
Research Article
Degree-Constrained k-Minimum Spanning Tree Problem

Pablo Adasme 1 and Ali Dehghan Firoozabadi 2

1Department of Electrical Engineering, Universidad de Santiago de Chile, Avenida Ecuador 3519, Santiago, Chile
2Department of Electricity, Universidad Tecnológica Metropolitana, Av. Jose Pedro Alessandri 1242, 7800002 Santiago, Chile

Correspondence should be addressed to Pablo Adasme; pablo.adasme@usach.cl

Received 15 June 2020; Revised 25 August 2020; Accepted 10 October 2020; Published 9 November 2020

Academic Editor: Qingling Wang

Copyright © 2020 Pablo Adasme and Ali Dehghan Firoozabadi.)is is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Let G(V, E) be a simple undirected complete graph with vertex and edge sets V and E, respectively. In this paper, we consider the
degree-constrained k-minimum spanning tree (DCkMST) problem which consists of finding a minimum cost subtree of G

formed with at least k vertices of V where the degree of each vertex is less than or equal to an integer value d≤ k − 2. In particular,
in this paper, we consider degree values of d ∈ 2, 3{ }. Notice that DCkMSTgeneralizes both the classical degree-constrained and
k-minimum spanning tree problems simultaneously. In particular, when d � 2, it reduces to a k-Hamiltonian path problem.
Application domains where DCkMST can be adapted or directly utilized include backbone network structures in telecom-
munications, facility location, and transportation networks, to name a few. It is easy to see from the literature that the DCkMST
problem has not been studied in depth so far.)us, our main contributions in this paper can be highlighted as follows.We propose
three mixed-integer linear programming (MILP) models for the DCkMST problem and derive for each one an equivalent
counterpart by using the handshaking lemma.)en, we further propose ant colony optimization (ACO) and variable neigh-
borhood search (VNS) algorithms. Each proposed ACO and VNS method is also compared with another variant of it which is
obtained while embedding a Q-learning strategy. We also propose a pure Q-learning algorithm that is competitive with the ACO
ones. Finally, we conduct substantial numerical experiments using benchmark input graph instances from TSPLIB and randomly
generated ones with uniform and Euclidean distance costs with up to 400 nodes. Our numerical results indicate that the proposed
models and algorithms allow obtaining optimal and near-optimal solutions, respectively. Moreover, we report better solutions
than CPLEX for the large-size instances. Ultimately, the empirical evidence shows that the proposed Q-learning strategies can
bring considerable improvements.

1. Introduction

Intelligent communication systems will be mandatorily
required in the next decades to provide low-cost connec-
tivity within many application domains involving network
structures in the form of ring, tree, and star topologies [1–3],
for instance, when designing network structures in tele-
communications, facility location, electrical power systems,
water and transportation networks, and for networks to be
constructed under the Internet of)ings (IoT) paradigm
[2–10]. A particular example related with wireless sensor
networks is due to density control methods [1, 11, 12].)ese
methods allow reducing energy consumption in sensor
networks by means of activation or deactivation

mechanisms which mainly consist of putting into sleep
mode some of the nodes of the network while ensuring
sensing operations, communication, and connectivity
[1–3, 12–16].

Let G(V, E) represent a simple undirected complete
graph with set of nodes V � 1, . . . , n{ } and set of edges
E � 1, . . . , m{ }. In this paper, we consider the degree-con-
strained k-minimum spanning tree problem (DCkMST),
which consists of finding a minimum cost subtree of G

formed with at least k≤ n vertices of V where each vertex has
a degree lower than or equal to d ∈ 2, . . . , k − 2{ }. Notice
that, for d � 2, DCkMST reduces to find a minimum cost
Hamiltonian path with cardinality k.)e DCkMSTproblem
generalizes two classical combinatorial optimization

Hindawi
Complexity
Volume 2020, Article ID 7628105, 25 pages
https://doi.org/10.1155/2020/7628105

mailto:pablo.adasme@usach.cl
https://orcid.org/0000-0003-2500-3294
https://orcid.org/0000-0002-6391-6863
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/7628105

problems, namely, the degree-constrained and k-minimum
spanning tree problems (resp., DCMST and kMST). Re-
cently, a variant of DCkMST was studied in [17], where the
authors assume that there exists a predefined root node that
should not satisfy the degree constraint. In this paper, we
consider the more general case where all nodes should satisfy
this condition. Proofs related with the NP-hardness of
DCMST and kMST can be found, respectively, in [18–20].
However, other applications related to the kMST problem
can be consulted in [17, 20]. Notice that the degree con-
straints ensure that no overloaded nodes are present in the
network.

It is easy to check from the literature that the DCkMST
problem has not been addressed in depth so far. Conse-
quently, our main contributions in this paper can be
highlighted as follows. First, we propose three mixed-integer
linear programming (MILP) models for the DCkMST
problem and derive for each one an equivalent formulation
using the handshaking lemma [21–23]. More precisely, we
propose four compact polynomial formulations and two
exponential models. Two of the compact models are for-
mulated based on a Miller–Tucker–Zemlin-constrained
approach, whilst the two remaining ones are flow-based
models. We solve our exponential models with an exact
iterative method adapted from [2, 24]. In order to obtain
feasible solutions alternatively, we further propose ant
colony optimization and variable neighborhood search
(resp., ACO and VNS for short) algorithms for d � 2 and
d � 3, respectively [25–29]. We choose VNS and ACO
metaheuristics as they are well-known techniques in the
operations research community which have proved to be
highly efficient in order to find feasible solutions for many
hard combinatorial optimization problems [25–29]. In
particular, within each iteration of the VNS algorithm, for
each random k− tuple of vertices generated, we obtain de-
gree-constrained spanning trees by using a modified penalty
approach proposed in [30]. However, for the VNS algo-
rithm, we further introduce an embedded Q-learning
strategy that allows performing a random local search based
on the experience of previous solutions found [31].)e
Q-learning approach is a simple reinforcement learning
technique initially proposed in [31] that allows an agent to
interact with its environment in order to learn from the
experience of previous occurrences the best action to choose
from a set of actions in order to maximize its revenue.)e
underlying idea in doing so is to construct optimization
methods with learning capabilities in order to make them
robust, self-adaptive, and independent from decision-
makers. Notice that recently there is a growing interest from
the operation research community in developing novel
machine learning-based optimization methods that allow
solving hard combinatorial optimization problems [32].
Consequently, embedding a Q-learning strategy in a random
local search algorithm is a novel approach to the literature.
Our embedded Q-learning strategy is then compared with a
traditional VNS near-far random local search procedure
[28]. Another paper dealing with a similar embedded re-
inforcement learning strategy using VNS is proposed in [33].
More precisely, the authors propose a reactive search VNS

method that allows learning which is the order in which
different local search heuristics must be applied in order to
obtain better solutions based on the experience of previous
trials.)eir method is applied and tested on the symmetric
traveling salesman problem obtaining good results in terms
of solution quality and speed.)e embedded Q-learning
strategy in our VNS approach is different as we use it as a
learning mechanism in order to perform a random local
search. Besides, it does not require the use of specialized local
search methods, and consequently, it can be extended and
used straightforwardly for any other combinatorial opti-
mization problems. Similarly, we also compare the proposed
ACO algorithmwith an adapted version of the generic ant-Q
method proposed in [27]. Finally, we propose a pure
Q-learning-based algorithm that is competitive with both
ACO methods. We report numerical results for Euclidean
benchmark instances from [34] and for randomly generated
ones with both uniform and Euclidean distance costs with
up to 400 nodes.

)e paper is organized as follows: in Section 2, we
present some related work, whilst in Section 3, we present
the MILP formulations.)en, in Section 4, we present and
explain each proposed algorithm. Next, in Section 5, we
conduct substantial numerical experiments in order to
compare all the proposed models and algorithms. Finally, in
Section 6, we give the main conclusions of the paper and
provide some insights into future research.

2. Related Work

As mentioned in Section 1, the DCkMST problem gener-
alizes both the DCMSTand kMSTproblems simultaneously.
Consequently, previously related work is mainly focused on
these graph combinatorial optimization problems. Notice
that our work in this paper corresponds to an extended
version of the preliminary work reported in [21]. However,
now we generalize the previous formulations presented in
[21] and allow eachmodel to obtain feasible solutions with at
least k vertices instead of using a unique value of k.)us, the
proposed models in this paper are more accurate with re-
spect to the definition of the kMST problem [20]. In ad-
dition, we propose several algorithmic approaches for the
DCkMST problem. Finally, we report numerical results for
complete graph instances using degree values of d ∈ 2, 3{ }.
Notice that solving complete graph instances for the
DCMST problem while using degree values of d ∈ 2, 3{ }

implies solving the hardest type of instances as reported in
the literature [35].

Regarding the complexity of the kMST problem, it has
proved to be NP-hard by reduction from the Steiner tree
problem for variable values of k [19, 20]. Consequently, it is
hard to obtain an approximation ratio better than (96/95)

[36]. In fact, the best-known approximation ratio for this
problem is 2 and is reported in [37]. Some recent meta-
heuristic approaches are due to [38, 39]. In particular, the
authors in [39] propose a new hybrid algorithm based on
tabu search and ant colony optimization leading to better
numerical results than state-of-the-art values reported in the
literature. Similarly, in [38], the authors propose a hybrid

2 Complexity

approach using a memetic algorithm where the genetic
operator is based on a dynamic programming method.
Numerical results show that their proposed method out-
performs several existing algorithms in terms of solution
quality and accuracy.

On the contrary, the DCMST problem has been studied
extensively in the literature including exact and heuristic
approaches such as Lagrangian relaxations, approximation
algorithms, and branch-and-cut and metaheuristics ap-
proaches [22, 30, 35, 40–44]. In particular, the authors in
[35] propose a Lagrangian-based heuristic for the DCMST
problem that uses a greedy construction heuristic followed
by a heuristic improvement procedure.)ey report exten-
sive computational experiments and indicate that their
solving method is competitive with the best heuristics and
metaheuristics proposed in the literature. Instances with up
to 2000 nodes are reported. Similarly, the authors in [22]
propose a branch-and-cut algorithm for this problem
dealing with instances with as many as 800 nodes. Con-
cerning metaheuristic approaches, a novel genetic algorithm
is proposed in [41]. More precisely, the authors first propose
a transformation of the problem into a preference with two
objective minimum spanning tree problems.)en, new
crossover, mutation, and selection operators together with a
local search approach are derived based on the preference of
the two objectives. Finally, they show that their algorithm
converges with probability one to a globally optimal solu-
tion. A more recent VNS approach is presented in [45]
where the authors develop ideas that allow the enhancement
of the performance of the VNS by guiding the search in the
shaking phase while using second-order algorithms and
skewed functions.)ey conduct computational experiments
on hard benchmark instances from the literature and im-
prove upon the best-known solutions. Finally, their solu-
tions significantly reduced the gaps with respect to tight
lower bounds reported in the literature as well. Other
variants in the DCMST problem such as the multiperiod
DCMST and min-degree-constrained minimum spanning
tree problems are presented in [46, 47].

In this paper, our VNS approach for the DCkMST
problem performs a traditional near-far random local search
procedure as performed in the reduced VNS presented in
[28, 29] and also a novel one which consists of embedding a
Q-learning strategy [31] for each random generated k-tuple
of vertices of V. In both cases, we use a modified penalty
heuristic approach proposed in [30] in order to find
spanning trees while satisfying the degree constraints. Fi-
nally, our ACO algorithms are adapted from [25–27] and
incorporate an adaptive mechanism that allows obtaining
consecutive k-Hamiltonian paths within each iteration in
order to find feasible solutions. Practical applications related
to the DCMST include the design of computer and com-
munication networks, electric circuits, design of integrated
circuits, road networks, and energy networks, among many
others [17, 35]. Notice that, aside from these applications, all
the proposed models and algorithms could also be extended
and adapted for multiagent systems with varying graph
topologies in order to deal with self-organization and
congestion control in communication networks [48, 49].

3. Mathematical Formulations

In this section, for the sake of clarity, we first present a
feasible solution for the DCkMST problem, and then, we
present and explain the proposed MILP models.

3.1. A Feasible Solution for the DCkMST Problem. In
Figure 1(a), we depict an input complete graph instance with
10 nodes where the coordinates of each node are randomly
generated within a square area of 1 km2, whereas in
Figures 1(b) and 1(c), we show feasible solutions obtained
for the instance in Figure 1(a) while using degree values of 3
and 2, respectively. For the sake of clarity, in Figures 1(b) and
1(c), we only draw the edges and highlight with green color
the nodes which are part of the solutions, i.e., the nodes
1, 2, 3, 5, 6, 7{ }. Notice that the minimum cost value of an
optimal solution in Figure 1(b) should be lower than or equal
to the minimum cost value of an optimal solution in
Figure 1(c) since the latter is also a feasible solution for the
degree value of 3. On the opposite, the solution in
Figure 1(b) is not feasible for the degree value of 2.

Proposition 1. -e following statements are true:

(1) If k � n and d≤ n − 2, the DCkMST problem reduces
to the DCMST problem.

(2) If k< n and d≥ k − 1, the DCkMST problem reduces
to the kMST problem.

(3) If k � n and d≥ n − 1, the problem reduces to the
classical minimum spanning tree (MST) problem,
which can be solved in polynomial time by a greedy
algorithm [50, 51].

From Proposition 1, it is easy to see that the DCkMST
problem is NP-hard as it generalizes both the DCMST and
KMST problems. Hereafter, we present the MILP models.

3.2.MILPModels. In order to formulate a first MILP model,
let H � (V, A) be the directed graph obtained from G(V, E),
where each edge (i, j) ∈ E is replaced by the two arcs (i, j)

and (j, i) ∈ A.)us, we have the following proposition.

Proposition 2. Model P1 allows to obtain an optimal so-
lution for the DCkMST problem with minimum cost:

P1: min
x,u,z{ }

(i,j)∈A

Pijzij, (1)

s.t.
j∈V

xj ≥ k, (2)

(i,j)∈A

zij �
j∈V

xj − 1,
(3)

ui ≤
j∈V

xj, ∀i ∈ V, (4)

Complexity 3

ui ≥ xi, ∀i ∈ V , (5)

i|(i,j)∈A

zij ≤ xj, ∀j ∈ V,
(6)

uj − ui − (n − 1)zij − (n − 3)zji ≥ 2 − n, ∀(i, j) ∈ A ,

(7)

i|(i,j)∈A

zij +
i|(j,i)∈A

zji ≤ dxj, ∀j ∈ V,
(8)

i|(i,j)∈A

zij +
i|(j,i)∈A

zji ≥ xj, ∀j ∈ V,
(9)

zij + zji ≤xi, ∀(i, j) ∈ A , (10)

x ∈ 0, 1{ }
n
, z ∈ 0, 1{ }

n2
, u ∈ [0,∞)

n , (11)

where P � (Pij) for each (i, j) ∈ A is defined as an input
symmetric matrix denoting the connectivity costs between
nodes i, j ∈ V. We also define the binary variable zij to be
equal to one if and only if arc (i, j) ∈ A belongs to the solution
of the resulting spanning tree and zij � 0 otherwise.

Proof. Notice that the total connectivity cost is minimized in
(1). Next, notice that constraints (2) and (3) ensure that at
least k nodes from set V should belong to the output solution

of the problem and that the number of arcs must be equal to
the number of nodes minus one, respectively. For this
purpose, we define the binary variable xj for each j ∈ V

where xj � 1 if and only if node j is in the solution and
xj � 0 otherwise. Subsequently, the constraints (4)–(7)
ensure that the solution does not contain subtours. For this
purpose, we also define the nonnegative variable uj for each
j ∈ V. To see how these constraints avoid cycles, let us as-
sume that the subset of nodes a1, a2, a3, . . . , at (t≤ k) is
part of the solution tree and that these nodes are connected
according to the following sequence
a1 − a2 − a3− , . . . , − at .)en, the set of arcs
(a1, a2), (a2, a3), . . . , (at− 1, at) is also part of the solution
tree and za1 ,a2

� za2 ,a3
� za3 ,a4

� · · · � zat− 1 ,at
� 1. Also, by

constraint (7), we have the following relation with the uj

variables, ua1
< ua2
< ua3
< · · · < uat

. Notice that, for any node
in this sequence, we cannot have any other incoming arc;
otherwise, we would violate constraint (6) which ensures
that each node cannot have more than one incoming arc if it
belongs to the solution. In particular, if node a1 is the root
node, then no incoming arc can be connected to it either
since this would imply that uat

< ua1
, which is a contradic-

tion. Finally, notice that any node that belongs to another
branch of the resulting tree cannot be connected to any node
of any other sequence of nodes forming another branch as
this is prevented by constraint (6) too. Consequently, the
resulting digraph has to be acyclic. Notice that the con-
straints (4) and (5) only apply for the nodes which are part of

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1
2

3
4

5
6

7 8
9

10

(a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1
2

3
4

5
6

7 8
9

10

(b)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1
2

3
4

5
6

7 8
9

10

(c)

Figure 1: An input complete graph instance with feasible solutions for the DCkMST problem while using degree values of
3 and 2, respectively: (a) complete graph instance composed of 10 nodes with random uniform costs; (b) feasible solution with node degree
values of at most 3; (c) feasible solution with node degree values of at most 2.

4 Complexity

the solution by restricting the values of each variable
uj, j ∈ V. Also, the degree constraints (8) and (9) ensure that
the number of incoming plus outgoing arcs of each node is
less than d ∈ 2, . . . , k − 2{ } where k≥ 4. Notice that the
degree constraints are redundant if a particular node j ∈ V is
not part of the solution, i.e., if xj � 0. In fact, this also implies
that i|(i,j)∈Azij + i|(j,i)∈Azji � 0. Next, constraint (10) in-
dicates that at most one of the arcs (i, j), (j, i) ∈ A can
belong to the solution if and only if node i ∈ V belongs to the
solution. Constraint (11) is a domain constraint for the
decision variables. Finally, it is observed that an undirected
subtree graph can be obtained by dropping the direction of
each arc in the resulting digraph, as required. □

Proposition 3. Constraint (7) is tighter than constraint (35)
presented in [2].

Proof. Constraint (35) in [2] is written as

uj − ui ≥ 1 − n 1 − zij , ∀(i, j) ∈ A. (12)

However, these constraints can be equivalently written as

uj − ui − (n − 1)zij ≥ 2 − n, ∀(i, j) ∈ A. (13)

)en, we have that

uj − ui − (n − 1)zij ≥ uj − ui − (n − 1)zij

− (n − 3)zji ≥ 2 − n, ∀(i, j) ∈ A.
(14)

More details related to constraint (7), when used for the
traveling salesman problem and extended to other types of
vehicle routing problems, can be consulted in [52]. Notice that
model P1 is a directed graph formulation constructed based
on a Miller–Tucker–Zemlin characterization [2, 3, 13]. □

Proposition 4 (see [23]). In a finite simple undirected graph,
the sum of the degrees of every vertex v ∈ V is twice the
number of edges.

Proposition 4 is known as the handshaking lemma, and it
is also valid for directed graphs. In the latter case, the degree
of each vertex is simply counted as the sum of incoming plus
outgoing arcs. Consequently, this proposition allows us to
write the degree constraints (8) and (9) in P1 equivalently as
follows:

i|(i,j)∈A

zij +
i|(j,i)∈A

zji � δj, ∀j ∈ V,
(15)

j∈V

δj � 2
j∈V

xj − 1⎛⎝ ⎞⎠, (16)

δj ≤ dxj, ∀j ∈ V, (17)

δj ≥xj, ∀j ∈ V, (18)

δ ∈ [0,∞)
n
, (19)

where δj, for each j ∈ V, is a continuous nonnegative variable
used to denote the degree of each vertex.)us, we obtain
another MILP model that we denote hereafter by Ph

1. Notice
that the variable δj, for each j ∈ V, need not be defined as an
integer variable. In fact, this is ensured by the left-hand side of
constraint (15) and the right-hand side of constraint (16) which
are both integer values. Constraints (17) and (18) restrict the
value of variable δj between 1 and d if and only if node j ∈ V is
part of the solution; otherwise, δj � 0. Finally, constraint (19) is
a domain constraint for each variable δj, j ∈ V.

In order to formulate a flow-based model for the
DCkMST problem, let H � (V∪ r, A∪Ar) be an expanded
digraph obtained from H � (V, A) where we add to H an
artificial root node r and a set of arcsAr with zero costs from r

to every node v ∈ V.)e underlying idea is thus to construct
an arborescence rooted at r while expanding all nodes in the
solution with exactly one arc leaving r. For this purpose, we
expand the vector of node and arc variables to x ∈ 0, 1{ }n+1

and z ∈ 0, 1{ }(n+1)2 , respectively. We also define continuous
nonnegative flow variables f ∈ [0,∞)(n+1)2 , where fij de-
notes the amount of flow on arc (i, j) ∈ A∪Ar. Finally, if we
represent the number of nodes in the solution by a non-
negative variable λ, then the idea is to send λ units of flow
from r to these nodes, one unit of flow to every one of them.
Consequently, a flow-basedmodel can be verified bymeans of
the following proposition.

Proposition 5. Model P2 allows to obtain an optimal so-
lution for the DCkMST problem with minimum cost:

P2: min
x,z,f,λ{ }

(i,j)∈A

Pijzijs.t. λ≥ k,
(20)

j∈V

xj � λ, (21)

(i,j)∈A

zij � λ − 1,
(22)

j|(r,j)∈Ar

frj � λ,
(23)

j|(r,j)∈Ar

zrj � 1,
(24)

i|(i,j)∈A∪Ar

fij −
i|(j,i)∈A∪Ar

fji � xj, ∀j ∈ V,
(25)

fij ≤ (n − 1)zij, ∀(i, j) ∈ A∪Ar , (26)

i|(i,j)∈A∪Ar

zij +
i|(j,i)∈A∪Ar

zji ≤ dxj, ∀j ∈ V,
(27)

i|(i,j)∈A∪Ar

zij +
i|(j,i)∈A∪Ar

zji ≥xj, ∀j ∈ V,
(28)

zij + zji ≤ xi, ∀(i, j) ∈ A∪Ar,

xr � 1,
(29)

Complexity 5

x ∈ 0, 1{ }
n+1

, z ∈ 0, 1{ }
(n+1)2

, f ∈ [0,∞)
(n+1)2

, λ≥ 0 ,

(30)

where the objective function is the same as for P1.

Proof. In order to prove the correctness of model P2, first we
make the following observation. □

Observation 1.)e number of leaf nodes (nodes with degree
equal to one) in any spanning tree graph with n≥ 3 vertices is
at least 2 and at most n − 1, corresponding to the cases of a
line and a star graph, respectively.

Next, notice that constraints (20) and (21) guarantee that
λ is at least k units of flow and that it is equal to the number
of active nodes in the resulting subtree, respectively, whilst
constraint (22) states that the total number of arcs in the
solution should be equal to the number of active nodes
minus one. Constraints (23) and (24) ensure that the total
amount of flow going out from node r equals λ and that it
must be moved through a unique arc (r, j) ∈ Ar, j ∈ V,
respectively. Similarly, constraint (25) states that the in-
coming minus the outgoing flow equals one if node v ∈ V is
part of the solution and equals zero otherwise. Constraint
(26) ensures that the flow going out from i to j equals zero if

and only if arc (i, j) ∈ A∪Ar is not part of the solution.
Otherwise, it should be at most (n − 1) units. Constraints
(27) and (28) are the degree constraints. Notice that the node
index in each sum of these constraints applies for all arcs
(i, j) ∈ A∪Ar in contrast to the node indexes in constraints
(8) and (9) which only apply for the arcs (i, j) ∈ A.)ese
degree constraints are valid since Observation 1 implies that
the artificial node r can always be connected to a leaf node of
the resulting subtree without affecting the maximum degree
value d imposed to each node v ∈ V. Next, constraint (29)
forces the fact that the root node r is always active.)e
remaining constraints are the same as for P1 including
constraint (30) which is a domain constraint for the decision
variables. Finally, notice that the simultaneous conditions
imposed by constraints (22)–(26) ensure that the resulting
digraph obtained is a tree [3, 13]. Again, an undirected
subtree can be obtained by dropping the directions of the
arcs.

Proposition 6. Constraints (27) and (9) are tighter than
constraints (8) and (28), respectively.

Proof. Let us assume that node t ∈ V is part of the resulting
subtree.)en, we have that

d≥
i|(i,t)∈A∪Ar

zit +
i|(t,i)∈A∪Ar

zti �
i|(i,t)∈A

zit + zrt +
i|(t,i)∈A

zti + ztr ≥
i|(i,t)∈A

zit +
i|(t,i)∈A

zti ≥ 1.
(31)

Analogously as for P1, we can replace the degree con-
straints (27) and (28) in P2 by the set of constraints
(15)–(19), leading to another MILP formulation we denote
hereafter by Ph

2. Notice that, from the constructions of the
above formulations, an exponential model can also be
written as follows:

P3: min
x,z{ }

(i,j)∈A

Pijzijs.t.
j∈V

xj ≥ k
(i,j)∈A

zij �
j∈V

xj − 1,

(32)

i|(i,j)∈A

zij ≤xj, ∀j ∈ V,
(i,j)∈AS

zij ≤ |S| − 1, ∀S⊆V,
(33)

i|(i,j)∈A

zij +
i|(j,i)∈A

zji ≤ dxj, ∀j ∈ V,
(34)

i|(i,j)∈A

zij +
i|(j,i)∈A

zji ≥ xj, ∀j ∈ V,
(35)

zij + zji ≤ xi, ∀(i, j) ∈ A,

x ∈ 0, 1{ }
n
, z ∈ 0, 1{ }

n2
,

(36)

where inequalities (33) represent subtour elimination con-
straints. Similarly, as for the above models P1 and P2, we
replace the degree constraints (34) and (35) in P3 by the set
of constraints (15)–(19). We denote by Ph

3 this alternative

exponential model. Hereafter, we also denote the corre-
sponding linear programming (LP) relaxations of P1, Ph

1, P2,
and Ph

2 by LP1, LPh
1, LP2, and LPh

2, respectively. □

4. Proposed Algorithms

In this section, first we present and explain the pseudocode
for the exact iterative approach used to solve the exponential
models P3 and Ph

3.)en, for the sake of clarity, we present
the modified penalty approach proposed in [30] which al-
lows to obtain feasible solutions for the DCMST problem.
)en, we present our VNS and ACO algorithms while using
traditional and embedded Q-learning random local search
strategies. Finally, we present a pure Q-learning-based
algorithm.

4.1. Exact IterativeAlgorithm. Asmentioned in Section 1, we
solve our models P3 and Ph

3 with an exact iterative method
adapted from [2, 24].)e method is simple and can be
described as follows. It consists of solving first the MILP
model P3 (or Ph

3) without subtour elimination constraints
(SECs).)en, new cycles are obtained from the current
optimal solution found with a depth-first search procedure
[53]. Next, for each cycle found, we write a new constraint of
the form (33) and add it to the feasible set of P3 (or Ph

3).
Finally, the model P3 (or Ph

3) including all the new added
inequalities is reoptimized.)is process goes on until the
current solution found does not contain any cycle. When

6 Complexity

this condition is met, it means the optimal solution has been
reached.)is procedure is depicted in Algorithm 1.

)e convergence proof of this method is reported in
)eorem 2 in [24]. Notice that, according to)eorem 2 in
[24], the solutions obtained within each iteration of Algo-
rithm 1 are lower bounds for the optimal solution of the
problem. Further notice that a depth-first search algorithm
will always find cycles within each iteration of Algorithm 1 if
there exists at least one in the resulting digraph.)is fact
ensures the convergence of the method in a finite number of
iterations (see Property 1 in [24]). We refer the reader to the
works in [2, 24] for further details on how we obtain cycles.

4.2. Modified Penalty Approach. In particular, within each
iteration of our VNS algorithms, for each random k− tuple of
vertices generated, we obtain degree-constrained spanning
trees by using a modified penalty approach proposed in [30].
)e procedure of this method is depicted in Algorithm 2,
and it is explained as follows.

Initially, we find a minimum spanning tree using the
Kruskal method [53].)en, we enter into a while loop doing
the following. First, we check if each node satisfies the
degree condition. If it is not the case for a particular
node, then we update all the weights of the arcs which are
incident to it using the formula Pij � Pij + θ((Pij − eMin)/
(eMax − eMin))eMax, where θ represents an arbitrary pa-
rameter which can be drawn from the interval (0;1) and
eMin and eMax are the smallest and largest weights of the
current spanning tree obtained, respectively. Subsequently,
we symmetrize the updated arcs of matrix Pij in order to
avoid choosing previous arcs with opposite directions. Fi-
nally, if there still exists a node violating the degree con-
dition, we continue with the process and find a new
minimum spanning tree with the Kruskal method.)is
process continues until a feasible spanning tree is obtained
where all nodes satisfy the degree condition. As it can be
observed, Algorithm 2 mainly consists of penalizing itera-
tively the edges (arcs) which are incident to the vertices with
degree violations until a feasible spanning tree solution for
the problem is obtained.

4.3. VNS Algorithms. We now present our VNS algorithms
with the classical near-far random local search strategy and
then using an embedded Q-learning strategy.

4.3.1. Classical Random Local Search Strategy. Our VNS
procedure is depicted in Algorithm 3. As it can be observed,
the method requires an instance of the DCkMST problem
and a particular degree with value d≥ 3. As in this paper, we
only consider degree values of d ∈ 2, 3{ }, then we only solve
instances for a degree value of d � 3 with this VNS algo-
rithm.)emethod is simple and can be described as follows.
First, it checks if k equals n; if this is the case, then we execute
Algorithm 2 using parameters n, P, and d. For this particular
case, it means the algorithm finds a feasible solution for the
DCMST problem including all nodes of set V. On the op-
posite, if k< n, then we randomly choose an initial k-tuple of

vertices from V in order to form the set As. Let Ac be the
complement of As.

Next, we construct the submatrix P′ with the rows and
columns of P corresponding to the nodes in As and execute
Algorithm 2 using parameters k, P′, and d.)is allows us to
save an initial feasible solution together with its objective
function value. Notice that the cardinality of set As is k,
whilst the cardinality of set Ac is n − k.)e current sets As

and Ac are also saved in AsOP and AcOP, respectively.
Subsequently, we perform the following steps iteratively,
while the CpuTime variable is less than or equal to the
maximum CPU time allowed which is controlled with pa-
rameter maxTime. Inside this loop, we randomly inter-
change an element of As with an element of Ac a predefined
number of times which is controlled with parameter indK

that is initially set to a value of one.)en, we check if a better
solution is obtained. If so, we save the new solution found, its
objective function value, update sets AsOP and AcOP, and
reset the CpuTime variable to zero. Otherwise, we keep the
previous best solution found and go back to the interchange
step. Notice that parameter indK controls the number of
swap moves the algorithm performs between sets As and Ac.
It turns out that this step corresponds to a classical near-far
random local search strategy related to VNS algorithm
[28, 29].)e larger the number of swap moves, the wider the
feasible space being explored. On the opposite, the smaller
the number of moves, the closer the solutions which are
being tested. In particular, in Algorithm 3, this is handled
with indK variable which is increased by one unit each time
a worse solution is obtained.)is variable can be increased
with up to a predefined value of indKMax − 1. And we reset
this parameter to a value of one each time a better solution is
obtained in order to restart the search from a local to a wider
feasible region. Finally, if indK equals indKMax, then we
also reset indK to a value of one.

4.3.2. Embedded Q-Learning Strategy. Our Q-learning
strategy is simple and consists of embedding a reinforcement
learning approach in Algorithm 3 instead of using classical
random local search. Notice that the Q-learning approach
was initially proposed in [31].)is approach mainly consists
of an agent, a set of states S, and a set A of actions per state
whereby performing an action a ∈ A; the agent moves from
one state to another one according to a reward value, and the
goal of the agent is to maximize its total future reward.)e
potential reward that an agent can obtain is computed as a
weighted sum of the expected values of the rewards of all
future steps starting from any of the current states. In order
to embed this Q-learning approach in Algorithm 3, before
entering the inner while loop of Algorithm 3, we need to
initialize the matrix variable Q � Q(indKM, indKM) with
zero entries and also to declare the two scalar variables
indKA and indicator.

In particular, the value of indicator variable, which can
be true or false, is used to perform or not a piece of the code,
whereas variables indK and indKA represent the number of
swap moves from one to indKM to be performed between
sets As and Ac.)us, the underlying idea is to move from a

Complexity 7

particular number of swap moves to another one by using
the aforementioned reinforcement learning strategy. Under
this setting, the values of indKA and indK represent two
consecutive states where an agent can be in different mo-
ments. For example, consider the case when indKA � 2 and
indK � 8, then we should read it as an agent that is moving
from state 2 to state 8. In our problem, it means we are first
interchanging 2 elements and then 8 elements between sets
As and Ac. Consequently, we can replace the inner code of
the Else statement corresponding to the classical random
local search strategy step of Algorithm 3 with the code of
Algorithm 4. By doing so, we provide learning capabilities to
Algorithm 3 in order to perform the random local search. In
Algorithm 4, the parameters λ, μ, and Prob ∈ (0; 1) are the
learning rate, discount factor, and probability of moving
randomly from one state to another one [31]. Finally, the
function expressions Rand, Randint(indKM), and
argmax j∈ 1,...,indKM{ }{ }(Q(indKA, j)) return a random frac-
tional value between zero and one, a random integer value
between one and indKM, and the jth column position with
current maximum value in matrix Q while moving from
state indKA, respectively.

4.4. ACOAlgorithms. We now present the ACO algorithms.
More precisely, first we present our classical ACO based
strategy and then we present an adapted version of the
generic ant-Q algorithm which is based on Q-learning
strategy [26, 27]. Finally, we present a pure Q-learning-based
algorithm. All these methods allow finding feasible solutions
for the DCkMST problem while using a degree value of
d � 2.

4.4.1. Classical Ant Colony Optimization Strategy. Our first
procedure is depicted in Algorithm 5.

)e method requires an instance of the DCkMST
problem. In step one, it first initializes all required pa-
rameters and variables. In particular, ρ, α, β, and q denote the
pheromone evaporation coefficient, the influence of the
pheromone, influence of visibility matrix, and a constant real
value, respectively. Each entry of the pheromone matrix τ �

(τij) for all i, j ∈ V represents the amount of pheromone
deposited by the ants in the edge i, j for a state transition
going from node i to j. Notice that each of these entries is
initialized to a random value between zero and one, which is
performed by using the Rand function. Similarly, the visi-
bility matrix η � (ηij) for all i, j ∈ V represents the desir-
ability value of edge i, j while choosing the state transition
from i to j. In particular, this value is computed by
ηij � (1/Pij).)e set of ants is denoted by Ants.)e vari-
ables CpuTime, iter, LBest, and BestCPU denote the current
CPU time, the number of iterations, and best current ob-
jective function value found so far and its exact CPU time in
which this solution is obtained. Recall that, within ACO
algorithms, each ant constructs a tour solution starting from
a particular initial node while covering all nodes of the
graph. For this purpose, each ant selects the next edge in its
tour according to the following probability:

p
a
ij �

τij
α
ηij

β

z∈Ra
τiz(

α ηiz(
β, (37)

whereRa denotes the unvisited set of nodes of ant a. As it can
be observed, this probability depends on both the phero-
mone and visibility values [26].

Subsequently, in step two of Algorithm 5, we enter into a
while loop in which we perform the following steps. First, we
initialize to a value of zero each entry of matrix Δτ � (Δτa

ij),
i, j ∈ V, a ∈ Ants, where each entry in this matrix represents
the amount of pheromone deposited by ant a ∈ Ants. Next,
for each ant, we construct a tour Ta starting from a randomly
assigned node and compute its length La.)en, for each arc
in Ta, we deposit the amount of pheromone of ant a.)is
value is computed by Δτa

ij � (q/La).)en, we compute the
shortest tour of length k according to Ta and save it as the
best tour found so far if its objective function value is less
than LBest. For this purpose, we denote by Lk

a(t) the length
of k consecutive nodes in Ta starting from node t. Notice
that t � 1, . . . , n − k + 1{ }. Also notice that the variable
CpuTime is reset to a value of zero each time a better so-
lution is obtained.)is allows Algorithm 5 to run for an-
other maxTime unit of time with the hope of finding better
solutions. Next, we update each arc of the pheromonematrix
τ according to parameter ρ and matrix Δτ. Finally, when the
while loop is finished, we return the best feasible solution
obtained together with its objective function value.

4.4.2. Ant-Q-Based Approach. Now, we present our adapted
version of the generic Ant-Q algorithm which is based on
Q-learning strategy [25, 27].)is procedure is depicted in
Algorithm 6.

Similarly to Algorithm 5, in step one of the Ant-Q
Algorithm 6, we first initialize the required parameters and
variables. In this case, the parameters α and β allow us to
weigh the relative importance of learned AQ and visibility
values, respectively. Parameter q is a nonnegative constant
value, whilst parameters Prob, λ, and μ represent a proba-
bility value, a learning step, and a discount factor, respec-
tively. Variables CpuTime, iter, LBest, BestCPU are
analogously defined as for Algorithm 5. In particular, ma-
trices AQ � (AQ(i, j)) and Δ � (Δ(i, j)), for all i, j ∈ V,
denote the Q-learning matrix and the delayed reinforcement
matrices associated with the Ant-Q learning method [31].

In step two of Algorithm 6, we enter into a while loop
and perform the following substeps. First, we construct a
tour for each ant a ∈ Ants.)is is performed iteratively
while choosing a new unvisited node j randomly or
according to the following expression:

j � argmax
r allowed{ }

AQ Ta(i), r(
α 1

P Ta(i), r(

β⎧⎨

⎩

⎫⎬

⎭, (38)

where Ta(i) denotes the current ith position of ant a in its
tour Ta.)en, we update the learning matrix AQ according
to all the edges of each ant tour and save the best solution
obtained with cardinality k. Next, we proceed with

8 Complexity

reinforcement steps that are applied to all the edges be-
longing to each ant tour and best solution found so far
[25, 27]. Finally, the algorithm returns the best feasible
solution obtained and its objective function value.

4.5. A Pure Q-Learning-Based Algorithm. Now, we present a
pure Q-Learning based approach that allows obtaining
feasible solutions for the DCkMST problem while using
d � 2.)is method is depicted in Algorithm 7, and it is
described as follows.

Similarly to Algorithm 6, the first step of Algorithm 7
consists of initializing parameters λ, μ, and Prob, which
represent the learning rate, discount factor, and a given
probability value, respectively. We also define and initialize
the required variables CpuTime, iter, LBest, BestCPU, and
Q � (Q(i, j)) for all i, j ∈ V.)ese variables allow us to
handle the current CPU time, the number of iterations, the
best objective function value obtained so far, CPU time of
the best current solution found, and the Q-learning matrix,
respectively. Next, in step two of Algorithm 7, we iteratively
construct a unique tour T with cardinality n and evaluate
each subtour composed of k consecutive nodes in T.)ese
steps are performed, while the current CPU time value is
lower than the maximum value allowed which is denoted by
maxTime. In order to obtain the best subtour of cardinality k

from each tour T generated, we let Lk(t) denote the length of
k consecutive nodes in T, starting from node t, and let Lk �

min Lk(1), . . . , Lk(n − k + 1) be the minimum length value
obtained. Notice that index t � 1, . . . , n − k + 1{ }; otherwise,
no subtour of cardinality k can be obtained from T. If a
better solution is obtained, we save its length value in LBest,
the subtour solution in Tk, the number of iterations in which
this new solution is obtained, and reset the current CPU time
value to a value of zero.)e latter allows the algorithm to
search for another maxTime unit of time. Also, notice that
the construction of tour T requires to add at each step a new
unvisited node u randomly or with maximum value
Q(j, u) where j denotes the last node added to T. For this
purpose, we remove node u from V at each step.)e un-
visited node u is chosen randomly if the Rand function
generates a value in the interval [0; 1] which is lower than
Prob; otherwise, it is chosen according to the maximum
value in the Q-learning matrix. Next, if set V is not empty,
we update the corresponding entry in the Q-learning matrix
as follows:

Q(j, u) � (1 − λ)Q(j, u) + λ
1

P(j, u)
+ μmax

r∈V{ }
Q(u, r) .

(39)
Notice that equation (39) is analog to the classical

Q-learning algorithm [31]. In particular, the term (1/P(j, u))

represents the reward value obtained when going from node j

to node u ∈ V. Finally, the algorithm returns the best feasible
solution obtained and its objective function value.

5. Numerical Experiments

In this section, we conduct substantial numerical experi-
ments in order to compare all the proposed models and

algorithms. For this purpose, we implement Matlab pro-
grams using CPLEX 12.7 solver [54] to solve the MILP and
LP models.)e numerical experiments have been carried
out on an Intel(R) 64 bits core (TM) with 3GHz and 8G of
RAM under Windows 10. CPLEX solver is used with default
options.We consider complete graph instances with random
uniform and Euclidean distance costs. More precisely, we
generate five instances with dimensions of
n � 50, 100, 200, 300, 400{ } nodes where each entry in the
symmetric matrix P � (Pij), (i, j) ∈ A is randomly drawn
from the interval (0; 100).)en, we further consider four
Euclidean benchmark instances from TSPLIB [34] referred
to as “Berlin52,” “gr96,” “ch150,” and “a280” with dimen-
sions of n � 52, 96, 150, 280{ } nodes, respectively. All these
instances are solved for a different number of active nodes
k≤ n ranging from k � 10 and up to k � 400 nodes for the
instances with random costs and up to k � 280 for the
Euclidean ones.

5.1.NumericalResults for theMILPModels. In Tables 1–4, we
present numerical results for P1, Ph

1, P2, and Ph
2. Notice that

all these tables present the same column information. More
precisely, column 1 shows the instance number, whilst
columns 2 and 3 present the number of nodes of each graph
instance and the value of k, respectively. Next, in columns
4–8 and 9–13, we present the optimal or best solution ob-
tained with each model in at most 2 hours of CPU time,
number of branch and bound nodes, CPU time in seconds,
the optimal solution of each LP relaxation, and its CPU time
in seconds. Finally, columns 14 and 15 present gaps that we
compute by [(Opt − LP)/Opt]∗100 where Opt and LP refer
to the optimal solution found with the MILP and LPmodels,
respectively. Also, notice that each row in Tables 1 and 3 and
in Tables 2 and 4 corresponds to a same instance.

We limit CPLEX to 2 hours of CPU time for the random
input graphs, whilst for the Euclidean ones, we limit CPLEX
to 1 hour in order to avoid CPLEX shortage of memory
events. Consequently, each reported solution is optimal if its
CPU time is less than 2 hours. Otherwise, it corresponds to
the best solution obtained with CPLEX in at most 2 hours.
Subsequently, in Tables 5 and 6, we present numerical results
for both P3 and Ph

3.)ese two tables also present the same
column information. In particular, columns 1–3 present the
same information as in Tables 1–4. Next, in columns 4–8 and
9–13, we report the optimal or best solution obtained with
Algorithm 1 in at most 1 hour of CPU time, number of
branch and bound nodes, CPU time in seconds, number of
cycles added to eachmodel, and number of iterations as well.
)e number of branch and bound nodes, in this case,
corresponds to the sum of all branched nodes within each
iteration of Algorithm 1. Notice that)eorem 2 in [24]
ensures that the solutions obtained within each iteration of
Algorithm 1 are lower bounds for the optimal solution of the
problem. Consequently, an optimal solution is obtained
when the corresponding CPU time is less than 1 hour.
Notice that obtaining tight lower bounds is of crucial im-
portance when developing exact methods as it allows to
speed up the process significantly. Further notice that

Complexity 9

models P1, Ph
1, P2, and Ph

2 obtain upper bounds for the
problem if the optimal solution cannot be reached within 2
hours.)us, we provide an interval where the optimal so-
lution lies.

From Table 1, first we observe that both P1 and Ph
1 allow

obtaining the optimal solution of the problem formost of the
instances in less than 2 hours. In particular, for the degree
value of d � 3, we see that P1 and Ph

1 cannot solve the in-
stances #12 and #11-#12, respectively, whilst for d � 2, all the
instances are solved to optimality. Regarding the CPU times,
for d � 3, we see that Ph

1 requires a higher amount of CPU
time, whilst for d � 2, we obtain similar values with both
models. Next, we observe that the number of branch and
bound nodes is slightly lower for P1 than for Ph

1. We also see
that the LP bounds are near-optimal and exactly the same for
both models which are confirmed by the gaps. Notice that all
the LP relaxations are solved in less than 3 seconds. Finally,
we observe that the CPU time values required to solve both
models increase with k.

Regarding the Euclidean graph instances presented in
Table 2, we observe that most of them cannot be solved to
optimality in one hour. We mention that these instances
proved to be very difficult to solve, and this is the main
reason we limit CPLEX to one hour in order to avoid CPLEX
shortages of memory.)e difficulty in solving these in-
stances is also reflected in the number of branch and bound
nodes and in the gaps obtained which are significantly
higher compared to Table 1. Notice that these gaps decrease

with k in which evidences solving the DCkMST problem is
harder to solve than the classical DCMST problem, at least
for these instances. Next, we observe that the CPU time
values of the LP relaxations are higher than those reported in
Table 1 and that the degree values do not seem to affect the
performance of each model. We further see that the optimal
or best objective function values obtained for the instance
“ch150” are significantly higher for d � 2. Finally, we ob-
serve that the objective function values obtained with P1 for
the instances #7–#10, #12 and #6–#9, and #11 are lower than
those obtained with Ph

1 for d � 3 and d � 2, respectively.
However, the opposite occurs for the instances #6, #11 and
#10, #12 while using d � 3 and d � 2, respectively.

From Table 3, we mainly observe that, for d � 3, only P2
allows obtaining the optimal solution of the problem for all
the instances in less than 2 hours. Notice that Ph

2 only failed
to find a feasible solution for the instance #10, whilst for
d � 2, neither P2 nor Ph

2 can solve all the instances to op-
timality. However, P2 can still solve more instances than Ph

2.
Regarding the number of branch and bound nodes and LP
times, we observe smaller and slightly higher values than in
Table 1, respectively. Finally, we observe that the LP bounds
are near-optimal which is confirmed by the gaps. In Table 4,
we observe that P2 and Ph

2 can solve more instances to
optimality than P1 and Ph

1 in Table 2, respectively. However,
in this case, both P2 and Ph

2 cannot find a feasible solution for
some of the instances. Next, we observe smaller values for
the branch and bound nodes and CPU times with similar

Data: a problem instance of P3 (or Ph
3)

Result: the optimal solution of P3 (or Ph
3)

Solve P3 (resp., Ph
3) without using any constraint of the form (33)

Find cycles on the resulting digraph obtained by using a depth-first search algorithm
While (no cycles remain in the optimal solution of P3 (resp., Ph

3)) do
For each cycle found, write a new constraint of the form (33) and add it to the feasible set of P3 (resp., Ph

3)
Solve P3 (resp., Ph

3)
Return: the optimal solution found and the objective function value

ALGORITHM 1: Iterative procedure for solving P3 (or Ph
3)

Data: a problem instance of the DCMST problem.
Result: a feasible solution for the DCMST problem. Find a minimum spanning tree using the Kruskal method [53]
Set SW � true
While (SW) do
SW � false
ForEach (j ∈ V) do
Compute the degree of node j and save this value in variable dj

If (dj >d) then
SW � true
Update all incident arcs (i, j) ∈ A for node j as follows:

Pij � Pij + θ((Pij − eMin)/(eMax − eMin))eMax
Pij � Pji

If (SW) then
Find a minimum spanning tree using the Kruskal method [53]

Return feasible solution obtained and its objective function value

ALGORITHM 2: Modified penalty approach to obtain feasible degree-constrained spanning trees.

10 Complexity

Data: an instance of the DCkMST problem using degree d � 3.
Result: a feasible solution and its objective function value.
If (k � n) then

Execute Algorithm 2 using parameters (n, P, d)

Save feasible solution found and its objective function value
Else

Classical random local search strategy:
Generate an initial random k− tuple of vertices. Let As denote this set of vertices and Ac its complement, P′ � P(As, As)

Execute Algorithm 2 using parameters (k, P′, d)

Save the initial feasible solution found and its objective function value
AsOP � As, AcOP � Ac

indK � 1, cont � 0, CpuTime � 0
While (CpuTime≤maxTime) do
iter � iter + 1
For i � 1 to indK do
Interchange randomly an element of As with an element of Ac

P′ � P(As, As), execute Algorithm 2 using parameters (k, P′, d)

If (a better solution is obtained) then
Save the new solution and set AsOP � As, AcOP � Ac

iterOp � iter, cont � 0, indK � 1, Optime � Optime + CpuTime, CpuTime � 0
Else
cont � cont + 1, As � AsOP, Ac � AcOP

If (cont≥ 1) then
cont � 0
If (indK< indKMax) then
indK � indK + 1

Else
indK � 1

Return best feasible solution obtained and its objective function value

ALGORITHM 3: VNS algorithm for the DCkMST problem using classical random local search strategy.

Generate an initial random k− tuple of vertices. Let As denote this set of vertices and Ac its complement P′ � P(As, As)

Execute Algorithm 2 using parameters (k, P′, d)

Save the initial feasible solution found and its objective function value
AsOP � As, AcOP � Ac

indK � 1, indKA � 1, Q � zeros(indKM, indKM), indicator � false, CpuTime � 0
While (CpuTime≤maxTime) do
iter � iter + 1
For i � 1 to indK do
Interchange randomly an element of As with an element of Ac

Set P′ � P(As, As) and run Algorithm 2 using parameters (k, P′, d)

If (a better solution is obtained) then
Save the new solution and set AsOP � As, AcOP � Ac, indicator � true
iterOp � iter, Optime � Optime + CpuTime, CpuTime � 0

Else
As � AsOP, Ac � AcOP

If (indicator) then
Q(indKA, indK) � (1 − λ)Q(indKA, indK) + λ(Reward + μmax j∈ 1,...,indKM{ }{ }(Q(indK, j)))

indKA � indK

If (Rand<Prob) then
indK � Randint(indKM)

Else
indK � argmax j∈ 1,...,indKM{ }{ }(Q(indKA, j))

indicator � false

ALGORITHM 4: Embedded Q-learning code.

Complexity 11

orders of magnitude for the LP relaxations when compared
to Table 2. Finally, we observe that the LP bounds are not
tight which is again confirmed by the gap columns.

From Table 5, we mainly observe that models P3 and Ph
3,

which are both solved with Algorithm 1, allow to solve to
optimality the instances #1–#9 and #1–#12 for d � 3 and
d � 2, respectively. In particular, we see that, for d � 3, it is
harder to solve these instances than for d � 2.)is fact is
reflected in the number of branch and bound nodes, CPU
times of the LP relaxations, number of iterations, and
number of cycles added to each exponential model which are
clearly lower when d � 2. Notice that, for the instances
#10–#12 and degree value of d � 3, we only report the best
objective function values obtained which are in fact lower
bounds. Regarding the Euclidean instances reported in
Table 6, we observe that the instances #1–#3, #12 and #1–#8,
#11-#12 are all solved to optimality for d � 3 and d � 2,
respectively. We also see in Table 6 that it is harder to solve
the instances for d � 3 than for d � 2. Notice that, for d � 2,
we almost solve all the instances to optimality with the
exception of instances #9 and #10 for which we obtain lower
bounds. Again, this observation can be verified by looking at
the number of branch and bound nodes, CPU times of the
LP relaxations, number of iterations, and number of cycles
added to each proposed model which are smaller when
d � 2. Finally, from the numerical results presented in
Tables 1–6, we can conclude that model P1 outperforms the
other ones as it allows to obtain either an optimal or a best
upper bound for most of the tested instances. Notice that the
flow and exponential models also have good performance in

terms of optimality, but for the large-size instances, the flow
models deteriorate rapidly, whilst the exponential ones
cannot be handled efficiently in terms of CPU times.
Consequently, in Tables 7 and 8, we present numerical
results for P1 for large random and Euclidean input graph
instances with up to 400 and 280 nodes, respectively. In
particular, in Table 7, these numerical results are reported for
d � 3, whereas in Table 8, these numerical results are ob-
tained while using a degree value of d � 2.

From Tables 7 and 8, we observe similar trends as for the
above Tables 1–4. More precisely, we observe that P1 can
solve almost all random input graph instances to optimality
in less than 2 hours using both degree values. Only the
instance number #8 could not be solved to optimality al-
though an upper bound is reported for this particular in-
stance. In contrast, none of the Euclidean instances can be
solved to optimality in less than 1 hour of CPU time. For
these instances, only upper bounds are reported too.)e
difficulty in solving the Euclidean instances can also be
observed in the gap columns which report significantly
higher values as a consequence of the LP bounds obtained.
On the opposite, the LP bounds obtained for the random
graph instances are near-optimal. Finally, we observe from
both Tables 7 and 8 that the number of branch and bound
nodes is significantly smaller for d � 2 than for d � 3 and
that the LP times are slightly higher for d � 2.

5.2. Numerical Results for VNS Algorithms. In Tables 9 and
10, we present numerical results obtained with the proposed

Data: an instance of the DCkMST problem using degree d � 2.
Result: a feasible solution and its objective function value.
Step 1
Initialize parameters ρ, α, β, q and the set of ants (Ants)
CpuTime � 0, iter � 0, LBest �∞, BestCPU � 0
τij � rand, ∀i, j ∈ V

Step 2
While (CpuTime≤maxTime) do
iter � iter + 1
Δτa

ij � 0,∀i, j ∈ V, a ∈ Ants
ForEach a ∈ Ants do

Construction of each ant tour
Randomly assign an initial position j ∈ V for the ant a according to graph G and construct a tour Ta using all remaining nodes of G.
Find best solution
Compute the length La of Ta

Denote by Lk
a(t) the length of k consecutive nodes in Ta starting from node t

Compute Lk
a � min Lk

a(1), . . . , Lk
a(n − k + 1)

If (LBest>Lk
a) then

Set LBest � Lk
a and save the best tour of length k in Tk

iterOp � iter, BestCPU � BestCPU + CpuTime, CpuTime � 0
Update accumulated pheromone matrix
ForEach (i, j) ∈ Ta do
Δτa

ij � (q/La), Δτa
ji � (q/La)

Update pheromone matrix
ForEach (i, j) ∈ A do

τi,j � (1 − ρ)τi,j + a∈AntsΔτa
ij

Return best feasible solution found and its objective function value

ALGORITHM 5: Classical ACO algorithm for the DC kMST problem.

12 Complexity

VNS algorithms for both random and Euclidean input graph
instances while using a degree value of d � 3. Recall that our
second VNS approach consists of replacing the code lines of
Algorithm 3 corresponding to the random local search
strategy with the code of Algorithm 4 which represents the
embedded Q-learning strategy. Hereafter, we denote by
VNSR and VNSQ these two VNS approaches. In Algo-
rithms 3 and 4, we arbitrarily set the maximum CPU time
allowed to a value of maxTime � 250 seconds, whereas the
input parameters indKMax and indKM are set to a value of
10. Similarly, the required parameters of Algorithm 4 were
calibrated to λ � 0.25, μ � 0.25, and Prob � 0.15. Finally, the

reward value and parameter θ of Algorithm 2 were set to
Reward � 1 and θ � 0.1, respectively.

In particular, in Table 9, we report numerical results for
the instances presented in Tables 1–6, whereas in Table 10,
we report numerical results for the large-size instances
presented in Table 7. In both tables, columns 4–15 and 2–13
contain exactly the same column information, respectively.
More precisely, in Table 10, columns 1 to 3 present the
instance number, number of nodes, and the value of k. Next,
in columns 4 and 5, we report the minimum objective
function and CPU time values reported for each instance in
Tables 1–4. Subsequently, in columns 6–10 and 11–15, we

Data: an instance of the DCkMST problem using degree d � 2.
Result: a feasible solution and its objective function value.
Step 1
Initialize parameters α, β, q, Prob, λ, μ, and the set of ants (Ants)
CpuTime � 0, iter � 0, LBest �∞, BestCPU � 0
AQ(i, j) � 0, Δ(i, j) � 0, ∀i, j ∈ V

Step 2
While (CpuTime≤maxTime) do

iter � iter + 1
Construct ant tours
ForEach a ∈ Ants do
Randomly choose a node j ∈ V

Ta � ∅, Ta � Ta ∪ j

Fori � 1 to n − 1do
ForEach a ∈ Ants do
If (Rand<Prob) then
Randomly choose an unvisited node of the ant and add it to Ta.

Else
j � argmax r allowed{ } AQ(Ta(i), r)α(1/P(Ta(i), r))β

Ta � Ta ∪ j

Update AQ-values
AQ(Ta(i), Ta(i + 1)) � (1 − λ)AQ(Ta(i), Ta(i + 1)) + λμmax j allowed{ }(AQ(Ta(i + 1), j))

AQ(Ta(i + 1), Ta(i)) � AQ(Ta(i), Ta(i + 1))

Find best solution
ForEach a ∈ Ants do
Denote by Lk

a(t) the length of k consecutive nodes in Ta starting from node t

Compute Lk
a � min Lk

a(1), . . . , Lk
a(n − k + 1)

If (LBest> Lk
a) then

Set LBest � Lk
a and save the best tour of length k in Tk

iterOp � iter, BestCPU � BestCPU + CpuTime, CpuTime � 0
Reinforcement of ant tours
ForEach (i, j) ∈ Ta do
Δ(i, j) � (q/Lk

a), Δ(j, i) � (q/Lk
a)

Reinforcement of best solution
ForEach (i, j) ∈ Tk do
Δ(i, j) � (q/LBest), Δ(j, i) � (q/LBest)

Delayed reinforcement of AQ values
ForEach a ∈ Ants do

V � 1, . . . , n{ }

For i � 1 to n − 1 do
V � V − Ta(i) , V � V − Ta(i + 1)

If V≠∅ then
AQ(Ta(i), Ta(i + 1)) � (1 − λ)AQ(Ta(i), Ta(i + 1)) + λ(Δ(Ta(i), Ta(i + 1)) + μmax AQ(Ta(i + 1), V))

AQ(Ta(i + 1), Ta(i)) � AQ(Ta(i), Ta(i + 1))

Return best feasible solution found and its objective function value

ALGORITHM 6: Ant-Q algorithm for the DCkMST problem.

Complexity 13

Data: an instance of the DCkMST problem using degree d � 2.
Result: a feasible solution and its objective function value.
Step 1
Initialize parameters λ, μ, Prob
CpuTime � 0, iter � 0, LBest �∞, BestCPU � 0, Q(i, j) � 0, ∀i, j ∈ V

Step 2
While (CpuTime≤maxTime) do
iter � iter + 1
Construct a unique tour
Randomly choose a node j ∈ V

T � ∅, T � T∪ j , V � V − j

For i � 1 to n − 1 do
If(Rand<Prob)then
Randomly choose a node u ∈ V

Else
u � argmax r∈V{ } Q(j, r)

T � T∪ u{ }, V � V − u{ }

If V≠∅ then
Q(j, u) � (1 − λ)Q(j, u) + λ((1/P(j, u)) + μmax r∈V{ }Q(u, r))

j � u

Find best solution
Denote by Lk(t) the length of k consecutive nodes in T starting from node t

Compute Lk � min Lk(1), . . . , Lk(n − k + 1)

If (LBest>Lk) then
Set LBest � Lk and save the best tour of length k in Tk

iterOp � iter, BestCPU � BestCPU + CpuTime, CpuTime � 0
Return best feasible solution found and its objective function value

ALGORITHM 7: Pure Q-learning-based approach for the DCkMST problem.

Table 1: Numerical results obtained with P1 and Ph
1 for random graphs using d � 3 and d � 2.

n k
P1 Ph

1 Gaps
Opt B&Bn Time LP Time Opt B&Bn Time LP Time Gap1 % Gaph

1 %

d � 3
1 50 10 46.86 75 0.80 43.38 0.17 46.86 109 1.06 43.38 0.19 7.43 7.43
2 20 113.97 498 0.75 109.46 0.20 113.97 362 0.73 109.46 0.19 3.96 3.96
3 30 204.35 1470 2.79 199.05 0.19 204.35 1911 3.48 199.05 0.17 2.59 2.59
4 50 459.09 1005 1.76 453.49 0.19 459.09 2901 5.74 453.49 0.17 1.22 1.22
5 100 25 115.44 23 1.95 114.63 0.48 115.44 25 1.79 114.63 0.42 0.69 0.69
6 50 263.95 2501 8.30 262.04 0.47 263.95 1872 6.43 262.04 0.42 0.73 0.73
7 75 454.44 3186 5.04 451.58 0.42 454.44 1715 24.23 451.58 0.42 0.63 0.63
8 100 749.75 36160 202.21 745.09 0.45 749.75 65193 338.15 745.09 0.44 0.62 0.62
9 200 50 162.55 1035 10.39 160.88 1.73 162.55 1462 10.86 160.88 1.64 1.03 1.03
10 100 378.43 80814 506.06 374.87 1.67 378.43 94564 518.29 374.87 1.65 0.94 0.94
11 150 652.86 2944093 6417.84 648.89 1.73 652.86 2635764 7200 648.89 1.95 0.61 0.61
12 200 1049.25 403853 7200 1044.74 2.26 1049.25 215415 7200 1044.74 1.78 0.43 0.43

d � 2
1 50 10 52.22 49 1.58 46.30 0.17 52.22 129 0.61 46.30 0.17 11.34 11.34
2 20 134.08 237 2.06 129.71 0.22 134.08 904 2.57 129.71 0.22 3.26 3.26
3 30 240.30 45 1.26 239.32 0.20 240.30 9 1.26 239.32 0.20 0.41 0.41
4 50 564.37 2948 7.38 557.08 0.19 564.37 1953 7.47 557.08 0.17 1.29 1.29
5 100 25 123.71 404 4.63 121.54 0.48 123.71 148 3.99 121.54 0.45 1.75 1.75
6 50 287.78 1093 37.88 285.31 0.61 287.78 1875 7.75 285.31 0.50 0.86 0.86
7 75 529.56 0 1.92 529.31 0.50 529.56 1 3.99 529.31 0.48 0.05 0.05
8 100 915.29 683 9.75 914.63 0.48 915.29 77 8.14 914.63 0.45 0.07 0.07
9 200 50 184.29 0 12.28 184.29 2.11 184.29 0 7.02 184.29 2.03 0 0
10 100 437.08 6424 99.08 435.45 2.50 437.08 2568 93.76 435.45 2.28 0.37 0.37
11 150 775.89 275 94.08 774.76 2.40 775.89 90 42.20 774.76 2.20 0.15 0.15
12 200 1285.32 190 67.75 1284.58 2.23 1285.32 459 98.28 1284.58 1.89 0.06 0.06

14 Complexity

Table 2: Numerical results obtained with P1 and Ph
1 for Euclidean graphs using d � 3 and d � 2.

n k
P1 Ph

1 Gaps
Opt B&Bn Time LP Time Opt B&Bn Time LP Time Gap1 % Gaph

1 %

d � 3
1 Berlin52 10 274.46 10 2.25 253.21 0.34 274.46 60 0.94 253.21 0.28 7.74 7.74
2 20 926.77 543991 218.23 801.28 0.20 926.77 591996 300.65 801.28 0.19 13.54 13.54
3 30 1935.71 4246933 3600 1666.19 0.20 1935.71 5292832 3600 1666.19 0.19 13.92 13.92
4 52 6081.63 2024616 3600 5567.13 0.20 6081.63 1688601 3600 5567.13 0.19 8.46 8.46
5 gr96 25 74.14 488206 3600 40.18 0.41 74.14 452709 3600 40.18 0.39 45.81 45.81
6 50 163.11 513293 3600 117.66 0.55 162.80 462902 3600 117.66 0.42 27.86 27.73
7 75 269.15 593506 3600 222.47 0.48 269.23 672775 3600 222.47 0.41 17.34 17.37
8 96 436.65 1192367 3600 384.51 0.80 436.69 1168784 3600 384.51 0.70 11.94 11.95
9 ch150 50 1607.24 243342 3600 1258.47 0.95 1610.93 157353 3600 1258.47 0.94 21.70 21.88
10 80 2657.21 186474 3600 2303.05 1.01 2694.88 154768 3600 2303.05 0.90 13.33 14.54
11 100 3457.86 199914 3600 3058.71 0.97 3441.59 129318 3600 3058.71 0.92 11.54 11.13
12 150 5914.15 215787 3600 5522.97 0.95 5923.78 234887 3600 5522.97 0.89 6.61 6.77

d � 2
1 Berlin52 10 279.23 0 0.52 261.79 0.30 279.23 0 0.53 261.79 0.22 6.25 6.25
2 20 1015.39 2253 7.08 862.04 0.25 1015.39 8735 15.91 862.04 0.22 15.10 15.10
3 30 2065.12 9446 12.21 1871.76 0.28 2065.12 543 9.36 1871.76 0.27 9.36 9.36
4 52 6968.77 1699 8.24 6545.08 0.27 6968.77 1244 7.44 6545.08 0.23 6.08 6.08
5 gr96 25 74.59 380670 3600 45.19 0.77 74.59 324849 3600 45.19 2.39 39.42 39.42
6 50 168.53 270415 3600 128.73 0.92 174.25 194752 3600 128.73 8.45 23.62 26.12
7 75 283.14 154838 3600 248.44 13.60 288.49 310429 3600 248.44 0.58 12.25 13.88
8 96 474.95 168539 3600 452.14 9.66 476.08 397540 3600 452.14 0.72 4.80 5.03
9 ch150 50 1753.83 98742 3600 1356.91 1.04 1807.83 86310 3600 1356.91 9.91 22.63 24.94
10 80 2917.72 73829 3600 2489.25 2.29 2881.72 60210 3600 2489.25 10.64 14.69 13.62
11 100 3744.47 66710 3600 3302.54 15.88 4013.58 54518 3600 3302.54 14.05 11.80 17.72
12 150 6411.73 62743 3600 6158.67 1.15 6397.12 70574 3600 6158.67 1.01 3.95 3.73

Table 3: Numerical results obtained with P2 and Ph
2 for random graphs using d � 3 and d � 2.

n k
P2 Ph

2 Gaps
Opt B&Bn Time LP Time Opt B&Bn Time LP Time Gap2 % Gaph

2 %

d � 3
1 50 10 46.86 42 2.29 43.38 0.23 46.86 340 1.25 43.38 0.20 7.43 7.43
2 20 113.97 2161 16.65 109.46 0.25 113.97 999 11.42 109.46 0.27 3.96 3.96
3 30 204.35 116 1.67 197.61 0.19 204.35 2024 14.65 197.61 0.19 3.30 3.30
4 50 459.09 123 1.00 444.77 0.25 459.09 629 3.87 447.87 0.20 3.12 2.44
5 100 25 115.44 358 46.71 114.54 0.53 115.44 97 54.60 114.54 0.70 0.78 0.78
6 50 263.95 1243 73.63 261.02 0.51 263.95 668 77.50 261.02 0.75 1.11 1.11
7 75 454.44 459 143.16 449.51 0.55 454.44 525 111.53 449.51 0.67 1.08 1.08
8 100 749.75 24 22.56 728.70 2.29 749.75 0 40.36 734.84 0.59 2.81 1.99
9 200 50 162.55 479 3995.62 160.36 2.21 162.55 920 2835.21 160.36 3.29 1.35 1.35
10 100 378.43 479 2671.16 373.28 3.81 — — 7200 373.28 3.68 1.36 —
11 150 652.86 479 2097.25 642.84 4.71 652.86 465 1663.29 642.84 3.49 1.53 1.53
12 200 1049.25 607 505.27 1030.04 30.11 1049.25 502 1490.46 1034.23 3.21 1.83 1.43

d � 2
1 50 10 52.22 5 1.01 46.42 0.25 52.22 190 1.73 46.30 0.20 11.12 11.34
2 20 134.08 379 3.43 129.90 0.33 134.08 1515 21.95 129.71 0.20 3.12 3.26
3 30 240.30 235 7.35 239.32 0.28 240.30 736 19.08 239.32 0.20 0.41 0.41
4 50 564.37 488 20.20 557.48 0.28 564.37 1647 42.00 557.08 0.19 1.22 1.29
5 100 25 123.71 1067 248.12 121.55 1.50 123.71 1933 237.10 121.54 0.70 1.74 1.75
6 50 287.78 1676 632.83 285.35 2.84 287.78 857 356.21 285.31 0.81 0.84 0.86
7 75 529.56 0 8.88 529.31 3.23 529.56 1050 639.40 529.31 0.76 0.05 0.05
8 100 — — 7200 914.60 4.13 — — 7200 914.63 0.89 — —
9 200 50 184.29 10 228.02 184.29 13.13 — — 7200 184.29 3.81 0 —
10 100 — — 7200 435.45 26.49 — — 7200 435.45 6.61 — —
11 150 — — 7200 774.76 55.04 — — 7200 774.76 6.62 — —
12 200 1285.32 1045 1408.71 1284.58 94.68 — — 7200 1284.58 4.15 0.06 —
—: no solution found.

Complexity 15

report for each VNS approach, the initial and minimum
objective function values, CPU time in seconds required by
VNS, number of iterations, and gaps, respectively.)e gaps
are computed by [(VNS − Best)/Best]∗100.

From both Tables 9 and 10, first we observe that the
objective function values of the initial solutions are signif-
icantly higher than the best ones.)e latter clearly evidences
the effectiveness of both VNS approaches. Notice that when
k � n, the problem reduces to the classical DCMSTproblem.
Consequently, for these instances, the solutions are obtained
only with Algorithm 2. Next, we observe that the CPU times
required by both VNS methods are larger for the random
instances than for the Euclidean ones. From Table 9, next, we
observe that the solutions obtained with VNSQ outperform
those obtained with VNSR for both random and Euclidean
instances. Although, in general, we see that both VNS
procedures allow obtaining near-optimal solutions which is
confirmed by the gap columns. On the opposite, we see that
the objective function values reported in Table 10 are not
tight for the random instances when compared to those
obtained by the MILP models. But still, in this case, the gaps
reported for VNSQ are significantly better than for VNSR.
However, for the Euclidean instances reported in Table 10,
we see that both VNS approaches allow us to obtain better
solutions than theMILPmodels.)e latter can be verified by
the negative gaps which show that the objective function
values obtained with VNS algorithms are significantly lower
than those obtained with the MILP models.

5.3. Numerical Results for ACO Algorithms. Now, we report
numerical results obtained with Algorithms 5 and 6 for
random and Euclidean instances while using a degree value
of d � 2. More precisely, in Table 11, we report numerical
results for the instances presented in Tables 1–6. However, in
Table 12, we report numerical results for the large-size in-
stances presented in Table 8. Hereafter, we denote by ACOR

and ACOQ the two ant colony optimization approaches
presented in Algorithms 5 and 6, respectively. Recall that the
first one is constructed based on the classical ACO meta-
heuristic [26]. However, the latter is based on the Ant-Q
algorithm proposed in [25, 27]. In Algorithm 5, we cali-
brated the input parameters to α � 0.5, β � 2, ρ � 0.9, and
q � 1. However, in Algorithm 6, we calibrated the input
parameters to α � 1, β � 4, q � 1, Prob � 0.1, λ � 0.15, and
μ � 0.15. Finally, in both Algorithms 5 and 6, we arbitrarily
set the maximum CPU time and number of ants to
maxTime � 250 seconds and |Ants| � 20, respectively.

)e legend of Table 11 is as follows. From columns 1 to 3,
we present the instance number, the number of nodes of the
input graph, and the value of k. Next, in columns 4 and 5, we
present the minimum objective function and CPU time
values reported in Tables 1–6.We repeat this information for
the sake of clarity. Next, in columns 6–10 and 11–15, we
report the objective function values of the initial solutions,
the objective function values of the best solutions, CPU time
in seconds, number of iterations, and gaps which are
computed by [(ACO − Best)/Best]∗100, respectively.

Table 4: Numerical results obtained with P2 and Ph
2 for Euclidean graphs using d � 3 and d � 2.

n k
P2 Ph

2 Gaps
Opt B&Bn Time LP Time Opt B&Bn Time LP Time Gap2 % Gaph

2 %

d � 3
1 Berlin52 10 274.46 0 0.97 253.21 0.21 274.46 0 0.82 253.21 0.21 7.74 7.74
2 20 926.77 0 2.25 697.51 0.25 926.77 0 2.15 697.51 0.21 24.74 24.74
3 30 1935.71 175 2.31 1414.09 0.22 1935.71 427 6.12 1414.09 0.20 26.95 26.95
4 52 6081.63 556 2.00 4822.43 0.28 6081.63 95 2.20 4923.77 0.19 20.71 19.04
5 gr96 25 72.40 2518 268.87 38.47 0.51 72.40 913 301.42 38.47 0.61 46.87 46.87
6 50 162.80 3274 316.75 110.48 0.56 162.80 1816 250.78 110.46 0.60 32.14 32.15
7 75 267.57 591 109.28 210.19 1.86 267.57 615 157.00 210.18 0.68 21.44 21.45
8 96 436.23 480 70.35 354.60 3.72 436.23 985 42.30 357.83 0.60 18.71 17.97
9 ch150 50 1567.77 1734 921.27 1219.69 1.21 — — 3600 1219.69 1.46 22.20 —
10 80 — — 3600 2237.22 1.25 — — 3600 2237.22 1.85 — —
11 100 — — 3600 2974.08 1.60 3399.17 1037 1009.76 2974.08 1.97 — 12.51
12 150 5882.45 982 212.27 5339.18 27.69 5882.45 974 245.39 5353.54 1.61 9.24 8.99

d � 2
1 Berlin52 10 279.23 0 2.95 262.40 0.25 279.23 0 0.67 261.79 0.20 6.03 6.25
2 20 1015.39 1487 21.75 868.22 0.37 1015.39 84 3.21 862.04 0.19 14.49 15.10
3 30 2065.12 0 4.55 1874.56 0.34 2065.12 0 2.87 1871.76 0.22 9.23 9.36
4 52 6968.77 972 31.65 6554.14 0.28 6968.77 0 2.89 6545.08 0.20 5.95 6.08
5 gr96 25 73.56 1592 845.82 45.41 0.77 73.56 2525 621.64 45.19 0.62 38.27 38.57
6 50 168.53 862 299.41 129.00 2.81 168.53 601 350.55 128.73 0.67 23.46 23.62
7 75 283.14 1235 408.99 248.89 4.12 283.14 1672 447.78 248.44 0.64 12.10 12.25
8 96 474.95 2874 329.41 456.19 2.50 474.95 2482 315.00 452.14 0.56 3.95 4.80
9 ch150 50 — — 3600 1358.73 16.52 — — 3600 1356.91 2.46 — —
10 80 3167.66 1241 3600 2491.52 22.79 — — 3600 2489.25 2.34 21.35 —
11 100 5425.41 1224 3600 3306.74 20.47 — — 3600 3302.54 2.79 39.05 —
12 150 7176.67 3698 3600 6166.49 29.53 — — 3600 6158.67 1.78 14.08 —
—: no solution found.

16 Complexity

Similarly, the first three columns of Table 12 report the
instance number and the best objective function values and
CPU times reported in Table 8. Again, this information is
repeated for comparison purposes. Finally, the legends of
columns 4–8 and 9–13 are exactly the same as for the
columns 6–10 and 11–15 in Table 11.

From Table 11, we observe that the best solutions ob-
tained with both ACO approaches are near-optimal and far
from the initial solutions obtained.)ese facts prove the
effectiveness of the proposed methods. Next, we see that the
CPU times are lower for ACOR than for ACOQ for most of
the instances and in particular for the larger ones. Regarding
the number of iterations, in general, we observe similar
orders of magnitude for both methods. Finally, we observe
that the gaps obtained with ACOR are tighter than those
obtained with ACOQ for both the random and Euclidean
instances. In particular, for large instances, these values are
significantly better. Finally, notice that we obtain negative
gaps for some of the large Euclidean instances.)is clearly
evidences that the solutions obtained with the ACOmethods
outperform significantly the solutions obtained with the
MILP models.

From Table 12, we mainly observe that the solutions
obtained with both ACO algorithms are significantly worse
than those reported in Table 11 for random instances. On the
opposite, for all the Euclidean instances, the solutions ob-
tained with the ACO approaches are significantly better than
those obtained with P1 which is again confirmed by the
negative gaps obtained.

5.4.NumericalResults forQLAlgorithm. In Tables 13 and 14,
we present numerical results obtained with Algorithm 7
(denoted as QL) for both random and Euclidean instances
while using a degree value of d � 2. In Tables 13 and 14, we
report numerical results for the same instances presented in
Tables 1–6 and for the instances of Table 8, respectively.)e
legend of Table 13 is as follows: columns 1–3 present the
instance number, number of nodes (or name of the Eu-
clidean instance), and the value of k, respectively. Notice that
the name of each Euclidean instance indicates at the end the
number of nodes it contains. For example, the instance name
“Berlin52” has 52 nodes. Next, columns 4 and 5 report the
best solution and minimum CPU time in seconds obtained
with the MILP models. Finally, columns 6–10 report the
initial solution obtained with Algorithm 7, its best solution
found, CPU time in seconds, number of iterations, and gaps
obtained which are computed by [(QL − Best)/Best]∗100,
respectively.)e legend of Table 14 is exactly the same as for
Table 13 and is obtained by removing columns 2 and 3 from
Table 13.

From Table 13, first we observe that the initial solutions
obtained with Algorithm 7 are considerably worse than
those obtained with the ACO ones. However, we also see that
the best solutions obtained with it are near-optimal and
competitive with the ACO methods. Notice that this fact is
relevant as it clearly shows the effectiveness of Algorithm 7
which is mainly based on its learning capability and sim-
plicity. Concerning the gaps reported in Table 13, we observe
that, for some random and Euclidean instances, Algorithm 7

Table 5: Lower bounds obtained with P3 and Ph
3 for random graphs using d � 3 and d � 2.

n k
P3 Ph

3

Opt B&Bn Time #Cycles #Iter Opt B&Bn Time #Cycles #Iter

d � 3
1 50 10 46.86 53 1.75 3 4 46.86 36 2.15 3 4
2 20 113.97 0 1.33 2 3 113.97 2 1.01 2 3
3 30 204.35 1021 5.62 14 14 204.35 755 5.63 14 14
4 50 459.09 955 6.40 23 22 459.09 611 5.99 23 22
5 100 25 115.44 53 4.01 2 3 115.44 22 2.90 2 3
6 50 263.95 3373 24.62 19 20 263.95 3394 26.10 19 20
7 75 454.44 7154 58.03 43 44 454.44 7558 59.75 43 44
8 100 749.75 214640 441.97 211 211 749.75 157118 446.80 211 211
9 200 50 162.55 8 23.45 4 5 162.55 15 23.78 4 5
10 100 378.24 1438706 3604.81 252 252 378.20 1241277 3624.11 237 237
11 150 651.49 1509749 3626.19 263 263 651.43 1214061 3614.95 239 239
12 200 1046.96 852808 3602.98 335 334 1046.95 1036504 3615.80 320 319

d � 2
1 50 10 52.22 6 0.97 1 2 52.22 0 0.87 1 2
2 20 134.08 11 1.61 4 4 134.08 17 1.56 4 4
3 30 240.30 26 1.31 1 2 240.30 10 1.08 1 2
4 50 564.37 0 0.52 3 2 564.37 0 0.47 3 2
5 100 25 123.71 166 3.56 1 2 123.71 36 2.95 1 2
6 50 287.78 499 7.19 6 5 287.78 222 6.04 6 5
7 75 529.56 0 0.90 0 1 529.56 0 0.84 0 1
8 100 915.29 0 4.07 4 5 915.29 0 3.34 4 5
9 200 50 184.29 0 4.32 0 1 184.29 0 4.04 0 1
10 100 437.08 3274 31.73 4 4 437.08 1075 30.84 4 4
11 150 775.89 0 18.53 1 2 775.89 0 19.20 1 2
12 200 1285.32 0 7.05 1 2 1285.32 0 6.43 1 2

Complexity 17

allows obtaining tighter gaps than ACOQ in less CPU time.
Finally, we observe that the number of iterations required by
Algorithm 7 is significantly larger than the ACO methods.
)is can be explained by the fact that each iteration of
Algorithm 7 requires a considerable less computational
effort.

From Table 14, we observe that the distance between the
initial and best solutions obtained with Algorithm 7 is even

larger than for the instances presented in Table 13.)is
confirms again that the learning capability of Algorithm 7 is
effective. Next, we see that the CPU time required by Al-
gorithm 7 is significantly lower than the amount required by
ACOQ for random instances. We also see that the gaps
reported in Table 14 are tighter than those reported in
Table 12 for the ACOQ approach for all random instances. In
particular, we see that, for the random instances #2 and #3 in

Table 6: Lower bounds obtained with P3 and Ph
3 for Euclidean graphs using d � 3 and d � 2.

n k
P3 Ph

3

Opt B&Bn Time #Cycles #Iter Opt B&Bn Time #Cycles #Iter

d � 3
1 Berlin52 10 274.46 0 1.44 4 4 274.46 2 1.12 4 4
2 20 926.77 28584 50.95 81 80 926.77 42931 62.09 81 80
3 30 1935.71 432870 650.35 298 294 1935.71 384635 710.19 298 294
4 52 6081.63 1522843 4720.06 937 932 6076.57 1261869 3611.00 860 854
5 gr96 25 68.14 2782639 3619.00 169 92 68.07 2507913 3621.48 161 84
6 50 154.06 1878243 3716.32 196 65 153.89 1740625 3616.42 190 62
7 75 265.11 1188745 3614.37 297 152 264.86 1113079 3626.85 274 129
8 96 427.94 434160 3602.41 734 638 427.94 380249 3606.05 733 637
9 ch150 50 1545.75 1487346 3642.21 172 79 1545.23 1307916 3697.27 167 75
10 80 2599.80 1451730 3659.13 212 77 2598.40 1327931 3776.47 202 72
11 100 3388.09 859090 3682.26 226 108 3387.08 797571 3617.01 216 98
12 150 5882.45 133462 2909.89 499 419 5882.45 127032 2874.88 499 419

d � 2
1 Berlin52 10 279.23 0 0.51 2 2 279.23 0 0.67 2 2
2 20 1015.39 64 2.47 15 5 1015.39 62 2.09 15 5
3 30 2065.12 134 2.23 15 4 2065.12 63 2.42 15 4
4 52 6968.77 0 0.73 10 3 6968.77 0 0.75 10 3
5 gr96 25 73.56 689177 1525.83 125 51 73.56 764555 1832.40 125 51
6 50 168.53 189277 981.32 109 36 168.53 303696 1584.56 109 36
7 75 283.14 24803 100.75 63 18 283.14 15880 96.28 63 18
8 96 474.95 11951 23.93 34 10 474.95 4802 17.58 34 10
9 ch150 50 1637.17 904211 3620.84 112 35 1636.05 989940 4001.45 106 31
10 80 2788.87 564918 3790.60 127 32 2786.68 539699 3697.03 123 30
11 100 3627.93 28619 279.88 66 14 3627.93 36800 341.06 66 14
12 150 6368.79 8152 43.71 38 10 6368.79 9046 45.69 38 10

Table 7: Numerical results obtained with P1 for large input graphs using d � 3.

n k
P1

Opt B&Bn Time LP Time Gap1%

Random graph instances
1 300 50 118.82 120 40.30 117.39 4.40 1.20
2 100 283.63 3719 64.73 281.70 4.20 0.68
3 200 703.42 994913 2022.93 701.15 4.21 0.32
4 300 1334.61 177538 7200 1332.44 5.01 0.16
5 400 50 110.20 1651 193.66 108.48 8.47 1.56
6 100 236.59 10088 2316.85 234.51 9.48 0.88
7 200 522.61 13577 259.07 520.66 8.24 0.37
8 400 1459.53 31763 7200 1456.34 10.84 0.22

Euclidean graph instances
1 a280 50 480.35 23222 3600 384.00 4.21 20.06
2 100 1011.07 42957 3600 784.00 4.52 22.46
3 150 1316.17 28761 3600 1184.16 4.57 10.03
4 280 2493.68 46232 3600 2385.76 3.85 4.33

18 Complexity

Table 14, the gaps obtained by Algorithm 7 are smaller than
those reported for both ACO methods in Table 12. Re-
garding the Euclidean instances, we observe that the gaps
obtained are still competitive when compared to those re-
ported for the ACOmethods. In fact, we also obtain negative

gaps which means we outperform the best solutions ob-
tained with the MILP models in less than 1 h. Finally, from
Table 14, we observe that the gap obtained for the Euclidean
instance #4 outperforms both gaps reported for the ACO
methods in Table 12.

Table 8: Numerical results obtained with P1 for large input graphs using d � 2.

n k
P1

Opt B&Bn Time LP Time Gap1%

Random graph instances
1 300 50 132.92 0 34.03 132.87 6.91 0.04
2 100 321.64 454 309.74 320.82 8.30 0.26
3 200 820.70 272 520.03 820.02 12.60 0.08
4 300 1623.85 1250 1301.40 1623.16 11.51 0.04
5 400 50 123.02 413 2003.07 120.05 19.05 2.42
6 100 265.68 30587 3073.49 262.44 19.19 1.22
7 200 598.20 2527 2448.10 595.08 34.01 0.52
8 400 1818.03 999 7200 1797.76 16.21 1.12
Euclidean graph instances
1 a280 50 534.97 13685 3600 384.00 5.48 28.22
2 100 1133.49 23212 3600 784.00 4.93 30.83
3 150 1417.20 11405 3600 1186.71 6.16 16.26
4 200 2991.96 11036 3600 2513.31 4.66 16.00

Table 9: Numerical results obtained with VNS algorithms for random and Euclidean instances using d � 3.

n k
MILP VNSR VNSQ

Best Time (s) VNSini VNS Time (s) #Iter GapR VNSini VNS Time (s) #Iter GapQ

Input graphs with random uniform costs
1 50 10 46.86 0.80 254.76 48.27 6.06 13842 3.00 208.73 46.86 0.62 1620 0
2 20 113.97 0.73 266.68 118.53 22.80 7213 4.00 353.48 116.07 8.29 2796 1.84
3 30 204.35 1.67 338.03 206.35 46.51 3674 0.97 326.75 205.43 30.49 2503 0.52
4 50 459.09 1.00 463.14 463.14 0.08 1 0.88 463.14 463.14 0.08 1 0.88
5 100 25 115.44 1.79 352.14 115.44 115.10 23826 0 413.40 118.77 18.59 8854 2.88
6 50 263.95 6.43 564.30 269.18 61.89 2962 1.98 517.86 265.42 86.41 7382 0.55
7 75 454.44 5.04 600.65 465.48 197.61 2681 2.42 659.23 456.59 215.46 4098 0.47
8 100 749.75 22.56 749.87 749.87 0.25 1 0.01 749.87 749.87 0.24 1 0.01
9 200 50 162.55 10.39 555.42 179.98 1857.83 63640 10.72 463.99 169.38 477.84 18728 4.20
10 100 378.43 506.06 725.35 395.98 2928.53 12324 4.63 763.28 386.12 1657.52 9194 2.03
11 150 652.86 1663.29 883.28 721.07 1250.91 912 10.44 926.60 670.36 1130.82 872 2.68
12 200 1049.25 505.27 1056.34 1056.34 3.98 1 0.67 1056.34 1056.34 3.90 1 0.67
Input graphs with Euclidean distance costs
1 Berlin52 10 274.46 0.82 1976.48 274.46 1.41 5959 0 1645.70 274.46 0.09 470 0
2 20 926.77 2.15 3923.04 926.77 2.69 7382 0 3161.01 926.77 0.36 820 0
3 30 1935.71 2.31 4961.30 2104.32 5.29 5133 8.71 4484.23 2071.97 178.34 193048 7.03
4 52 6081.63 2 6081.63 6081.63 0.01 1 0 6081.63 6081.63 0.00 1 0
5 gr96 25 72.40 268.87 204.00 79.28 122.54 230336 9.50 247.07 74.14 271.89 508583 2.40
6 50 162.80 250.78 307.92 179.50 74.78 34094 10.25 260.74 163.70 2.74 1163 0.55
7 75 267.57 109.28 388.13 269.88 20.97 3049 0.86 372.46 267.57 141.16 21176 0
8 96 436.23 42.30 436.23 436.23 0.02 1 0 436.23 436.23 0.01 1 0
9 ch150 50 1567.77 921.27 3441.77 1716.09 348.67 154734 9.46 3290.91 1696.06 37.20 16107 8.18
10 80 2657.21 3600 4327.97 2792.69 115.65 13889 5.09 4480.37 2771.08 223.80 21675 4.28
11 100 3399.17 1009.76 4722.64 3527.70 408.36 15366 3.78 4745.73 3499.01 288.25 13858 2.93
12 150 5882.45 212.27 5882.45 5882.45 0.12 1 0 5882.45 5882.45 0.12 1 0

Complexity 19

5.5. Average Numerical Results for the Proposed Algorithms.
In order to give more insights with respect to the behavior of
the proposed algorithms, in Figures 2 and 3, we report
average upper bounds and CPU times in seconds obtained

with both VNSR and VNSQ for different values of k. More
precisely, we randomly generate 20 large-size instances using
n � 300 nodes for each value of k in each figure. In par-
ticular, in Figure 2, these averages are reported for instances

Table 10: Numerical results obtained with VNS algorithms for the instances of Table 7 using d � 3.

#
MILP VNSR VNSQ

Best Time (s) VNSini VNS Time (s) #Iter GapR VNSini VNS Time (s) #Iter GapQ

Input graphs with random uniform costs
1 118.82 40.30 534.32 139.36 1330.83 47429 17.28 510.03 127.26 494.26 36291 7.10
2 283.63 64.73 762.97 338.44 2549.43 7665 19.32 775.47 298.83 1893.42 8481 5.35
3 703.42 2022.93 1088.49 850.68 1381.55 326 20.93 1000.36 750.05 3851.54 966 6.62
4 1334.61 7200 1349.38 1349.38 32.68 1 1.10 1349.38 1349.38 32.70 1 1.10
5 110.20 193.66 492.26 126.27 1376.58 52156 14.58 526.08 124.87 1015.61 63720 13.31
6 236.59 2316.85 783.62 306.03 1465.56 8242 29.35 677.53 257.46 3628.70 20296 8.82
7 522.61 259.07 1129.36 696.20 2587.27 664 33.21 1058.37 635.21 4130.04 1045 21.54
8 1459.53 7200 1485.59 1485.59 83.45 1 1.78 1485.59 1485.59 83.13 1 1.78
Input graphs with Euclidean distance costs
1 480.35 3600 1095.00 446.91 314.41 96332 − 6.96 1076.54 440.38 74.39 31647 − 8.32
2 1011.07 3600 1385.72 897.55 425.80 11551 − 11.22 1447.17 890.15 195.38 8251 − 11.95
3 1316.17 3600 1774.88 1304.78 786.14 8339 − 0.86 1689.48 1303.48 570.31 5417 − 0.96
4 2493.68 3600 2440.94 2440.94 7.94 1 − 2.11 2440.94 2440.94 7.94 1 − 2.11

Table 11: Numerical results obtained with ACO algorithms for random and Euclidean instances using d � 2.

n k
MILP ACOR ACOQ

Best Time (s) ACOini ACO Time (s) #Iter GapR ACOini ACO Time (s) #Iter GapQ

Input graphs with random uniform costs
1 50 10 52.22 0.61 93.69 52.22 54.78 5576 0 259.26 52.22 89.89 2083 0
2 20 134.08 1.61 175.53 135.75 24.58 2551 1.24 955.85 135.75 126.17 2111 1.24
3 30 240.30 1.08 370.28 244.31 26.01 2648 1.66 435.68 245.24 234.25 4437 2.05
4 50 564.37 0.47 684.50 584.18 5.53 561 3.51 2486.65 588.31 48.69 803 4.24
5 100 25 123.71 2.95 163.55 123.71 2.06 67 0 1231.26 123.71 192.91 995 0
6 50 287.78 6.04 337.69 293.90 29.20 975 2.12 2546.91 298.88 339.66 1731 3.85
7 75 529.56 0.84 650.54 550.41 46.00 1533 3.93 3804.55 563.89 220.28 1164 6.48
8 100 915.29 3.34 1093.20 970.43 50.66 1699 6.02 5188.97 1021.63 239.28 1230 11.61
9 200 50 184.29 4.04 279.89 193.34 168.47 1626 4.91 2495.55 198.36 698.71 1093 7.63
10 100 437.08 30.84 546.76 467.76 68.13 657 7.01 4856.80 492.90 258.63 408 12.77
11 150 775.89 18.53 941.43 836.89 9.54 90 7.86 7444.72 870.56 273.53 460 12.20
12 200 1285.32 6.43 1734.02 1480.76 15.91 156 15.20 10277.04 1614.61 321.30 529 25.61
Input graphs with Euclidean distance costs
1 Berlin52 10 279.23 0.51 2195.31 279.23 389.57 42096 0 4581.09 279.23 21.44 351 0
2 20 1015.39 2.09 1270.76 1015.39 2.01 201 0 9757.74 1020.02 72.24 1189 0.45
3 30 2065.12 2.23 2757.23 2065.12 58.28 6258 0 12888.36 2069.90 32.44 535 0.23
4 52 6968.77 0.73 9738.24 7156.65 17.71 1895 2.69 22432.48 7234.27 6.47 106 3.80
5 gr96 25 73.56 621.64 112.78 74.59 144.67 5647 1.40 144.72 74.80 7.65 45 1.68
6 50 168.53 299.41 219.39 172.38 97.18 3811 2.28 546.20 180.29 161.80 984 6.97
7 75 283.14 96.28 379.18 292.20 24.97 966 3.19 609.61 302.66 50.22 302 6.89
8 96 474.95 17.58 619.16 497.06 66.02 2578 4.65 944.82 534.30 320.22 1956 12.49
9 ch150 50 1753.83 3600 2050.39 1678.93 38.58 672 − 4.27 18522.68 1722.83 222.95 613 − 1.76
10 80 2881.72 3600 3667.84 2843.87 169.47 2972 − 1.31 27659.44 2929.44 141.14 394 1.65
11 100 3627.93 279.88 4833.86 3788.26 98.18 1718 4.41 35594.85 3773.76 325.01 908 4.01
12 150 6368.79 43.71 7566.16 6720.31 42.55 742 5.51 52740.44 7005.90 113.50 315 10.00

20 Complexity

using random costs, whereas in Figure 3, these average
values are reported for Euclidean instances.

From Figures 2 and 3, wemainly observe that the average
upper bounds obtained with VNSQ are significantly smaller
than those obtained with VNSR.)is fact clearly shows that

the embedded Q-learning strategy of VNSQ outperforms the
classical near-far local search approach. Next, we further
notice that the average CPU times are significantly smaller for
VNSQ than for VNSR when solving the Euclidean instances.
On the opposite, the VNSQ approach requires a significantly

Table 12: Numerical results obtained with ACO algorithms for random and Euclidean instances of Table 8 using d � 2.

#
MILP ACOR ACOQ

Best Time (s) ACOini ACO Time (s) #Iter GapR ACOini ACO Time (s) #Iter GapQ

Input graphs with random uniform costs
1 132.92 34.03 193.95 146.53 26.59 98 10.23 2228.39 158.67 1443.44 1091 19.37
2 321.64 309.74 419.46 367.16 43.30 165 14.15 4620.75 396.94 589.52 468 23.41
3 820.70 520.03 980.56 898.25 64.56 237 9.44 9596.31 923.88 918.36 703 12.57
4 1623.85 1301.40 2122.15 1933.14 128.82 495 19.04 14537.58 2107.74 1130.55 865 29.79
5 123.02 2003.07 172.02 136.33 98.30 210 10.81 2581.64 143.35 2080.93 917 16.52
6 265.68 3073.49 328.39 298.32 155.47 338 12.28 5243.13 316.62 1187.53 530 19.17
7 598.20 2448.10 754.03 683.36 6.10 13 14.23 10356.11 724.67 1247.05 563 21.14
8 1818.03 7200 2370.22 2224.40 5.61 11 22.35 20229.56 2631.20 1151.90 521 44.72
Input graphs with Euclidean distance costs
1 534.97 3600 426.30 401.87 113.06 632 − 24.87 675.36 405.20 227.45 196 − 24.25
2 1133.49 3600 990.04 846.67 96.56 539 − 25.30 2944.45 919.30 3.48 3 − 18.89
3 1417.20 3600 1554.94 1311.62 42.31 236 − 7.44 2909.14 1358.90 312.40 270 − 4.11
4 2991.96 3600 3477.83 2983.92 2.18 11 − 0.26 6137.08 3239.96 292.15 255 8.28

Table 13: Numerical results obtained with Q-learning algorithm for random and Euclidean instances using d � 2.

n k
MILP QL

Best Time (s) QLini QL Time (s) #Iter Gap

Input graphs with random uniform costs
1 50 10 52.22 0.61 427.26 52.22 9.03 42359 0
2 20 134.08 1.61 794.00 138.00 8.76 40622 2.92
3 30 240.30 1.08 1473.09 245.62 2.25 10079 2.21
4 50 564.37 0.47 2567.98 601.37 15.38 70922 6.55
5 100 25 123.71 2.95 1207.44 123.71 4.75 9890 0
6 50 287.78 6.04 2440.56 291.89 98.12 211891 1.42
7 75 529.56 0.84 3473.78 565.78 487.90 1067899 6.83
8 100 915.29 3.34 4975.56 1024.77 30.10 64345 11.96
9 200 50 184.29 4.04 2543.82 199.27 130.44 122671 8.12
10 100 437.08 30.84 5027.12 476.04 123.87 118105 8.91
11 150 775.89 18.53 7342.28 843.60 38.57 36512 8.72
12 200 1285.32 6.43 9799.77 1546.62 227.21 214107 20.32
Input graphs with Euclidean distance costs
1 Berlin52 10 279.23 0.51 2692.71 279.23 39.93 200322 0
2 20 1015.39 2.09 12651.13 1020.02 151.28 774386 0.45
3 30 2065.12 2.23 16299.43 2070.65 45.42 228363 0.26
4 52 6968.77 0.73 30795.84 7234.27 85.36 433901 3.80
5 gr96 25 73.56 621.64 858.80 74.59 78.73 199419 1.40
6 50 168.53 299.41 1774.49 180.05 89.15 225194 6.83
7 75 283.14 96.28 2500.70 303.35 260.64 648302 7.13
8 96 474.95 17.58 3352.78 552.06 191.68 477430 16.23
9 ch150 50 1753.83 3600 18911.28 1711.33 125.94 186763 − 2.42
10 80 2881.72 3600 28695.92 2949.71 202.88 306120 2.35
11 100 3627.93 279.88 37580.42 3953.79 107.61 160624 8.98
12 150 6368.79 43.71 54468.42 7122.77 565.44 844020 11.83

Complexity 21

higher CPU time effort when solving instances with ran-
dom costs. Similarly, in Figures 4 and 5, we report average
upper bounds and CPU times in seconds for ACOR,
ACOQ, and QL algorithms while varying k. For this
purpose, again, we randomly generate 20 large-size in-
stances of n � 300 nodes for each value of k. In particular,
in Figure 4, these averages are reported for instances with
random costs. However, in Figure 5, these values are
reported for Euclidean instances.

From Figures 4 and 5, wemainly observe that the average
upper bounds obtained with ACOQ are slightly larger than
those obtained by QL. In turn, the average upper bounds

obtained with QL are larger than those obtained with ACOR.
We further notice that this trend is more evident when
solving graph instances with Euclidean distance costs. On
the opposite, these bounds seem to be closer for the instances
with random costs. Finally, we observe that the average CPU
time values are significantly smaller for ACOR than for QL
and ACOQ. Similarly, QL requires less CPU time than
ACOQ. In conclusion, we observe that ACOR outperforms
both QL and ACOQ. However, the QL method outperforms
the ACOQ approach.

Table 14: Numerical results obtained with Q-learning algorithm for the random and Euclidean instances of Table 8 using d� 2.

#
MILP QL

Best Time (s) QLini QL Time (s) #Iter Gap

Input graphs with random uniform costs
1 132.92 34.03 2455.40 147.03 116.82 72924 10.61
2 321.64 309.74 5203.22 347.51 101.90 63021 8.04
3 820.70 520.03 10356.83 897.52 160.04 99831 9.36
4 1623.85 1301.40 15547.51 1990.10 441.38 263922 22.55
5 123.02 2003.07 2173.05 137.42 155.63 64597 11.70
6 265.68 3073.49 5346.13 307.22 442.60 183130 15.63
7 598.20 2448.10 10535.56 691.97 286.76 115717 15.67
8 1818.03 7200 20088.17 2287.40 305.80 126631 25.81
Input graphs with Euclidean distance costs
1 534.97 3600 6193.93 426.46 170.69 119614 − 20.28
2 1133.49 3600 11619.78 909.03 82.05 57482 − 19.80
3 1417.20 3600 18065.40 1441.78 275.34 192437 1.73
4 2991.96 3600 33966.22 2800.73 130.98 91758 − 6.39

60 80 100 120 140 160 180 200
0

500

1000

U
pp

er
 b

ou
nd

s

60 80 100 120 140 160 180 200
200

400

600

CP
U

 ti
m

e (
s)

VNSR
VNSQ

VNSR
VNSQ

k

k

Figure 2: Average upper bounds and CPU times in seconds ob-
tained with VNSR and VNSQ while varying k for random complete
graph instances of size n � 300 using d � 3.

60 80 100 120 140 160 180 200
200

400

600

800

U
pp

er
 b

ou
nd

s

60 80 100 120 140 160 180 200
0

200

400

600

CP
U

 ti
m

e (
s)

VNSR
VNSQ

VNSR
VNSQ

k

k

Figure 3: Average upper bounds and CPU times in seconds ob-
tained with VNSR and VNSQ while varying k for Euclidean
complete graph instances of size n � 300 using d � 3.

22 Complexity

6. Conclusions

In this paper, we consider the degree-constrained k-cardi-
nality minimum spanning tree problem which emerges as a
combination of two classical combinatorial optimization
problems, namely, the degree-constrained and k-minimum
spanning tree problems. One can see from the literature that
this problem has not been studied in depth yet.)is leads us
to propose three mixed-integer linear programming models
for which we derive equivalent formulations by using the
handshaking lemma. In order to obtain near-optimal so-
lutions, we further propose ant colony optimization, variable
neighborhood search, and a pure Q-learning-based algo-
rithm. In particular, for each proposed metaheuristic, we
obtain new algorithms while embedding a Q-learning
strategy. We conduct substantial numerical experiments
using benchmark input graph instances from TSPLIB and
randomly generated ones with random uniform and Eu-
clidean distance costs with up to 400 nodes. From the
numerical results obtained, our main conclusions can be
listed as follows:

(1) We observe that, in general, the proposed models
which are constructed based on Miller-
–Tucker–Zemlin-constrained approach are more
robust than the flow ones as they allow to obtain
optimal or best upper bounds for all the instances. In
particular, we see that the flow models allow us to
solve to optimality Euclidean instances with up to
100 nodes, which is not possible to achieve with the
other models. However, the flow models cannot
provide an upper bound for some of the instances
with higher dimensions. Similarly, we observe that
our proposed exponential models do also show good
performance in terms of optimality, but again they
cannot be handled efficiently when solving large-size
instances. However, they provide an interval where
the optimal solution lies. We further conclude that it
is not evident to decide whether the performance of
the proposed models improves or deteriorates while
using the handshaking lemma. Finally, we observe
that the Miller–Tucker–Zemlin-based models allow
us to obtain optimal solutions for instances with up
to 400 nodes while using random costs and degree
values of d ∈ 2, 3{ }. On the opposite, they cannot
solve all the Euclidean instances to optimality.

(2) Concerning the VNS algorithms, we observe that the
objective function values obtained with both VNS
algorithms are significantly lower when compared to
their initial solutions obtained.)is clearly evidences
the effectiveness of our VNS approaches. In general,
the two VNS procedures allow obtaining near-op-
timal solutions and even better solutions than
CPLEX for the large-size instances. Next, we see that
the CPU times required by these algorithms are
larger for the random instances than for the Eu-
clidean ones. Notice that Euclidean instances are

60 80 100 120 140 160 180 200
200
400
600
800

1000

U
pp

er
 b

ou
nd

s

60 80 100 120 140 160 180 200
0

500

1000

CP
U

 ti
m

e (
s)

ACOR
ACOQ
QL

ACOR
ACOQ
QL

k

k

Figure 4: Average upper bounds and CPU times in seconds ob-
tained with ACOR, ACOQ, and QL while varying k for random
complete graph instances of size n � 300 using d � 2.

60 80 100 120 140 160 180 200
200

400

600

800

U
pp

er
 b

ou
nd

s

60 80 100 120 140 160 180 200
0

500

1000

CP
U

 ti
m

e (
s)

ACOR
ACOQ
QL

ACOR
ACOQ
QL

k

k

Figure 5: Average upper bounds and CPU times in seconds ob-
tained with ACOR, ACOQ, and QL while varying k for Euclidean
complete graph instances of size n � 300 using d � 2.

Complexity 23

significantly harder to solve by theMILP models. We
can also conclude that the embedded Q-learning
strategy in our VNS algorithm allows us to obtain
better solutions than the classical near-far random
local search strategy.)is suggests that the con-
struction of optimization methods with learning
capabilities in order to make them robust, self-
adaptive, and independent from decision-makers is
worth to be further investigated.

(3) Regarding the ACO algorithms, we observe that both
methods allow obtaining near-optimal solutions
which certainly prove their effectiveness. In general,
we obtain better solutions for the Euclidean instances
than for the random ones. In particular, the quality of
the Euclidean solutions obtained improves signifi-
cantly for large-size instances of the problem for
which both ACO methods obtain better solutions
than CPLEX. Next, we observe that the solutions
obtained with ACOR are better in terms of quality
when compared to the solutions obtained with ACOQ

for both random and Euclidean instances of the
problem. Concerning our pure Q-learning approach
proposed to solve instances with degree d � 2, we
observe that the solutions obtained for random and
Euclidean instances are competitive with those ob-
tained with the ACO methods. In particular, we see
that the CPU time required by this method is sig-
nificantly lower than the amount required by ACOQ.
)en, we further see that, for some of the instances,
the gaps obtained by the pure Q-learning approach
are tighter than those obtained with ACOQ. We also
obtain better solutions than CPLEX solver which is
used to solve the MILPmodel. Finally, notice that this
pure Q-learning method is simple and versatile, and
then, it can be adapted to any other combinatorial
optimization problem in a straightforward manner.

As future research, we plan to propose new formulations
related to the degree-constrained k-minimum spanning tree
problem with applications on network design problems.

Data Availability

)e data used to support the findings of the study are
available upon request to the corresponding author.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)e authors acknowledge the financial support from
FONDECYT (nos. 11180107 and 3190147).

References

[1] P. Adasme, “Optimal sub-tree scheduling for wireless sensor
networks with partial coverage,” Computer Standards & In-
terfaces, vol. 61, pp. 20–35, 2019.

[2] P. Adasme, “p-median based formulations with backbone
facility locations,” Applied Soft Computing, vol. 67, pp. 261–
275, 2018.

[3] P. Adasme, R. Andrade, J. Leung, and A. Lisser, “Improved
solution strategies for dominating trees,” Expert Systems with
Applications, vol. 100, pp. 30–40, 2018.

[4] P. Adasme and A. Dehghan Firoozabadi, “Facility location
with tree topology and radial distance constraints,” Com-
plexity, vol. 2019, Article ID 9723718, 29 pages, 2019.

[5] B. Ahlgren, M. Hidell, and E. C.-H. Ngai, “Internet of things
for smart cities: interoperability and open data,” IEEE Internet
Computing, vol. 20, no. 6, pp. 52–56, 2016.

[6] R. Al-Zaidi, J. C. Woods, M. Al-Khalidi, and H. Hu, “Building
novel VHF-based wireless sensor networks for the internet of
marine things,” IEEE Sensors Journal, vol. 18, no. 5,
pp. 2131–2144, 2018.

[7] Z. Chu, F. Zhou, Z. Zhu, R. Q. Hu, and P. Xiao, “Wireless
powered sensor networks for internet of things: maximum
throughput and optimal power allocation,” IEEE Internet of
-ings Journal, vol. 5, no. 1, pp. 310–321, 2018.

[8] R. B. Dial, “An efficient algorithm for building min-path trees
for all origins in a multi-class network,” Transportation Re-
search Part B: Methodological, vol. 40, no. 10, pp. 851–856,
2006.

[9] H. Hua, L. Hovestadt, P. Tang, and B. Li, “Integer pro-
gramming for urban design,” European Journal of Operational
Research, vol. 274, no. 3, pp. 1125–1137, 2019.

[10] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and
P. Polakos, “Wireless sensor network virtualization: a survey,”
IEEE Communications Surveys & Tutorials, vol. 18, no. 1,
pp. 553–576, 2016.

[11] E. Bulut and I. Korpeoglu, “Sleep scheduling with expected
common coverage in wireless sensor networks,” Wireless
Networks, vol. 17, no. 1, pp. 19–40, 2011.

[12] T. Yardibi and E. Karasan, “A distributed activity scheduling
algorithm for wireless sensor networks with partial coverage,”
Wireless Networks, vol. 16, no. 1, pp. 213–225, 2010.

[13] P. Adasme, R. Andrade, and A. Lisser, “Minimum cost
dominating tree sensor networks under probabilistic con-
straints,” Computer Networks, vol. 112, pp. 208–222, 2017.

[14] M. Cardei, D. MacCallum, and X. Cheng, “Wireless sensor
networks with energy efficient organization,” Journal of In-
terconnection Networks, vol. 3, pp. 3-4, 2002.

[15] H. Gupta, Z. Zhou, S. R. Das, and Q. Gu, “Connected sensor
cover: self-organization of sensor networks for efficient query
execution,” IEEE/ACM Transactions on Networking, vol. 14,
no. 1, pp. 55–67, 2006.

[16] L. Wang and Y. Xiao, “A survey of energy-efficient scheduling
mechanisms in sensor networks,” Mobile Networks and Ap-
plications, vol. 11, no. 5, pp. 723–740, 2006.

[17] J.)enepalle and P. Singamsetty, “)e degree constrained k-
cardinality minimum spanning tree problem: a lexisearch
algorithm,” Decision Science Letters, vol. 7, pp. 301–310, 2018.

[18] M. Garey and D. Johnson, Computers and Intractability: A
Guide to the-eory of NP-Completeness, W. H. Freeman, New
York, NY, USA, 1979.

[19] D. Lozovanu and A. Zelikovsky, “Minimal and bounded tree
problems,” in Tezele Congresului XVIII Al Academiei Ro-
mano-AmericaneKishniev, Chişinău, Moldova, 1996.

[20] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and
S. S. Ravi, “Spanning trees-short or small,” SIAM Journal on
Discrete Mathematics, vol. 9, no. 2, pp. 178–200, 1996.

[21] P. Adasme, I. Soto, and F. Seguel, “Finding degree constrained
k-cardinality minimum spanning trees for wireless sensor

24 Complexity

networks,” in Mobile Web and Intelligent Information Sys-
tems, M. Younas, I. Awan, G. Ghinea, and M. Catalan Cid,
Eds., vol. 10995, pp. 51–62, Lecture Notes in Computer
Science, Springer, Cham, Switzerland, 2018.

[22] L. Caccetta and S. P. Hill, “A branch and cut method for the
degree-constrained minimum spanning tree problem,” Net-
works, vol. 37, no. 2, pp. 74–83, 2001.

[23] L. Euler, “Solutio problematis ad geometriam situs perti-
nentis,” Commentarii Academiae Scientiarum Imperialis
Petropolitanae, vol. 8, pp. 128–140, 1976.

[24] P. Adasme, R. Andrade, M. Letournel, and A. Lisser, “Sto-
chastic maximum weight forest problem,” Networks, vol. 65,
no. 4, pp. 289–305, 2015.

[25] M. Dorigo and L. M. Gambardella, “A study of some prop-
erties of ant-Q,” in Prcoeedings of the 1996 Parallel Problem
Solving from Nature—PPSN IV, Berlin, Germany, 1996.

[26] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: op-
timization by a colony of cooperating agents,” IEEE Trans-
actions on Systems, Man and Cybernetics, Part B (Cybernetics),
vol. 26, no. 1, pp. 29–41, 1996.

[27] L. Gambardella and M. Dorigo, “Ant-Q: a reinforcement
learning approach to the traveling salesman problem,” in
Proceedings of the 12th International Conference on Machine
Learning, Tahoe City, CA, USA, July 1995.

[28] P. Hansen and N. Mladenović, “Variable neighborhood
search: principles and applications,” European Journal of
Operational Research, vol. 130, no. 3, pp. 449–467, 2001.

[29] N. Mladenovic and P. Hansen, “Variable neighborhood
search,”Computers & OR, vol. 24, no. 11, pp. 1097–1100, 1997.

[30] L. Caccetta and Wamiliana, “Heuristics approach for the
degree constrained minimum spanning tree,” in Proceedings
of the 2001 International Modeling and Simulations,
pp. 2161–2166, Canberra, Australia, 2001.

[31] C. Watkins, Learning with delayed rewards, Ph.D. disserta-
tion, Psychology Department, University of Cambridge,
Cambridge, UK, 1989.

[32] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for
combinatorial optimization: a methodological tour d’hor-
izon,” 2018, https://arxiv.org/abs/1811.06128.

[33] J. P. Queiroz dos Santos, J. D. deMelo, A. D. Duarte Neto, and
D. Aloise, “Reactive search strategies using reinforcement
learning, local search algorithms and variable neighborhood
search,” Expert Systems with Applications, vol. 41, no. 10,
pp. 4939–4949, 2014.

[34] https://github.com/pdrozdowski/TSPLib.Net/tree/master/
TSPLIB95/tspTSBLIB,.

[35] R. Andrade, A. Lucena, and N. Maculan, “Using Lagrangian
dual information to generate degree constrained spanning
trees,” Discrete Applied Mathematics, vol. 154, no. 5,
pp. 703–717, 2006.

[36] M. Chlebı́k and J. Chlebı́ková, “)e Steiner tree problem on
graphs: inapproximability results,” -eoretical Computer
Science, vol. 406, no. 3, pp. 207–214, 2008.

[37] G. Naveen, “Saving an epsilon: a 2-approximation for the
k-MSTproblem in graphs,” in Proceedings of the 37th Annual
ACM Symposium on -eory of Computing, Baltimore, MD,
USA, 2005.

[38] H. Katagiri and Q. Guo, “A hybrid-heuristics algorithm for k-
minimum spanning tree problems,” in IAENG Transactions
on Engineering Technologies, pp. 167–180, Springer, Dor-
drecht, Netherlands, 2013.

[39] H. Katagiri, T. Hayashida, I. Nishizaki, and Q. Guo, “A hybrid
algorithm based on tabu search and ant colony optimization

for k-minimum spanning tree problems,” Expert Systems with
Applications, vol. 39, no. 5, pp. 5681–5686, 2012.

[40] M. Doan, “An effective ant-based algorithm for the degree-
constrainedminimum spanning tree problem,” in Prcoeedings
of the Evolutionary Computation IEEE CEC 2007, Singapore,
September 2007.

[41] L. Hanr and Y. Wang, “A novel genetic algorithm for degree-
constrained minimum spanning tree problem,” International
Journal of Computer Science and Network Security, vol. 6,
no. 7A, pp. 50–57, 2006.

[42] M. Krishnamoorthy, A. T. Ernst, and Y. M. Sharaiha,
“Comparison of algorithms for the degree constrained
minimum spanning tree,” Journal of Heuristics, vol. 7, no. 6,
pp. 587–611, 2001.

[43] S. C. Narula and C. A. Ho, “Degree-constrained minimum
spanning tree,” Computers & Operations Research, vol. 7,
no. 4, pp. 239–249, 1980.

[44] A. Volgenant, “A Lagrangean approach to the degree-con-
strained minimum spanning tree problem,” European Journal
of Operational Research, vol. 39, no. 3, pp. 325–331, 1989.

[45] M. C. de Souza and P. Martins, “Skewed VNS enclosing
second order algorithm for the degree constrained minimum
spanning tree problem,” European Journal of Operational
Research, vol. 191, no. 3, pp. 677–690, 2008.

[46] R. J. Chagas, C. A. Valle, and A. S. da Cunha, “Exact solution
approaches for the Multi-period degree constrained mini-
mum spanning tree problem,” European Journal of Opera-
tional Research, vol. 271, no. 1, pp. 57–71, 2018.

[47] K. Singh and S. Sundar, “A hybrid steady-state genetic al-
gorithm for the min-degree constrained minimum spanning
tree problem,” European Journal of Operational Research,
vol. 276, no. 1, pp. 88–105, 2019.

[48] Q. Wang, H. E. Psillakis, and C. Sun, “Cooperative control of
multiple agents with unknown high-frequency gain signs
under unbalanced and switching topologies,” IEEE Transac-
tions on Automatic Control, vol. 64, no. 6, pp. 2495–2501,
2019.

[49] Q. Wang and C. Sun, “Adaptive consensus of multiagent
systems with unknown high-frequency gain signs under di-
rected graphs,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 50, no. 6, pp. 2181–2186, 2020.

[50] J. B. Kruskal, “On the shortest spanning subtree of a graph and
the traveling salesman problem,” Proceedings of the American
Mathematical Society, vol. 7, no. 1, p. 48, 1956.

[51] R. C. Prim, “Shortest connection networks and some gen-
eralizations,” Bell System Technical Journal, vol. 36, no. 6,
pp. 1389–1401, 1957.

[52] M. Desrochers and G. Laporte, “Improvements and exten-
sions to the Miller-Tucker-Zemlin subtour elimination con-
straints,”Operations Research Letters, vol. 10, no. 1, pp. 27–36,
1991.

[53] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, MIT Press and McGraw-Hill,
Cumberland, RI, USA, 2009.

[54] IBM ILOG, “CPLEX high-performance mathematical pro-
gramming engine,” 2016, http://www.ibm.com/software/
integration/optimization/cplex/.

Complexity 25

https://arxiv.org/abs/1811.06128
https://github.com/pdrozdowski/TSPLib.Net/tree/master/TSPLIB95/tsp
https://github.com/pdrozdowski/TSPLib.Net/tree/master/TSPLIB95/tsp
http://www.ibm.com/software/integration/optimization/cplex/
http://www.ibm.com/software/integration/optimization/cplex/

