0

zx3
_x3 − α1 − α1( 􏼁

T_α1 − α2 − α2( 􏼁
T_α2 − α3 − α3( 􏼁

T _α3

�
zV0

zx1
f1(x) + α1 − α1( 􏼁

T
g1(x) + d1 − Msign

zV0

zx1
􏼠 􏼡􏼠 􏼡 +

zV0

zx2
f2(x) + α2 − α2( 􏼁

T
g2(x) + d2 − Msign

zV0

zx2
􏼠 􏼡􏼠 􏼡

+
zV0

zx3
u0 + α3 − α3( 􏼁

T
g3(x) + d3 − Msign

zV0

zx3
􏼠 􏼡􏼠 􏼡 − α1 − α1( 􏼁

T _α1 − α2 − α2( 􏼁
T _α2 − α3 − α3( 􏼁

T _α3

�
zV0

zx1
f1(x) +

zV0

zx2
f2(x) +

zV0

zx3
u0􏼠 􏼡 + α1 − α1( 􏼁

T zV0

zx1
g1(x) − _α1􏼠 􏼡 + α2 − α2( 􏼁

T zV0

zx2
g2(x) − _α2􏼠 􏼡 + α3 − α3( 􏼁

T zV0

zx3
g3(x) − _α3􏼠 􏼡

+
zV0

zx1
d1 − Msign

zV0

zx1
􏼠 􏼡􏼠 􏼡 +

zV0

zx2
d2 − Msign

zV0

zx2
􏼠 􏼡􏼠 􏼡 +

zV0

zx3
d3 − Msign

zV0

zx3
􏼠 􏼡􏼠 􏼡.

(23)
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By Assumption 1, we know that |di|≤M.�us, we have

zV0

zx1
d1 − Msign

zV0

zx1
( )( ) +

zV0

zx2
d2 − Msign

zV0

zx2
( )( )

+
zV0

zx3
d3 − Msign

zV0

zx3
( )( )≤ 0.

(24)

According to update laws (20), we get

α1 − α1( )T
zV0

zx1
g1(x) − _α1( ) + α2 − α2( )T

zV0

zx2
g2(x) − _α2( )

+ α3 − α3( )T
zV0

zx3
g3(x) − _α3( ) � 0.

(25)

In view of Remark 1, we obtain

zV0

zx1
f1(x) +

zV0

zx2
f2(x) +

zV0

zx3
u0 < 0. (26)

Substituting (24), (25), and (26) into (23), one derives that
_V< 0. (27)

Based on the Lyapunov stability theory, we conclude
limt⟶∞w1 � limt⟶∞w2 � limt⟶∞w3 � 0, which implies
that the equilibrium point (0, 0, 0) of system (1) is asymp-
totically stable. □

Remark 4. Note that λ determines the speed of the con-
vergence of system (2) and system (2) is the main part of
system (1); therefore, λ determines the speed of the con-
vergence of system (1). �e simulation results show that the
smaller the value of λ, the faster the speed of convergence.

4. TheControlofanNovelChaoticAttractorand
its Simulation Results

Consider the following new three-dimensional chaotic
system [18]:

_x1 � x2 − ax1 + bx2x3,
_x2 � cx2 − x1x3 + x3,
_x3 � dx1x2 − hx3,




(28)

where (x1, x2, x3)
T ∈ R3 is the state vector, and a, b, c, d and

h are positive real constants. It is reported that this chaotic
system has many interesting complex dynamical behaviors
[18]. �e new two-wing chaotic attractor of system (28) with
a � 3, b � 2.7, c � 4.7, d � 2 and h � 9 is shown in Figure 1.
In the following numerical process, we assume a � 3, b �
2.7, c � 4.7, d � 2, and h � 9. For simplicity, we suppose that
b and d are unknown parameter.

If system (28) is a�ected by external disturbances, then
system (28) with three inputs can be rewritten as

_x1 � x2 − ax1 + bx2x3 + sin x2x1( ) + u1,
_x2 � cx2 + θx1x3 + x3 + cos x2x3( ) + u2,
_x3 � dx1x2 − hx3 + 2 sin x1( )cos x3( ) + u3,




(29)

where θ � − 1 and u1, u2, u3 are three controllers.
Compared with system (1), we know that (m11, m12,

m21, m22, m23, m24, m25) � (1, 1, 1, 1, 1, 1, 1).a11 � − a, a12 �
1, a21 � 0, a22 � c, a23 � 0, a24 � 1. α11 � b, α21 � θ, α31 � d.
g11(x) � x2x3, g21(x) � x1x3, g31(x)x1x2, f3 (x) � − hx3.
�e external disturbances are d1 � sin(x2x1), d2 � cos
(x2x3), d3 � 2 sin(x1)cos(x3).

�e reason why we introduce θ is that in f2(x) of system
(1) there is no term x2x3. So, in order to use the results
obtained in the above section, we assume θ is the unknown
parameter.

Based on system (2), we derive the following auxiliary
system:

_x1 � x2 − 3x1,

_x2 � 4.7x2 + x3,
_x3 � u0,




(30)

Now, for convenience of comparison, we consider two
cases: λ � − 1 and λ � − 10.

Case 1. λ � − 1.
According to �eorem 2, in this case, one can obtain

w1 � − 10x1 −
37x2
5

− 2x3,

w2 � 6x1 + 2.7x2 + x3,

w3 � 2x1 + 4.7x2 + x3,

u0 � −
1
2

2609x2
50

− 20x1 +
47x3
5

( ),

V01 � 10x1 +
37x2
5 + 2x3( )

2 +
1
4
6x1 + 2.7x2 + x3( )2

+
1
9
2x1 + 4.7x2 + x3( )2.




(31)
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Figure 1: �e chaos attractor of system (28) with
x1(0) � 5, x2(0) � 0, x3(0) � − 4.
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�erefore, the controllers can be taken as

u1 � − bx2x3 − 2sign
zV01

zx1
( ),

u2 � − θx1x3 − 2sign
zV01

zx2
( ),

u3 � 9x3 + u0 − dx1x2 − 2sign
zV01

zx3
( ),




(32)

with the update laws:

_b �
zV01

zx1
x2x3,

_θ �
zV01

zx2
x1x3,

_d �
zV01

zx3
x2x1,




(33)

where b, θ, d are the estimated vales of b, θ, d, respectively.

Case 2. λ � − 10.
Based on �eorem 2, in this case, we have

w1 � − 100x1 −
217x2
5

− 2x3,

w2 � 42x1 + 20.7x2 + x3,

w3 � 56x1 + 22.7x2 + x3,

u0 � − 350x1 − 368.99x2 − 31.7x3,

V02 �
− 100x1 − 217x2/5( ) − 2x3( )2

10

+
42x1 + 20.7x2 + x3( )2

4
+

56x1 + 22.7x2 + x3( )2

9
.




(34)

�erefore, the controllers can be taken as

u1 � − bx2x3 − 2sign
zV02

zx1
( ),

u2 � − θx1x3 − 2sign
zV02

zx2
( ),

u3 � 9x3 + u0 − dx1x2 − 2sign
zV02

zx3
( ),




(35)

with the update laws:

_b �
zV02

zx1
x2x3,

_θ �
zV02

zx2
x1x3,

_d �
zV02

zx3
x2x1,




(36)

where b, θ, d are the estimated vales of b, θ, d, respectively.
According to�eorem 2, we know that in the two cases, the

equilibrium point (0, 0, 0) of system (29) is asymptotically
stable.�e Figures 2–7 show the simulation results with λ � − 1
and λ � − 10. �e initial values are taken as (x1(0), x2(0),
x3(0)) � (5, 0, − 4), (b(0), θ(0), d(0)) � (1, 1, 1).

From Figures 2–4, it can be seen that when λ � − 1, the
states x1, x2, x3 need about 2.5 s to reach the equilibrium
point. However, for λ � − 10, the states x1, x2, x3 only need
about 0.6 s to reach the equilibrium point, which means
that the convergence time is greatly shortened compared

0 0.5 1 1.5 2 2.5 3 3.5
−60

−40

−20

0

20

40

60

80

t

x1

Lambda = −10
Lambda = −1

Figure 2: �e time response of state x1 of system (29) with
x1(0) � 5, x2(0) � 0, x3(0) � − 4.
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Figure 3: �e time response of state x2 of system (29) with
x1(0) � 5, x2(0) � 0, x3(0) � − 4.
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with that of λ � − 1. �erefore, one can conclude that the
larger the value of |λ|, the faster the rate of convergence. In
addition, the vibration amplitude of λ � − 10 is smaller

than that of λ � − 1 which implies that the vibration
amplitude is decreased with the increase of the absolute
value of λ.

5. Conclusions

�e control of a class of 3D chaotic systems with uncertain
parameters and external disturbances via an adaptive
control method has been systematically investigated in
this paper. �rough designing the analytical solution of
the chaotic system, a proper Lyapunov function can be
easily obtained. �is method of constructing Lyapunov
function by using the analytical solution can be applied to
other chaotic systems. By using the designed Lyapunov
function, a novel fast convergence controller containing
parameter λ which determines the convergence rate of the
system is presented. In addition, as shown in Section 4,
since the terms that are not included in functions
f1(x), f2(x), f3(x) can be considered to contain uncer-
tain parameters, the control scheme presented in this
paper can be employed to any 3D continuous chaotic
systems. Finally, the e�ectiveness of the theoretical results
is illustrated by some numerical simulations.

In this paper, only the integer-order chaotic system,
which is a special case of fractional-order system, has been
considered. It is well known that compared with integer-
order derivatives, the fractional derivatives has many dis-
tinguishing features such as the long-term memory and self-
similarity which can be used for the description of memory
and hereditary properties of various materials and processes.
�us, the control and synchronization of fractional-order
chaotic systems via the analytical solution approach is an
important issue. �is issue will be our research focus in the
future.

Data Availability

�e data used to support the �ndings of this study are
available from the corresponding author upon request.
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Figure 5: �e time response of state b of system (29) with
x1(0) � 5, x2(0) � 0, x3(0) � − 4.
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Figure 4: �e time response of state x3 of system (29) with
x1(0) � 5, x2(0) � 0, x3(0) � − 4.
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Figure 6: �e time response of state θ of system (29) with
x1(0) � 5, x2(0) � 0, x3(0) � − 4.

0 0.5 1 1.5 2 2.5 3 3.5
t

Lambda = −10
Lambda = −1

−50
−40
−30
−20
−10

0
10
20
30
40
50

d−

Figure 7: �e time response of state d of system (29) with
x1(0) � 5, x2(0) � 0, x3(0) � − 4.
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