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Laplacian Biogeography-Based Optimization (LxBBO) is a BBO variant which improves BBO’s performance largely. When it
solves some complex problems, however, it has some drawbacks such as poor performance, weak operability, and high complexity,
so an improved LxBBO (ILxBBO) is proposed. First, a two-global-best guiding operator is created for guiding the worst habitat
mainly to enhance the exploitation of LxBBO. Second, a dynamic two-differential perturbing operator is proposed for the first two
best habitats’ updating to improve the global search ability in the early search phase and the local one in the late search one,
respectively. )ird, an improved Laplace migration operator is formulated for other habitats’ updating to improve the search
ability and the operability. Finally, some measures such as example learning, mutation operation removing, and greedy selection
are adopted mostly to reduce the computation complexity of LxBBO. A lot of experimental results on the complex functions from
the CEC-2013 test set show ILxBBO obtains better performance than LxBBO and quite a few state-of-the-art algorithms do. Also,
the results on Quadratic Assignment Problems (QAPs) show that ILxBBO is more competitive compared with LxBBO, Improved
Particle Swarm Optimization (IPSO), and Improved Firefly Algorithm (IFA).

1. Introduction

Optimization has always been a hot topic for various re-
searchers, engineers, and others. In solving some complex
problems, traditional optimization methods mainly rely on
empirical analysis or the use of accurate mathematical
models. However, they cannot find the optimal solution on
other problems or within a reasonable time. In recent de-
cades, inspired by nature, many Intelligent Optimization
Algorithms (IOAs) such as Particle Swarm Optimization
(PSO) [1], Shuffled Frog Leaping Algorithm (SFLA) [2],
Differential Evolution (DE) [3], Krill Herd (KH) [4], Har-
mony Search (HS) [5], Cuckoo Search (CS) [6], Grey Wolf
Optimizer (GWO) [7], and Biogeography-Based Optimi-
zation (BBO) [8], have sprung up, and they are widely used
in many areas [6, 9–11].

BBO is a biogeography-based IOA proposed by Simon
[8]. )e mathematical models of biogeography describe the
migration andmutation of species. According to the models,
two operators are created in BBO.)emigration operator of
BBO shares information between habitats to improve the
quality of poor solutions, and it demonstrates the exploi-
tation ability of BBO. )e mutation operator, which ran-
domly generates new feature values, can get good population
diversity to reflect the exploration ability. As BBO has a good
model, simple search mechanism, and excellent perfor-
mance [8], not only has it achieved great success on nu-
merical optimization problems [12] but also is being used in
so many applications [13–16]. Compared with some IOAs,
BBO is more competitive and has attracted more widespread
attention [17]. However, BBO has some defects such as easy
entrapment into local optima and weak exploration [18].
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Quadratic Assignment Problem (QAP) is a mathemat-
ical model for the location of indivisible economic activities,
which is one of the most difficult combinational optimi-
zation problems [19]. QAP has been studied for several years
in an assignment problem that models a variety of real-world
problems, such as backboard wiring problem, campus
planning problem, airport gate assignment, and traveling
salesman problem [20]. Hospital layout problem is a typical
QAP to minimize the total travel distance of patients. It can
bring better service to patients by renovating the existing
hospital and optimizing the reallocation of the departments,
reduce the time consumption of each patient, and improve
the efficiency of hospital service for more patients [20]. IOAs
are devoted to the search for the good quality solutions,
which are applied to solve QAP [19].

Although BBO variants are proposed to deal with the
defects of BBO, whether BBO or its variants, the migration
operator plays an important role. Garg and Deep [21]
proposed a novel BBO based on the Laplace migration
operator (LxBBO), which is an improvedmigration operator
to strengthen the search capability of BBO. However, LxBBO
still has some drawbacks such as poor performance, weak
operability, and high complexity. So, in this paper, an im-
proved LxBBO (ILxBBO) is proposed, and it is used to solve
QAP: an alternative approach for locating hospital
departments.

)e contributions of this paper are described as follows:

(1) A dynamic two-differential perturbing operator is
proposed to update the first two best habitats and
used mainly to enhance the exploration in the early
search phase, and the local search ability can be
improved in the late search phase

(2) A two-global-best guiding operator is presented to
update the worst habitat and used mainly to enhance
exploitation; at the same time, the global search
ability can be improved in the early search phase

(3) An improved Laplace operator is formulated for the
other habitats’ updating to fasten the convergence
speed and improve the operability

(4) ILxBBO is used for complex function optimization
on CEC-2013 and applied to QAP; a lot of experi-
mental results show ILxBBO obtains more perfor-
mance than the comparison algorithms.

)e graphical abstract of this paper is shown in Figure 1.
)e rest of this paper is organized as follows: Section 2

gives the related work. )e proposed ILxBBO is elaborated
in Section 3. In Section 4, experimental results on the CEC-
2013 test set and QAP are reported and analyzed. Section 5
gives conclusions and future work.

2. Related Works

2.1. Biogeography-Based Optimization. BBO mainly uses
migration and mutation models of species in biogeography
to solve optimization problems. In BBO, each solution is
called a “habitat” with a Habitat Suitability Index (HSI) to
measure the quality of the habitat. )e factors of a habitat

that characterize habitability are called Suitability Index
Variables (SIVs). BBO searches the best solution mainly
based on migration and mutation steps.

2.1.1. Migration Operator. In BBO, a good solution tends to
have a high HSI and it is analogous to a habitat with many
species, which has high emigration and low immigration
rates, and vice versa. )e purpose of the migration operator
is to share information between different solutions. Good
solutions tend to share their features with poor solutions,
and poor solutions accept a lot of features from good so-
lutions. Each habitat has its own immigration rate λ and
emigration rate μ, and they are calculated as follows:

λk � I 1 −
Nk

N
􏼒 􏼓, (1)

μk � E
Nk

N
􏼒 􏼓, (2)

where I is the maximum immigration rate, E is the maxi-
mum emigration rate, Nk is the number of species of the
habitat Hk, and N is the maximum number of species. From
equations (1) and (2), the migration presents a simple linear
model, but more often, there are complex nonlinear models
[22].

)e migration operator modifies the habitat’s SIVs by
accepting features from other good habitats, which can be
expressed as follows:

Hi(SIV)%←Hk(SIV), (3)

whereHi is the immigration habitat andHk is the emigration
habitat, which is selected by the roulette wheel selection [8].

2.1.2. Mutation Operator. Sudden events may drastically
alter certain characteristics of a habitat, thereby changing its
HSI and causing a significant change in the number of
species. )e mutation rate of the habitat is inversely pro-
portional to the species probability in BBO. )e mutation
rate mi is calculated by the probability pi of the species
number, and its expression is as follows:

mi � mmax 1 −
pi

pmax
􏼠 􏼡, (4)

where mmax is the maximum mutation rate, which is a user-
defined parameter, the computation way of pi refers to [8],
and pmax =max (pi). )e mutation can be conducted below:

Hi SIVj􏼐 􏼑%← lbj + rand∗ ubj − lbj􏼐 􏼑, (5)

where Hi is the mutation habitat, j ∈ [1, D] (where D is the
decision variable number), lbj and ubj are the lower and the
upper boundary values of the jth SIV of Hi, respectively, and
rand is a uniformly distributed random real number be-
tween 0 and 1.

In order to save the best solutions in the search process,
the elitism strategy is used to keep some best solutions. At
each iteration, after operations such as migration and
mutation are carried out, the population is sorted. )e
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several worst habitats are replaced with some elitists kept
before, and the population is sorted again. )e steps of BBO
are given as follows:

Step 1: set the parameters and initialize the population
randomly
Step 2: evaluate each habitat and sort the population
from the best to the worst by their HSIs
Step 3: calculate the immigration, emigration, and
mutation rates and keep the elitists
Step 4: perform the migration operator by equation (3)
Step 5: perform the mutation operator by equation (5)
Step 6: limit each new solution’s boundary
Step 7: calculate each habitat’s HSI and sort the pop-
ulation from the best to the worst
Step 8: replace some worst habitats with the elitists
Step 9: sort the population again from the best to the
worst
Step 10: decide whether the stopping criterion is met
Step 11: if it is so, output the best solution; otherwise,
return to Step 3

According to the steps of BBO, BBO can get strong local
search capability through migration and global search ability
by mutation. However, there are some drawbacks in BBO.
For example, the migration operator simply provides new
solutions through directly copying some features of good
solutions and cannot generate new features from new
promising areas in the search space. )e mutation operator
affects the accuracy of the solution in the later search of
algorithm and so on.

To remedy BBO’s defects, great efforts have beenmade to
improve BBO by many researchers. )e improvements are
mainly divided into the following aspects. (1) Topology.

Zheng et al. [23] used three different topologies, namely, ring
topology, square topology, and random topology, to en-
hance the exploration ability of BBO. Feng et al. [24] pre-
sented a hybrid migration operator with random ring
topology to enhance the potential population diversity of
BBO. (2)Migration operator. Ma and Simon [25] proposed a
blended migration operator, in which a new solution con-
sists of two parts, the features of other solutions and its own
features. Xiong et al. [18] presented a polyphyletic migration
operator to raise the population diversity of BBO, and an
orthogonal learning strategy was used to make a systematic
and elaborate search. Li et al. [22] presented a perturbed
migration in order to enhance the exploration ability and
integrated the Gaussian mutation into BBO to improve the
exploration. Chen et al. [26] put forward the covariance
matrix for reducing the dependence on a coordinate system
and enhancing BBO’s rotational invariance. Zhang et al. [27]
presented an Efficient and Merged BBO (EMBBO) to en-
hance the optimization efficiency. (3) Mutation operator.
Gong et al. [28] embedded Gaussian, Cauchy, and Levy
mutations into BBO, respectively. Lohokare et al. [29]
proposed a mutation operator which combined two indi-
viduals to generate a new feasible solution to improve the
exploration ability. (4) Hybrid BBO with other IOAs. Gong
et al. [30] combined the exploration of DE with the ex-
ploitation of BBO to enhance the performance. Savsani et al.
[31] integrated BBO with Artificial Immune Algorithm
(AIA) and ACO, respectively, and proposed four mixed
BBOs. Khademi et al. [32] combined the Invasive Weed
Optimization (IWO) with BBO to enhance the performance
of BBO. Zhang et al. [33] combined BBO and GWO to
obtain a BBOwith strong universal applicability. In addition,
many improvements are from not only one way but many
ones to maximize the performance of BBO at present.
)erefore, further improvements to the BBO variant are
necessary.

Test on benchmark functions and application to QAP

LxBBO

ILxBBO

Laplace migration operator Mutation operator

Improved Laplace
migration operator

Dynamic two-differential
perturbing operator

A large number of experiments are made on CEC-2013 test
set, and the results show that ILxBBO outperforms BBO

variants and other algorithms. Lots of experimental results
show that ILxBBO can solve QAP better compared with

LxBBO and other comparison algorithms.

Two-global-best guiding
operator

Figure 1: Graphical abstract of this paper.
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2.2. Laplacian Biogeography-Based Optimization. Garg and
Deep proposed LxBBO based on the Laplace crossover to
improve the optimization performance of BBO [21]. )e
Laplace crossover is described as follows. )ere are two
parents, x1 the immigration habitat,x2 the emigration habitat
that is selected by the roulette wheel selection. A random
number (β) is generated, and it follows Laplace distribution,
which is given by the following equation:

β �
a − b∗ log(u), u≤ 0.5,

a + b∗ log(u), u> 0.5,
􏼨 (6)

where a ∈R is called the location parameter and b> 0 is
called the scale parameter. )en, two new offsprings are
generated as

y1 � x1 + β x1 − x2( 􏼁, (7)

y2 � x2 + β x1 − x2( 􏼁. (8)

)e two new habitats are blended to make a new habitat
y (see equation (9)) with a blended parameter c given by
equation (10):

y � c∗y1 +(1 − c)∗y2, (9)

c � cmin + cmax − cmin( 􏼁
kt

, (10)

where cmin and cmax are two parameters which are the
minimum and maximum values of c, respectively, and
these two parameters lie in [0, 1], and t is the current
iteration number. k is a user-defined parameter and less
than 1.

From equations (7) and (8), the difference between the
two equations lies in the first item of them; the first term of
equation (7) is x1, while the first one of equation (8) is x2.
)e value of c is getting smaller as t increases in equation
(10) (see Figure 2(a)). From equation (10), in the earlier
search phase, the value of c is larger, so y is mostly affected
by the offspring y1; the difference of x1 and x2 is larger, and
the search range around x1 is larger, so the algorithm has
stronger exploration. In the later search phase, the value of
c is smaller, so y is mostly affected by the offspring y2; the
difference between x1 and x2 is smaller, the search range
around x2 (good position) is smaller, and the algorithm has
stronger exploitation.

In LxBBO, except the migration operator is replaced by the
Laplace operator, the rest is the same as in BBO, for example,
both use the mutation and the elitist strategy. LxBBO uses the
immigration and emigration habitats as a parent to generate
two offsprings and then get a new habitat. )is way can
generate new positions from new promising areas in the search
space to enhance the optimization performance of BBO.

3. Improved Laplacian Biogeography-
Based Optimization

3.1. Defects of Laplacian Biogeography-Based Optimization.
Although LxBBO enhances the performance of BBO largely,
there are some drawbacks. (1) In the Laplacian operator,

there are many parameters. From equations (6) to (10), a, b,
cmin, cmax, and k need tedious tuning in various applica-
tions. In the experiment, according to [21], k is set to 0.95,
and the power of the difference between the maximum
value and the minimum value is calculated at each itera-
tion, which results in some computation cost. (2) LxBBO
and BBO share some of the drawbacks. For example, when
the emigration habitats are selected by the roulette wheel
selection, a poor habitat may be chosen to share its in-
formation with a good habitat to reduce the quality of the
population and the roulette wheel selection has high cal-
culation complexity. (3) Both BBO and LxBBO use the
mutation operation. Although the mutation operator can
enhance the global exploration ability, it is possible to
mutate some better habitats and destroy them, causing
population degradation and affecting the convergence
quality especially in the late search phase. (4) )e mutation
operator needs to compute the mutation rate of each
habitat and complete the mutation operation. (5))e elitist
strategy is used, and the population needs to sort twice at
each iteration, which results in high computation com-
plexity. In order to solve the above drawbacks, several
creative improvements are brought up in this paper.

3.2. Improved Laplace Operator. To enhance the perfor-
mance and operability of LxBBO, an improved Laplace
operator is proposed.

Inspired by the optimal idea of [34], when an individual
(namely, He) with better fitness subtracts an individual with
poor fitness (namely,Hk) (see equations (11) and (12)), it will
search toward the good individual to accelerate the con-
vergence speed. )e random number β is calculated by
equation (13), and the two habitats H1 and H2 are generated
by equations (11) and (12). Compared with equations (7) and
(8), the difference is that the emigration habitats of equations
(11) and (12) are selected by the example learning selection
[33]. He has a better fitness value than Hk does, using the
difference between He and Hk to ensure that the search
direction is closer to the better solution, and the convergence
quality is improved:
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Figure 2: c with the iteration number t.
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H1 � Hk + β ∗ He − Hk( 􏼁, (11)

H2 � He + β ∗ He − Hk( 􏼁, (12)

β �
−0.5∗ log(u), u≤ 0.5,

+0.5∗ log(u), u> 0.5.
􏼨 (13)

)ere are many parameters to be set and much com-
plexity in equation (10), so a new dynamic weight parameter
c is adopted. It is expressed as equation (14), and the dif-
ference of c in equations (10) and (14) is shown in Figure 2.
Figure 2(a) represents the curve of r in LxBBO, and
Figure 2(b) represents the curve of r in ILxBBO. From
Figure 2, c is getting smaller as t increases, and it keeps an
almost constant value (0.1) after about 100 iterations in
LxBBO. However, c increases linearly with t in ILxBBO,
when t= 0 and c= 0.5, and when t=MaxDT, c= 1, so c is a
linear number between 0.5 and 1. No parameters need
tuning and that makes ILxBBO get stronger operability by
using the dynamic weight c:

c � 0.5 + 0.5∗
t

MaxDT
􏼒 􏼓, (14)

where MaxDT is the maximum iteration number. H is given
by the following equation:

H � c∗H1 + (1 − c)∗H2. (15)

From equation (15), in the earlier stage, H accepts the
information from H1 and H2 to increase the diversity. In the
later stage, H is more affected by H2 to enhance the ex-
ploitation and the convergence speed.

3.3. Improved Migration Operator. In LxBBO, the emi-
gration habitats are selected by the roulette wheel selec-
tion like BBO, and good solutions may get the features
from poor solutions, so the population may be degen-
erated. In order to overcome the drawbacks of the roulette
wheel selection, the example learning selection [33] is
adopted to replace the roulette wheel selection. )e se-
lection approach is described as follows. When the
population is sorted from the best to the worst, the k-th
habitat has a higher value than the one behind the k-th
habitat does. When Hk is selected for migration, there are
k − 1 habitats for it to learn from. )e emigration habitat
He is calculated as follows:

He � ceil((k − 1)∗ rand, (16)

where ceil () is the function which rounds toward positive
infinity. From equation (16), He is not worse than Hk, which
improves the quality of the solution by sharing features from
good solutions. Furthermore, ILxBBO only needs to cal-
culate the immigration rate and does not need to calculate
the emigration rate, which reduces the computation com-
plexity further. )e emigration habitat can be selected by
only equation (16). )e example learning selection over-
comes the defects of the roulette wheel selection, and its
calculation is simple to reduce the computational

complexity. )e improved Laplace operator and the im-
proved migration operator together form an improved
Laplace migration operator.

3.4. Dynamic Two-Differential Perturbing Operator. DE,
proposed by Storn and Price in 1997 [3], is a popular op-
timization algorithm. It generates temporary individuals
based on the degree of individual difference in the pop-
ulation and realizes evolution by random recombination. In
the earlier search period, the individuals have more dif-
ference in the population, and the algorithm can search in a
large range, thus obtaining global exploration ability. In the
later search period, the algorithm searches in the vicinity of
the individual and obtains local search ability [35]. A dy-
namic differential evolution algorithm is proposed by Wu
et al. [36], and the experiments show that the dynamic
method has better performance.

LxBBO can get a global exploration ability by its mutation
operator. However, the mutation operation is at random, and
it is easy to destroy the better solutions, especially in the late
search stage. In addition, the mutation operation needs to
calculate the mutation rate of each habitat, along with its own
calculation, and those increase the computation complexity.
So the mutation operator is removed in ILxBBO. In Section
3.3, the emigration habitats are selected by the example
learning approach and poor habitats can accept their features
from good habitats. However, some best habitats cannot be
updated because there are few examples for them to learn
from leading to low search efficiency. Although the best
habitat may be the example of the second habitat, there is little
difference between the two habitats in many cases, the second
one is almost unchanged, and the search efficiency is also low.
So a dynamic two-differential perturbing operator is adopted
in the best habitat and the second best habitat to enhance the
search ability. )e value of the scaling factor (w) of the dy-
namic two-differential perturbing operator decreases with the
increase in the current iteration number, which is expressed as
follows:

w � 1 −
t

MaxDT
. (17)

)e dynamic two-differential perturbing operator is
expressed as follows:

Hk � Hk + w∗ Hb − Hk + Hm − Hr( 􏼁, (18)

where Hk is the best habitat or the second best habitat, Hr
and Hm are two habitats selected randomly from the current
population, and they satisfy m≠ k≠ r. In the early earlier
stage, the values of (Hm −Hr) and (Hb −Hk) and the value of
w are all comparatively large, soHk searches in a larger range
to enhance the global search ability. )e values of (Hm −Hr)
and (Hb −Hk) and the value of w are comparatively small in
the late stage, so Hk searches in a smaller range to enhance
the local search ability. From equation (18), Hk is affected by
itself, the dynamic coefficient factor, and the two differences.
)erefore, it is called a dynamic two-differential perturbing
operator.
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3.5. Two-Global-Best Guiding Operator. In order to further
enhance the local search ability, the best and subbest habitats
are used to guide the worst habitat to update. In the first half
of the search, the mathematical equation is expressed as
follows:

Hw � Hw + 2 ∗ (rand − 0.5) ∗ Hb − Hw( 􏼁

+ 2∗(0.5 − rand)∗ Hs − Hw( 􏼁,
(19)

where Hs is the subbest habitat. In the second half of the
search, equations (20) and (21) are used to update the worst
habitat based on the same probability:

Hw � Hw + 2∗(0.5 − rand)∗ Hb − Hw( 􏼁

+ rand∗ Hs − Hw( 􏼁,
(20)

Hw � Hw + (0.5 + 0.5∗ rand) Hb − Hw + Hs − Xw( 􏼁.

(21)

From equation (19), the worst habitat is affected by three
aspects: the worst habitat itself, the random weighted (−1∼1)
difference between the best habitat and the worst habitat,
and the random weighted (−1∼1) difference between the
subbest habitat and the worst. In the early search stage, the
difference between the best habitat or the subbest habitat and
the worst habitat is bigger. )e range of 2∗ (rand− 0.5) is
from −1 to 1. So the worst habitat searches around the wider
range of itself to obtain some global search abilities. In the
late stage, the worst habitat adopts equation (20) or equation
(21) to update. )ey are similar to equation (19) but with
different random weights. Under the guidance of the best
and the subbest habitats, the worst habitat can obtain a local
search ability by searching in a small range around itself.
From equations (19)–(21), Hw is all affected by the best
habitat and the subbest habitat, so this operator is called two-
global-best guiding operator.

3.6. Other Improvements. In addition, the following im-
provements are also adopted. First, the greedy selection
[24, 37] replaces the elitism strategy [8]. So, on the one hand,
the population is just needed to sort once at each iteration to
reduce computing complex; on the other hand, the greedy
selection avoids setting the elitist parameter. Second, the
immigration rate calculation step is moved outside of the
iteration loop. It means the immigration rate is calculated
once in the whole iterations to reduce the computation
complexity. )e flowchart of ILxBBO is given in Figure 3.

From the above description, there are the following
differences between ILxBBO and LxBBO. (1) In ILxBBO, the
mutation operator is removed to omit calculating the mu-
tation probability and the mutation operation to reduce the
computation complexity. (2) )e best habitat and the
subbest habitat adopt a dynamic two-differential perturbing
operator to update in ILxBBO, while the first two best
habitats use the Laplace operator to update in LxBBO. (3)
)e worst habitat uses a two-global-best guiding operator to
update, while the worst habitat also uses the Laplace op-
erator in LxBBO. (4) )e remaining habitats use an

improved Laplacian migration operator in ILxBBO, while
the Laplace operator is also used in LxBBO. (5))ere are few
parameters to be tuned in ILxBBO, while LxBBO has many
parameters to be tuned in various applications. (6) LxBBO
uses the roulette wheel selection, while the emigration
habitat is selected by the example learning approach in
ILxBBO.)e population tends to be in the best direction, the
example learning approach does not require calculating the
migration rate, and the emigration habitat can be selected
with only a small amount of calculation. (7) )e elitist
strategy is adopted in LxBBO, while the greedy selection is
used instead of the elitist strategy in ILxBBO. It saves one
sorting step to further reduce the computation complexity.

4. Experiment Results and Analysis

4.1. Experiment Preparation. In order to verify ILxBBO, a
large number of experiments are made on the complex
functions from the CEC-2013 test set [38], where f1–f5 are
unimodal functions, f6–f20 are basic multimodal functions,
and f21–f28 are composition functions. All the experiments
are implemented on PC with 3.1GHz CPU and 4GB RAM
under a Microsoft Windows 7 operating system. )e pro-
gramming language is MATLAB R2014a.

To be fair, in all the experiments on the CEC-2013 test
set, according to [38], the independent run number (Run) is
51, MaxDT dynamically adjusts based on the dimension of

Start

Calculate the immigration rate

Perform the dynamic two-
differential perturbing operator

Perform the improved Laplace
migration operator

Greedy selection

The stopping condition?

Yes
Output the best solution

No

Set the parameters and initialize the population randomly

Calculate the HSI of each habitat and sort the population from the best to
the worst according to their HSIs

Is the best or the second best habitat?
Yes

Limit the boundaries of the updated habitats

No

Calculate the HSI of each habitat

Sort the population from the best to the worst
according to their HSIs

Is the worst
habitat?

No

Perform the two-global-best
guiding operator

Yes

Figure 3: Flowchart of ILxBBO.
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the problem, with 30-D and 50-D, MaxDT is 3000 and 5000,
respectively, and maximum number of function evaluations
(MaxNFES) is set to D∗ 10,000. )e population size (N) is
100 in LxBBO and ILxBBO.)emaximum immigration rate
I of ILxBBO is 1 like LxBBO. According to [21], the pa-
rameters used in LxBBO are as follows: the maximum
emigration/immigration rate (E/I) = 1, mmax = 0.005,
cmin = 0.1, cmax = 1, a= 0, b= 0.5, and k= 0.95.

We evaluate the statistical average (Mean) and standard
deviation (Std) of these algorithms after some independent
runs. For an algorithm, Mean represents its optimization
ability and Std embodies its stability. )e ranking criteria are
described below: first, we compare each algorithm’s mean
value on each function; the better the mean value is, and the
better the ranking is. If some algorithms obtain the same
mean values, then we compare their Std values; the better the
Std value is, the better the ranking is. If some algorithms
obtain the same Mean and Std values, their rankings are
considered to be the same. In addition, the best values are in
bold in all the result tables.

4.2. Comparison of ILxBBO with Its Incomplete Variants.
To illustrate the effectiveness of each component of ILxBBO,
ILxBBO is only compared with its incomplete variants and
LxBBO on the 30-dimensional functions. )ese incomplete
variants are described as follows:

GLxBBO is an incomplete variant of ILxBBO, which is
LxBBO with only the two-global-best guiding operator,
without the dynamic two-differential perturbing op-
erator and improved Laplace migration operator
DLxBBO is an incomplete variant of ILxBBO, which is
LxBBO with only the dynamic two-differential per-
turbing operator without the improved Laplace mi-
gration operator and two-global-best guiding operator
OLxBBO is an incomplete variant of ILxBBO, which
contains the improved Laplace migration operator
without the dynamic two-differential perturbing op-
erator and two-global-best guiding operator

)e experimental results are shown in Table 1. Form
Table 1, ILxBBO obtains 14 times ranking the first. LxBBO
obtains 4 times ranking the first. GLxBBO obtains 9 times
ranking the first. DLxBBO and OLxBBO obtain 1 time
ranking the first. ILxBBO’s, LxBBO’s, GLxBBO’s, DLxBBO’s
and OLxBBO’s average rankings are 1.79, 4.11, 2.32, 3.14,
and 3.36, respectively. ILxBBO’s average ranking is signif-
icantly higher than those of its incomplete algorithms. )e
average ranking of LxBBO is the last. It shows that each
improvement on LxBBO is effective and the two-global-best
guiding strategy contributes most to ILxBBO. )e average
ranking of ILxBBO is the first, and it shows that every
improvement in LxBBO is essential.

4.3. Comparison with BBO’s Variants. In this experiment
group, ILxBBO is compared with quite a few state-of-the-art
BBO’s variants on the 30-dimensional and 50-dimensional
functions from the CEC-2013 test set. )e comparison

algorithms include TDBBO [39], BIBBO [25], BBOM [40],
DEBBO [30], BLPSO [41], PRBBO [24], WRBBO [37],
EMBBO [27], and BHCS [42]. )ese algorithms are all BBO
variants proposed in recent years, with much comparability.
)eir common parameter settings are the same as those of
ILxBBO, and other parameter settings are referred to their
corresponding references. )e experimental results on the
30-dimensional functions and 50-dimensional functions are
shown in Tables 2 and 3, respectively.

From Table 2, ILxBBO obtains 9 times ranking the first
and the optimal value (0) on f1 is obtained by ILxBBO.
TDBBO obtains 1 time ranking the first. BIBBO, BLSPO,
and BHCS obtain 0 times ranking the first. DEBBO obtains 4
times ranking the first, and both WRBBO and EMBBO
obtain 5 times ranking the first. On the 5 unimodal func-
tions, ILxBBO obtains 2 times ranking the first and 2 times
ranking the second, and it shows that the improved mi-
gration operator and the two-global-best perturbing oper-
ator enhance the local search ability. On the 15 basic
multimodal functions, ILxBBO obtains 6 times ranking the
first and 3 times ranking the second, and it shows that the
dynamic two-differential perturbing operator enhances the
global search ability. On the 8 composition functions,
ILxBBO obtains 1 time ranking the first. On average ranking,
ILxBBO’s average ranking (2.36) is significantly higher than
those of the comparison algorithms. )ese comparison
results show that, in general, ILxBBO obtains the most
significant optimization performance among these 9 opti-
mization algorithms.

From Table 3, ILxBBO obtains 10 times ranking the first
and gets the first average ranking (2.14). Its performance is
just as good as that on the 30-dimensional functions.

4.4. Comparison with Other IOAs. To further verify the
effectiveness of ILxBBO, ILxBBO is compared with other
IOAs on the 30-dimensional functions. )ese algorithms
include YYPO [43], DPCABC [44], DFnABC [45], FMPSO
[46], GLPSO [47], HFPSO [48], and MEGWO [49], which
are the latest and most famous IOAs and are competitive
and representative. DPCABC and DFnABC are ABC
variants, and MEGWO is a GWO variant. FMPSO is a PSO
variant, and GLPSO and HFPSO are PSO hybrid algo-
rithms with Genetic Algorithm (GA) and Firefly Algorithm
(FA), respectively. For comparison algorithms, on the 30-
dimensional functions, MaxFEs is 300,000, and Run is
51(except FMPSO is 30). )e other parameters settings are
referred to their corresponding references. )e data of
these comparison algorithms are directly from their cor-
responding to references. )e experimental results are
shown in Table 4.

From Table 4, ILxBBO obtains 9 times ranking the first,
YYPO obtains 2 times ranking the first, DPCABC obtains 4
times ranking the first, DFnABC and GLPSO obtain 7 times
ranking the first, FMPSO obtains 3 times ranking the first,
HFPSO obtains 1 time ranking the first, and MEGWO
obtains 0 times ranking the first. )e average rankings of
IlxBBO (2.71) is the first; the next is GLPSO, DFnABC,
YYPO, FMPSO, DPCABC, HFPSO, and HFPSO. )erefore,
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Table 2: Comparison results among ILxBBO and BBO’s variants on the 30-dimensional functions.

Function Value TDBBO BIBBO BBOM DEBBO BLPSO WRBBO EMBBO BHCS ILxBBO

f1
Mean 1.83e− 13 4.82e− 01 9.31e− 04 2.23e− 14 3.57e− 13 0 3.12e− 14 3.21e− 13 0
Std 9.12e− 14 1.98e− 01 1.30e− 04 6.83e− 14 1.46e− 13 0 7.90e− 14 1.30e− 13 0
Rank 5 9 8 3 7 1 4 6 1

f2
Mean 1.13e + 05 2.50e+ 07 8.02e+ 06 2.08e+ 07 7.40e+ 05 1.01e+ 07 1.42e+ 07 2.22e+ 05 2.00e+ 05
Std 6.23e + 04 8.99e+ 06 2.30e+ 06 6.79e+ 06 3.65e+ 05 3.76e+ 06 3.57e+ 06 1.29e+ 05 1.04e+ 05
Rank 1 9 5 8 4 6 7 3 2

f3
Mean 1.94e+ 06 2.46e+ e+ 09 2.76e+ 08 1.60e + 05 7.16e+ 08 8.85e+ 05 1.29e+ 09 1.02e+ 08 1.09e+ 06
Std 4.80e+ 06 2.65e+ 09 1.25e+ 08 2.83e + 05 1.37e+ 09 1.56e+ 06 5.99e+ 08 1.89e+ 08 1.58e+ 06
Rank 4 9 6 1 7 2 8 5 3

f4
Mean 2.22e+ 01 7.42e+ 04 5.57e+ 04 3.15e+ 04 3.13e+ 03 9.49e+ 03 5.21e+ 04 1.71e+ 02 5.44e + 00
Std 1.45e+ 01 1.96e+ 04 5.30e+ 03 4.49e+ 03 1.04e+ 03 1.76e+ 03 6.49e+ 03 4.97e− 13 3.83e + 00
Rank 2 9 8 6 4 5 7 3 1

f5
Mean 3.46e− 03 3.93e− 01 5.95e− 03 1.14e− 13 2.29e+ 00 8.69e − 14 1.14e− 13 4.97e− 13 9.14e− 14
Std 2.47e− 02 1.19e− 01 6.85e− 04 0 1.27e+ 01 4.87e − 14 0 1.22e− 13 4.56e− 14
Rank 6 8 7 3 9 1 3 5 2

f6
Mean 3.88e+ 01 4.98e+ 01 1.65e+ 01 1.50e + 01 4.87e+ 01 1.91e+ 01 1.95e+ 01 1.50e+ 01 1.61e+ 01
Std 2.71e+ 01 2.71e+ 01 1.92e+ 00 1.49e − 01 2.65e+ 01 1.19e+ 01 3.85e+ 00 1.65e+ 01 1.40e+ 01
Rank 7 9 4 1 8 5 6 2 3

f7
Mean 5.48e+ 00 1.09e+ 02 5.95e+ 01 4.77e+ 00 9.10e+ 01 5.33e − 01 1.01e+ 02 9.53e+ 01 1.10e+ 01
Std 4.90e+ 00 2.47e+ 01 4.70e+ 00 1.95e+ 00 2.47e+ 01 4.39e − 01 1.11e+ 01 4.36e+ 01 6.89e+ 00
Rank 3 9 5 2 6 1 8 7 4

f8
Mean 2.10e+ 01 2.10e+ 01 2.09e+ 01 2.09e+ 01 2.09e+ 01 2.09e+ 01 2.09e+ 01 2.10e+ 01 2.09e + 01
Std 4.42e− 02 5.48e− 02 5.20e− 02 5.09e− 02 6.75e− 02 4.85e− 02 4.57e− 02 5.45e− 02 5.64e − 02
Rank 7 9 5 4 6 3 2 8 1

f9
Mean 2.82e+ 01 3.22e+ 01 2.72e+ 01 2.98e+ 01 2.67e+ 01 3.75e+ 01 2.89e+ 01 2.91e+ 01 1.87e + 01
Std 1.44e+ 00 3.53e+ 00 1.18e+ 00 1.61e+ 00 2.84e+ 00 1.54e+ 00 1.73e+ 00 4.66e+ 00 3.76e + 00
Rank 4 8 3 7 2 9 5 6 1

f10
Mean 1.92e− 01 1.13e+ 01 2.83e+ 00 1.27e − 02 1.57e+ 01 6.15e− 02 6.80e+ 00 5.74e− 02 2.22e− 01
Std 1.08e− 01 3.98e+ 00 6.83e− 01 9.18e − 03 3.40e+ 01 2.86e− 02 1.92e+ 00 3.82e− 02 1.35e− 01
Rank 4 8 6 1 9 3 7 2 5

f11
Mean 1.88e+ 01 9.31e− 01 1.46e+ 01 1.11e − 14 2.86e+ 02 1.79e+ 00 1.45e− 14 6.92e+ 01 6.05e− 01
Std 5.50e+ 00 4.59e− 01 1.82e+ 00 2.28e + 00 5.10e+ 01 1.24e+ 00 2.50e− 14 2.61e+ 01 6.92e− 01
Rank 7 4 6 1 9 5 2 8 3

f12
Mean 4.20e+ 01 6.94e+ 01 6.04e+ 01 8.87e+ 01 3.12e+ 02 1.64e+ 02 1.45e+ 02 8.39e+ 01 2.73e + 01
Std 9.44e+ 00 2.21e+ 01 8.89e+ 00 1.07e+ 01 5.74e+ 01 9.65e+ 00 1.93e+ 01 2.62e+ 01 7.36e + 00
Rank 2 4 3 6 9 8 7 5 1

f13
Mean 8.10e+ 01 1.47e+ 02 1.19e+ 02 1.19e+ 02 4.47e+ 02 1.60e+ 02 1.77e+ 02 1.64e+ 02 5.51e + 01
Std 2.15e+ 01 3.37e+ 01 1.80e+ 01 1.22e+ 01 7.13e+ 01 1.07e+ 01 2.27e+ 01 3.98e+ 01 1.86e + 01
Rank 2 5 4 3 9 6 8 7 1

f14
Mean 7.89e+ 02 5.35e+ 00 3.57e+ 02 4.60e+ 01 2.27e+ 03 2.66e+ 02 4.08e − 03 5.27e+ 03 4.38e+ 01
Std 2.59e+ 02 1.80e+ 00 8.98e+ 01 1.04e+ 01 3.71e+ 02 1.28e+ 02 8.35e − 03 7.53e+ 02 4.06e+ 01
Rank 7 2 6 4 8 5 1 9 3

f15
Mean 3.32e+ 03 4.56e+ 03 3.21e+ 03 5.47e+ 03 3.25e+ 03 7.23e+ 03 3.84e+ 03 4.69e+ 03 3.03e + 03
Std 4.45e+ 02 7.12e+ 02 4.26e+ 02 3.15e+ 02 4.52e+ 02 2.48e+ 02 2.78e+ 02 1.50e+ 03 5.70e + 02
Rank 4 6 2 8 3 9 5 7 1

f16
Mean 1.04e+ 00 1.87e+ 00 8.23e− 01 2.17e+ 00 2.15e− 01 2.43e+ 00 1.21e+ 00 2.40e+ 00 1.66e+ 00
Std 2.25e− 01 4.84e− 01 1.84e− 01 3.05e− 01 8.60e− 02 2.72e− 01 1.89e− 01 5.00e− 01 2.17e− 01
Rank 3 6 2 7 1 9 4 8 5

f17
Mean 5.75e+ 01 3.45e+ 01 6.17e+ 02 3.39e+ 01 2.02e+ 02 4.98e+ 01 3.04e + 01 1.44e+ 02 3.28e+ 01
Std 6.34e+ 00 8.26e− 01 4.35e+ 00 4.70e− 01 2.99e+ 01 2.78e+ 00 1.83e − 06 3.69e+ 01 5.61e− 01
Rank 6 4 9 3 8 5 1 7 2

f18
Mean 8.38e+ 01 1.90e+ 02 1.33e+ 02 1.77e+ 02 2.42e+ 02 1.95e+ 02 2.05e+ 02 1.49e+ 02 7.19e + 01
Std 8.07e+ 00 2.64e+ 01 1.62e+ 01 1.13e+ 01 5.25e+ 01 9.97e+ 00 1.68e+ 01 4.78e+ 01 1.61e + 01
Rank 2 6 3 5 9 7 8 4 1

f19
Mean 4.34e+ 00 1.79e+ 00 3.29e+ 00 2.69e+ 00 4.66e+ 00 1.18e+ 01 6.81e − 01 7.40e+ 00 1.63e+ 00
Std 1.11e+ 00 4.59e− 01 4.38e− 01 1.77e− 01 1.20e+ 00 8.87e− 01 1.56e − 01 3.57e+ 00 2.81e− 01
Rank 6 3 5 4 7 9 1 8 2

f20
Mean 1.02e + 01 1.37e+ 01 1.30e+ 01 1.17e+ 01 1.45e+ 01 1.19e+ 01 1.25e+ 01 1.27e+ 01 1.02e+ 01
Std 4.29e − 01 7.39e− 01 1.48e+ 01 2.93e− 01 2.17e− 01 2.51e− 01 4.19e− 01 8.15e− 01 4.98e− 01
Rank 1 8 7 3 9 4 5 6 2
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this further verifies the optimization performance of
ILxBBO.

4.5. Convergence Analysis. In order to highlight the differ-
ence between ILxBBO and LxBBO on convergence, Figure 4
shows the convergence curves of ILxBBO and LxBBO only
on the 10-dimensional functions. To illustrate the point
concisely, some representative convergence graphs are
plotted on unimodal (f2 and f3), multimodal (f6, f9, f11, f13, f14,
f17, f19, and f20), and composition functions (f21, f22, f24, f25,
f27, and f28), respectively. From Figure 4, on f2, f3, f6, f11, f25,
f27, and f28, ILxBBO’s convergence speed is much faster than
LxBBO’s and the advantages of ILxBBO are prominent. On
f9, f13, f20, and f22, in the early search stage, the convergence
speed of ILxBBO is not as fast as LxBBO’s, but in the late
stage, ILxBBO’ convergence speed is faster than LxBBO’s.
On f14, f17, f19, f21, and f24, ILxBBO achieves nearly the same
convergence speed as LxBBO does. On the whole, ILxBBO
gets better convergence performance than LxBBO does. )is
verifies that the improved Laplace migration operator, ex-
ample learning, and so on fasten the convergence speed of
LxBBO.

4.6. CPU Runtime. In order to indicate the running time of
ILxBBO, its average running time is recorded and analyzed
only on the 30-dimensional functions after 51 independent
runs. Figure 5 shows the average runtime comparison results
between ILxBBO and 9 BBO variants. In Figure 5, the y-
coordinate is the average runtime and its unit is “second”(s).

From Figure 5, ILxBBO’s average runtime is the least
(6.0200 s), and TDBBOs (7.4356 s), BIBBOs (11.0533 s),
BBOMs (10.8169 s), DEBBOs (7.5540 s), BLPSOs (15.5514 s),
WRBBO (10.6473), EMBBO (9.6159), BHCS (6.9128), and
LxBBOs (11.4140 s) are 80.96%, 54.46%, 55.65%, 79.69%,
38.71%, 56.54%, 65.68%, 87.08%, and 52.74%, respectively.
ILxBBO obtains the fastest speed owing to the adoption of
several strategies such as example learning, mutation op-
eration removing, and greedy selection which reduces one
sorting step and so on.

4.7. Application to Quadratic Assignment Problem (QAP).
QAP is an NP-hard problem, which was first introduced by
Koopmans and Beckmann [50], and it has been among the
problems studied most in all of combinatorial optimization
problems. QAP can be described as the problem of
assigning a set of facilities to a set of locations with given
distances between the locations and given flows between
the facilities.

)e approach is to have two matrices of size N∗N given
by the following equations:

A � fij􏼐 􏼑, (22)

B � dij􏼐 􏼑, (23)

whereN� 1, 2, ..., n and fij is the flow or weight between each
pair of facilities which represents the flow from facility i to
facility j. dij is the distance between each pair of locations

Table 2: Continued.

Function Value TDBBO BIBBO BBOM DEBBO BLPSO WRBBO EMBBO BHCS ILxBBO

f21
Mean 3.41e+ 02 3.14e+ 02 2.42e+ 02 2.63e+ 02 3.17e+ 02 2.92e+ 02 2.18e + 02 3.14e+ 02 3.12e+ 02
Std 8.19e+ 01 7.25e+ 01 8.10e+ 01 4.88e+ 01 9.09e+ 01 7.50e+ 01 3.42e + 01 7.82e+ 01 4.59e+ 01
Rank 9 6 2 3 8 4 1 7 5

f22
Mean 6.57e+ 02 1.10e+ 02 3.86e+ 02 1.60e+ 02 3.04e+ 03 1.49e+ 02 2.99e + 01 4.51e+ 03 1.24e+ 02
Std 1.71e+ 02 3.91e+ 01 7.74e+ 01 3.00e+ 01 5.73e+ 02 2.70e+ 01 2.07e + 01 1.45e+ 03 7.47e+ 00
Rank 7 2 6 5 8 4 1 9 3

f23
Mean 3.50e+ 03 5.25e+ 03 3.66e+ 03 5.63e+ 03 4.11e+ 03 7.28e+ 03 4.67e+ 03 5.70e+ 03 3.28e + 03
Std 5.13e+ 02 1.15e+ 03 4.74e+ 02 3.67e+ 02 5.74e+ 02 2.79e+ 02 4.21e+ 02 1.24e+ 03 5.44e + 02
Rank 2 6 3 7 4 9 5 8 1

f24
Mean 2.14e+ 02 2.76e+ 02 2.63e+ 02 2.01e+ 02 2.85e+ 02 2.00e + 02 2.83e+ 02 2.96e+ 02 2.08e+ 02
Std 5.62e+ 00 8.82e+ 00 3.77e+ 00 3.95e− 01 1.44e+ 01 3.88e − 01 4.54e+ 00 1.33e+ 01 3.55e+ 00
Rank 4 6 5 2 8 1 7 9 3

f25
Mean 2.44e + 02 2.94e+ 02 2.96e+ 02 2.50e+ 02 3.31e+ 02 2.86e+ 02 2.98e+ 02 3.08e+ 02 2.59e+ 02
Std 2.47e + 01 8.21e+ 00 3.61e+ 00 1.13e+ 01 1.72e+ 01 2.48e+ 01 5.48e+ 00 1.26e+ 01 1.30e+ 01
Rank 1 5 6 2 9 4 7 8 3

f26
Mean 2.04e+ 02 2.62e+ 02 2.00e+ 02 2.04e+ 02 2.19e+ 02 2.00e+ 02 2.01e+ 02 3.34e+ 02 2.00e+ 02
Std 2.23e+ 01 8.34e+ 01 1.29e− 01 2.25e+ 01 5.11e+ 01 1.99e− 01 1.67e− 01 7.19e+ 01 1.76e− 02
Rank 5 8 1 6 7 3 4 9 2

f27
Mean 4.08e+ 02 1.08e+ 03 1.01e+ 03 7.61e+ 02 1.04e+ 03 3.57e + 02 4.67e+ 02 1.06e+ 03 3.76e+ 02
Std 4.48e+ 01 1.05e+ 02 3.08e+ 01 2.41e+ 02 1.09e+ 02 1.38e + 02 2.04e+ 02 1.09e+ 02 3.54e+ 01
Rank 3 9 6 5 7 1 4 8 2

f28
Mean 3.00e+ 02 4.55e+ 02 1.59e + 02 3.00e+ 02 2.76e+ 03 3.00e+ 02 2.63e+ 02 3.76e+ 02 3.00e+ 02
Std 3.10e− 13 3.52e+ 02 8.49e + 01 2.40e− 13 9.67e+ 02 0 7.67e+ 01 4.07e+ 02 1.77e− 13
Rank 6 8 1 5 9 3 2 7 4

Count 3 0 1 4 0 5 5 0 9
Ave. Rank 4.29 6.61 4.79 4.11 6.93 4.71 4.64 6.43 2.36
Total. Rank 3 8 6 2 9 5 4 7 1
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Table 3: Comparison results among ILxBBO and BBO’s variants on the 50-dimensional functions.

Function Value PRBBO TDBBO DEBBO WRBBO BHCS EMBBO ILxBBO

f1
Mean 0 3.52e− 13 2.14e− 13 8.47e+ 00 8.07e− 13 2.23e− 13 1.20e− 13
Std 0 1.95e− 13 5.40e− 14 1.11e− 13 1.95e− 13 3.18e− 14 1.15e− 13
Rank 1 5 3 7 6 4 2

f2
Mean 6.91e+ 05 5.83e+ 05 5.94e+ 07 1.81e+ 07 5.56e + 05 2.80e+ 07 5.58e+ 05
Std 4.50e+ 05 2.19e+ 05 1.44e+ 07 1.10e+ 07 3.00e + 05 4.72e+ 06 1.86e+ 05
Rank 4 3 7 5 1 6 2

f3
Mean 4.78e+ 07 1.77e+ 07 3.31e+ 06 3.23e + 06 1.88e+ 08 8.10e+ 09 4.67e+ 06
Std 6.94e+ 07 1.33e+ 07 1.52e+ 07 3.31e + 06 1.72e+ 08 2.29e+ 09 5.14e+ 06
Rank 5 4 2 1 6 7 3

f4
Mean 1.27e+ 04 1.31e+ 02 5.21e+ 04 1.23e+ 04 6.84e+ 02 8.30e+ 04 1.39e + 01
Std 2.67e+ 03 6.41e+ 01 5.36e+ 03 1.80e+ 03 5.45e+ 02 8.14e+ 03 9.16e + 00
Rank 5 2 6 4 3 7 1

f5
Mean 1.14e − 13 5.30e− 04 1.18e− 13 1.14e − 13 1.19e− 12 1.89e− 13 1.14e − 13
Std 0 3.11e− 03 2.23e− 14 0 4.80e− 13 5.41e− 14 0
Rank 1 7 4 1 6 5 1

f6
Mean 4.18e + 01 6.54e+ 01 4.34e+ 01 4.49e+ 01 4.81e+ 01 4.39e+ 01 4.38e+ 01
Std 8.47e + 00 2.47e+ 01 8.48e− 03 6.68e− 01 1.71e+ 01 6.53e− 01 5.19e− 01
Rank 1 7 2 5 6 4 3

f7
Mean 2.83e+ 01 2.32e+ 01 3.84e+ 01 2.14e+ 00 8.15e+ 01 1.44e+ 02 1.60e+ 01
Std 5.86e+ 00 7.94e+ 00 6.23e+ 00 1.53e+ 00 1.53e+ 01 1.12e+ 01 4.44e+ 00
Rank 4 3 5 1 6 7 2

f8
Mean 2.11e + 01 2.11e+ 01 2.11e+ 01 2.11e+ 01 2.12e+ 01 2.11e+ 01 2.11e+ 01
Std 2.86e − 02 3.28e− 02 4.52e− 02 4.33e− 02 3.82e− 02 3.52e− 02 3.71e− 02
Rank 1 2 6 5 7 3 4

f9
Mean 3.28e + 01 5.37e+ 01 5.75e+ 01 7.12e+ 01 5.32e+ 01 5.79e+ 01 3.46e+ 01
Std 4.72e + 00 6.31e+ 00 2.58e+ 00 1.70e+ 00 7.80e+ 00 1.97e+ 00 5.37e+ 00
Rank 1 4 5 7 3 6 2

f10
Mean 2.66e − 02 2.18e− 01 8.17e− 01 1.41e− 01 4.66e− 02 2.26e+ 01 2.98e− 01
Std 2.30e − 02 1.16e− 01 3.68e− 01 6.79e− 02 4.05e− 02 3.96e+ 00 1.78e− 01
Rank 1 4 6 3 2 7 5

f11
Mean 1.42e+ 00 6.60e+ 01 8.79e− 13 6.09e+ 00 1.76e+ 02 5.68e − 14 2.73e+ 00
Std 1.48e+ 00 1.51e+ 01 4.47e− 12 2.71e+ 00 5.12e+ 01 0 1.46e+ 00
Rank 3 6 2 5 7 1 4

f12
Mean 1.21e+ 02 1.04e+ 02 1.99e+ 02 3.40e+ 02 2.35e+ 02 3.90e+ 02 6.09e + 01
Std 3.25e+ 01 2.31e+ 01 2.04e+ 01 1.31e+ 01 5.62e+ 01 3.70e+ 01 1.44e + 01
Rank 3 2 4 6 5 7 1

f13
Mean 1.86e+ 02 2.11e+ 02 2.64e+ 02 3.41e+ 02 3.87e+ 02 4.06e+ 02 1.49e + 02
Std 3.38e+ 01 2.94e+ 01 2.75e+ 01 1.46e+ 01 5.65e+ 01 2.68e+ 01 3.26e + 01
Rank 2 3 4 5 6 7 1

f14
Mean 2.84e+ 02 1.42e+ 03 1.44e+ 02 6.77e+ 02 1.01e+ 04 9.80e − 03 7.03e+ 01
Std 1.82e+ 02 4.90e+ 02 2.52e+ 01 2.05e+ 02 1.40e+ 03 1.07e − 02 7.04e+ 01
Rank 4 6 3 5 7 1 2

f15
Mean 8.06e+ 03 7.24e+ 03 1.06e+ 04 1.41e+ 04 1.09e+ 04 7.88e+ 03 6.61e + 03
Std 1.44e+ 03 5.05e+ 02 5.33e+ 02 3.35e+ 02 2.38e+ 03 5.24e+ 02 7.66e + 02
Rank 4 2 5 7 6 3 1

f16
Mean 2.76e+ 00 1.51e + 00 2.94e+ 00 3.33e+ 00 3.35e+ 00 1.72e+ 00 2.31e+ 00
Std 4.65e− 01 2.71e − 01 2.99e− 01 2.87e− 01 4.95e− 01 2.03e− 01 2.70e− 01
Rank 4 1 5 6 7 2 3

f17
Mean 6.59e+ 01 1.35e+ 02 5.98e+ 01 8.69e+ 01 2.91e+ 02 5.08e + 01 5.72e+ 01
Std 3.94e+ 00 1.64e+ 01 9.42e− 01 5.09e+ 00 8.64e+ 01 6.82e − 14 1.52e+ 00
Rank 4 6 3 5 7 1 2

f18
Mean 1.60e+ 02 1.80e+ 02 3.52e+ 02 3.82e+ 02 3.00e+ 02 4.42e+ 02 1.03e + 02
Std 4.10e+ 01 1.84e+ 01 1.60e+ 01 1.52e+ 01 9.95e+ 01 2.58e+ 01 2.13 + 01
Rank 2 3 5 6 4 7 1

f19
Mean 3.32e+ 00 1.34e+ 01 4.96e+ 00 2.54e+ 01 1.77e+ 01 1.57e + 00 3.00e+ 00
Std 5.83e− 01 3.56e+ 00 4.90e− 01 1.30e+ 00 7.62e+ 00 2.35e − 01 4.80e− 01
Rank 3 5 4 7 6 1 2

f20
Mean 1.90e+ 01 1.89e + 01 2.14e+ 01 2.19e+ 01 2.14e+ 01 2.27e+ 01 1.91e+ 01
Std 1.01e+ 00 7.19e − 01 2.85e− 01 2.26e− 01 9.71e− 01 4.33e− 01 5.65e− 01
Rank 2 1 4 6 5 7 3
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Table 3: Continued.

Function Value PRBBO TDBBO DEBBO WRBBO BHCS EMBBO ILxBBO

f21
Mean 9.27e+ 02 9.43e+ 02 3.99e+ 02 8.93e+ 02 8.85e+ 02 2.00e + 02 8.92e+ 02
Std 3.35e+ 02 2.58e+ 02 3.83e+ 02 3.27e+ 02 2.87e+ 02 1.56e + 01 3.45e+ 02
Rank 6 7 2 5 3 1 4

f22
Mean 1.37e+ 02 2.26e+ 03 1.54e+ 02 1.25e+ 02 9.79e+ 03 1.55e + 01 6.18e+ 01
Std 6.97e+ 01 4.38e+ 02 4.05e+ 01 6.18e+ 01 1.73e+ 03 1.90e + 00 3.91e+ 01
Rank 4 6 5 3 7 1 2

f23
Mean 7.84e+ 03 7.92e+ 03 1.05e+ 04 1.41e+ 04 1.11e+ 04 9.70e+ 03 7.13e + 03
Std 1.51e+ 03 5.54e+ 02 6.34e+ 02 4.03e+ 02 2.73e+ 03 6.98e+ 02 1.03e + 03
Rank 2 3 5 7 6 4 1

f24
Mean 2.45e+ 02 2.47e+ 02 2.64e+ 02 2.20e + 02 3.86e+ 02 3.63e+ 02 2.23e+ 02
Std 7.64e+ 00 8.78e+ 00 3.64e+ 01 1.84e + 01 2.49e+ 01 6.59e+ 00 6.19e+ 00
Rank 3 4 5 1 7 6 2

f25
Mean 3.24e+ 02 3.42e+ 02 3.24e+ 02 3.92e+ 02 4.05e+ 02 3.99e+ 02 3.09e + 02
Std 9.79e+ 00 3.20e+ 01 2.46e+ 01 3.03e+ 01 1.99e+ 01 7.12e+ 00 1.36e + 01
Rank 2 4 3 5 7 6 1

f26
Mean 2.45e+ 02 2.61e+ 02 3.05e+ 02 2.24e+ 02 4.42e+ 02 2.02e + 02 2.35e+ 02
Std 7.01e+ 01 7.35e+ 01 1.16e+ 02 5.29e+ 01 1.56e+ 01 5.22e − 01 5.46e+ 01
Rank 4 5 6 2 7 1 3

f27
Mean 9.04e+ 02 8.54e+ 02 1.61e+ 03 7.56e+ 02 1.88e+ 03 1.60e+ 03 6.98e + 02
Std 9.34e+ 01 8.89e+ 01 9.80e+ 01 3.79e+ 02 1.89e+ 02 6.02e+ 02 9.95e + 01
Rank 4 3 6 2 7 5 1

f28
Mean 4.00e+ 02 4.00e+ 02 4.00e+ 02 4.58e+ 02 1.05e+ 03 4.00e+ 02 4.00e + 02
Std 3.50e− 13 3.97e− 13 3.56e− 13 4.12e+ 02 1.41e+ 03 1.31e− 07 2.70e − 13
Rank 2 4 3 6 7 5 1

Count 6 2 0 3 1 7 10
Ave. Rank 2.93 4.00 4.29 4.57 5.61 4.36 2.14
Total. Rank 2 3 4 6 7 5 1

Table 4: Comparison results with the other IOAs on the 30-dimensional functions.

Function Value YYPO DPCABC DFnABC FMPSO GLPSO HFPSO MEGWO ILxBBO

f1
Mean 5.07e− 09 0 0 0 1.33e− 13 3.17e− 13 3.85e− 07 0
Std 5.38e− 09 0 0 0 1.13e− 13 1.12e− 13 6.93e− 07 0
Rank 7 1 1 1 5 6 8 1

f2
Mean 1.39e+ 06 1.65e+ 07 9.53e+ 06 6.49e+ 06 3.77e+ 05 7.82e+ 05 3.22e+ 05 2.00e + 05
Std 8.36e+ 05 4.62e+ 06 3.56e+ 06 5.73e+ 06 1.51e+ 05 5.59e+ 05 2.52e+ 05 1.04e + 05
Rank 5 8 7 6 3 4 2 1

f3
Mean 1.21e+ 08 8.44e+ 08 2.45e+ 08 2.64e+ 07 3.88e+ 06 2.50e+ 08 2.61e+ 08 1.09e + 06
Std 2.77e+ 08 6.40e+ 08 2.90e+ 08 2.38e+ 07 6.54e+ 06 3.93e+ 08 2.55e+ 08 1.58e + 06
Rank 4 8 5 3 2 6 7 1

f4
Mean 2.28e+ 03 1.05e+ 05 8.37e+ 04 1.24e+ 04 7.67e+ 02 7.40e+ 02 7.56e+ 02 5.44e + 00
Std 1.59e+ 03 1.39e+ 04 1.32e+ 04 5.27e+ 03 6.26e+ 02 4.81e+ 02 7.07e+ 02 3.83e + 00
Rank 5 8 7 6 4 2 3 1

f5
Mean 5.52e− 05 5.35e− 14 0 0 1.25e− 13 1.29e− 12 1.05e− 04 9.14e− 14
Std 1.90e− 04 5.73e− 14 0 0 3.41e− 14 6.86e− 13 3.27e− 04 4.56e− 14
Rank 7 3 1 1 5 6 8 4

f6
Mean 4.75e+ 01 2.01e+ 01 1.72e+ 01 2.05e+ 01 1.42e + 01 3.09e+ 01 2.78e+ 01 1.61e+ 01
Std 3.36e+ 01 6.66e+ 00 3.18e+ 00 1.26e+ 01 2.50e + 00 2.53e+ 01 2.72e+ 01 1.40e+ 01
Rank 8 4 3 5 1 7 6 2

f7
Mean 6.29e+ 01 1.14e+ 02 9.57e+ 01 3.65e+ 01 4.70e + 00 6.56e+ 01 3.43e+ 01 1.10e+ 01
Std 2.52e+ 01 1.80e+ 01 1.23e+ 01 6.83e+ 00 3.29e + 00 3.57e+ 01 1.03e+ 01 6.89e+ 00
Rank 5 8 7 4 1 6 3 2

f8
Mean 2.09e+ 01 2.09e+ 01 2.09e+ 01 2.09e + 01 2.09e+ 01 2.09e+ 01 2.10e+ 01 2.09e+ 01
Std 5.83e− 02 6.50e− 02 4.03e− 02 3.49e − 02 5.79e− 02 5.98e− 02 5.25e− 02 5.64e− 02
Rank 5 7 2 1 4 6 8 3

f9
Mean 2.19e+ 01 3.09e+ 01 2.92e+ 01 2.15e+ 01 1.12e + 01 1.93e+ 01 2.02e+ 01 1.87e+ 01
Std 4.16e+ 00 1.97e+ 00 1.83e+ 00 3.36e+ 00 2.59e + 00 3.53e+ 00 3.54e+ 00 3.76e+ 00
Rank 6 8 7 5 1 3 4 2

f10
Mean 3.91e − 02 2.02e+ 00 1.58e+ 00 1.02e+ 01 8.28e− 02 1.05e− 01 7.92e− 02 2.22e− 01
Std 3.97e − 02 4.22e− 01 2.75e− 01 4.02e− 02 4.02e− 02 5.02e− 02 7.14e− 02 1.35e− 01
Rank 1 7 6 8 3 4 2 5
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Table 4: Continued.

Function Value YYPO DPCABC DFnABC FMPSO GLPSO HFPSO MEGWO ILxBBO

f11
Mean 3.63e− 01 0 0 5.74e+ 01 3.12e− 01 4.44e+ 01 4.69e+ 01 6.05e− 01
Std 6.50e− 01 0 0 1.14e+ 01 4.66e− 01 1.43e+ 01 1.15e+ 01 6.92e− 01
Rank 4 1 1 8 3 6 7 5

f12
Mean 1.73e+ 02 1.38e+ 02 1.42e+ 02 6.54e+ 01 3.73e+ 01 7.77e+ 01 4.71e+ 01 2.73e + 01
Std 5.06e+ 01 2.78e+ 01 2.12e+ 01 1.90e+ 01 1.23e+ 01 2.24e+ 01 1.28e+ 01 7.36e + 00
Rank 8 6 7 4 2 5 3 1

f13
Mean 1.93e+ 02 2.09e+ 02 2.02e+ 02 1.45e+ 02 7.95e+ 01 1.50e+ 02 1.17e+ 02 5.51e + 01
Std 4.53e+ 01 2.37e+ 01 2.70e+ 01 2.65e+ 01 2.35e+ 01 3.81e+ 01 2.93e+ 01 1.86e + 01
Rank 6 8 7 4 2 5 3 1

f14
Mean 5.24e+ 00 9.67e− 01 4.43e − 01 1.90e+ 03 3.54e+ 00 1.40e+ 03 2.27e+ 03 4.38e+ 01
Std 2.74e+ 00 1.29e+ 00 5.82e − 01 4.45e+ 02 3.39e+ 00 3.34e+ 02 6.29e+ 02 4.06e+ 01
Rank 4 2 1 7 3 6 8 5

f15
Mean 4.04e+ 03 4.13e+ 03 3.72e+ 03 3.42e+ 03 3.08e+ 03 3.66e+ 03 4.09e+ 03 3.03e + 03
Std 7.25e+ 02 3.60e+ 02 3.86e+ 02 4.10e+ 02 7.22e+ 02 7.25e+ 02 9.65e+ 02 5.70e + 02
Rank 6 8 5 3 2 4 7 1

f16
Mean 1.38e+ 00 1.42e+ 00 1.32e+ 00 1.35e+ 00 1.37e+ 00 1.06e + 00 2.36e+ 00 1.66e+ 00
Std 3.66e− 02 2.45e− 01 1.65e− 01 4.33e− 01 9.86e− 01 4.08e − 01 3.04e− 01 2.17e− 01
Rank 5 6 2 3 4 1 8 7

f17
Mean 3.21e+ 01 3.05e+ 01 3.05e + 01 1.02e+ 02 3.35e+ 01 6.87e+ 01 7.30e+ 01 3.28e+ 01
Std 7.45e− 01 3.15e− 02 2.31e − 02 2.83e+ 01 1.15e+ 00 1.06e+ 01 1.80e+ 01 5.61e− 01
Rank 3 2 1 8 5 6 7 4

f18
Mean 1.43e+ 02 2.11e+ 02 1.86e+ 02 8.02e+ 01 6.68e + 01 1.00e+ 02 1.20e+ 02 7.19e+ 01
Std 2.95e+ 01 2.34e+ 01 1.87e+ 01 1.25e+ 01 1.70e + 01 2.09e+ 01 4.41e+ 01 1.61e+ 01
Rank 6 8 7 3 1 4 5 2

f19
Mean 1.62e+ 00 2.03e − 01 2.93e− 01 5.10e+ 00 1.50e+ 00 5.70e+ 00 7.85e+ 00 1.63e+ 00
Std 4.59e− 01 8.27e − 02 1.06e− 01 1.18e+ 00 2.75e− 01 7.15e+ 00 3.58e+ 00 2.81e− 01
Rank 4 1 2 6 3 7 8 5

f20
Mean 1.16e+ 01 1.28e+ 01 1.32e+ 01 1.27e+ 01 9.93e + 00 1.36e+ 01 1.10e+ 01 1.02e+ 01
Std 9.07e− 01 5.83e− 01 8.94e− 01 4.78e+ 01 9.12e − 01 1.94e+ 00 8.70e− 01 4.98e− 01
Rank 4 6 7 5 1 8 3 2

f21
Mean 3.10e+ 02 2.28e + 02 2.36e+ 02 2.40e+ 02 3.29e+ 02 3.15e+ 02 3.13e+ 02 3.12e+ 02
Std 9.31e+ 01 3.26e + 01 4.51e+ 01 4.08e+ 01 7.29e+ 01 1.02e+ 02 6.43e+ 01 4.59e+ 01
Rank 4 1 2 3 8 7 6 5

f22
Mean 1.22e+ 02 3.12e+ 01 2.60e + 01 1.31e+ 02 1.12e+ 02 1.88e+ 03 2.53e+ 03 1.24e+ 02
Std 5.47e+ 01 2.70e+ 01 2.49e + 01 3.65e+ 01 1.98e+ 01 5.65e+ 02 6.81e+ 02 7.47e+ 00
Rank 4 2 1 6 3 7 8 5

f23
Mean 4.71e+ 03 5.12e+ 03 4.74e+ 03 3.98e+ 03 3.23e + 03 4.35e+ 03 4.07e+ 03 3.28e+ 03
Std 6.36e+ 02 4.83e+ 02 4.87e+ 02 6.79e+ 02 5.90e + 02 7.11e+ 02 7.52e+ 02 5.44e+ 02
Rank 6 8 7 3 1 5 4 2

f24
Mean 2.62e+ 02 2.82e+ 02 2.79e+ 02 2.87e+ 02 2.09e+ 02 2.63e+ 02 2.42e+ 02 2.08e + 02
Std 1.65e+ 01 6.32e+ 00 5.76e+ 00 7.74e+ 00 5.16e+ 00 1.24e+ 01 6.48e+ 00 3.55e + 00
Rank 4 7 6 8 2 5 3 1

f25
Mean 2.89e+ 02 3.01e+ 02 3.03e+ 02 2.98e+ 02 2.45e + 02 2.91e+ 02 2.80e+ 02 2.59e+ 02
Std 1.23e+ 01 6.25e+ 00 0.00e− 00 7.12e+ 00 1.93e + 01 1.39e+ 01 1.15e+ 01 1.30e+ 01
Rank 4 7 8 6 1 5 3 2

f26
Mean 2.00e+ 02 2.01e+ 02 2.00e+ 02 3.45e+ 02 2.29e+ 02 2.98e+ 02 2.65e+ 02 2.00e + 02
Std 3.08e− 02 3.58e− 01 3.56e+ 06 2.97e+ 01 5.00e+ 01 7.05e+ 01 6.92e+ 01 1.76e − 02
Rank 2 4 3 8 5 7 6 1

f27
Mean 8.89e + 01 7.04e+ 02 4.92e+ 02 6.04e+ 02 4.19e+ 02 8.13e+ 02 6.89e+ 02 3.76e+ 02
Std 1.06e + 02 3.50e+ 02 2.90e+ 08 2.37e+ 02 7.61e+ 01 1.05e+ 02 7.3221e+ 01 3.54e+ 01
Rank 1 7 4 5 3 8 6 2

f28
Mean 3.18e+ 02 2.96e+ 02 2.93e + 02 3.00e+ 02 3.00e+ 02 4.48e+ 02 3.70e+ 02 3.00e+ 02
Std 1.63e+ 02 2.35e+ 01 1.32e + 04 8.03e− 11 2.74e− 13 3.98e+ 02 3.24e+ 02 1.77e− 13
Rank 6 2 1 5 4 8 7 3

Count 2 4 7 3 7 1 0 9
Ave. Rank 4.79 5.29 4.21 4.82 2.93 5.50 5.46 2.71
Total. Rank 4 6 3 5 2 8 7 1
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Figure 4: Convergence curves of the 2 algorithms on the 10-dimensional functions: (a) f2; (b) f3; (c) f6; (d) f9; (e) f11; (f ) f13; (g) f14; (h) f17;
(i) f19; (j) f20; (k) f21; (l) f22; (m) f24; (n) f25; (o) f27; (p) f28.
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which represents the Euclidean distance from Location i to
Location j. )e objective function is given as follows:

min � 􏽘
n

i�1
􏽘

n

j�1
fijdπ(i)π(j). (24)

QAP can be applied to many practical problems, such as
modeling the location of hospital departments, optimizing
the configuration of departments, reducing the time con-
sumption of each patient, and improving the efficiency of
hospital services for patients. For example, a simple example,
in a single layer of a hospital, five departments (D1, D2, D3,
D4, and D5) are set at five locations (1, 2, 3, 4, and 5), as
shown in Figure 6.

In a single layer, the importance of each department is
different, and the departments with more people flow are
more important. On the contrary, the departments with less
people flow are not more important, and the importance
between the two departments is represented by the flow.)e
matrix F represents the flow between two departments, and
the matrix L represents the distance between the two lo-
cations. )e next step is to assign this group of departments
to this group of locations to minimize the cost of patients
between departments.

ILxBBO deals with continuous problems on which the
search agents are represented by real values. To solve QAP
with ILxBBO, it is necessary first for ILxBBO how to change
from continuous optimization problems to discrete opti-
mization problems. )e changed method from [20] is
adopted in this paper, and the method is explained as
follows: the dimensionality of each solution represents the
number of positions or facilities in QAP, and each solution
represents the arrangement of different positions, corre-
sponding to a location allocation scheme. )e best allo-
cation scheme is obtained through an IOA’s optimization
process. Suppose a QAP problem has 10 facility points that
need to be allocated to 10 location points, as shown in
Figure 7(a). Facility 1 is assigned to Location 8, Facility 2 is
assigned to Location 5, and Facility 3 is assigned to Lo-
cation 1, and so on. QAP is considered as a permutation
discrete problem, so when IOA is used to solve QAP, it uses
the maximum real value to map the real value into the

permutation sequence, as shown in Figure 7(b). )at is, the
maximum real value 13.26 corresponds to the minimum
integer 1, the minimum real value 0.85 to the maximum
integer 10, and so on.

ILxBBO is used to solve QAP, and it has two modifi-
cations: the first is that each random real solution or updated
real solution is changed into a permutation sequence
according to real value mapping as in Figure 7; the second is
that equation (24) is considered as the objective function.
)e comparison algorithms include IPSO and IFA, they both
come from [51], and they are improved algorithms of PSO
and FA, respectively. )ey are good at solving QAP and
therefore have strong comparability.

To be fair, according to the best recommendations of
common parameters from [20], MaxNFEs is 100,000, and
Run is 30. So the parameters of the 4 comparison algorithms
are set as follows: Run is 30, N∗MaxDT= 100,000, N is 100,
and MaxDT is 1000. Table 5 records Mean and Std of each
algorithm on the benchmark data, and the data are from [20]
and have been used as a standard set for solving QAP. Best-
known refers to the best solution found so far.

From Table 5, on Mean, ILxBBO obtains the best results
on all the 10 data. On Std, ILxBBO gets 0 on 7 (had12, had14,
had16, scr12, tal13a, tal12b, and chr12b) of 10 data, and it
indicates that ILxBBO has strong stability. On had12, had14,
had16, scr12, tai12a, tai12b, and chr12b, the mean value of
ILxBBO is the same as those of Best-known, but on scr15,
tai15a, and chr12b, the mean value of ILxBBO is slightly less
than that of Best-known. Generally, it shows that ILxBBO
can solve QAP better than LxBBO can.

4.8. Wilcoxon Signed Rank Test Analysis. Wilcoxon signed
rank test is a nonparametric test method [52], and we use it
to test statistically the performance of ILxBBO compared
with the comparison algorithms on the 30-dimensional
functions, the 50-dimensional functions, and on solving
QAP. )e software is IBM SPSS Statistics 19. )e data are
taken from Tables 2–5.

)e Wilcoxon signed rank test results are shown in
Table 6, where R+ refers to the sum of ranks for the problems
in which ILxBBO outperforms the comparison algorithm

TDBBO BIBBO BBOM DEBBO BLPSO WRBBO EMBBO BHCS LxBBO ILxBBO
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Figure 5: Average runtime comparisons of 10 algorithms on the 30-dimensional functions.
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and R− refers to the sum of ranks for the opposite. When
ILxBBO and the comparison algorithm obtain the equal
optimization performance, the corresponding ranks are split
evenly to R+ and R− [33]. )e p values can be computed
according to the R+ and R− values. “n/w/t/l” means the
number of the benchmark problems is n, and ILxBBO wins
on w functions, ties on t functions, and loses on l functions.
)e following criterion is applied to compare the results:

(1) When p> 0.05, the difference of both algorithms is
not significant

(2) When p≤ 0.05, the difference of both algorithms is
significant

From Table 6, the value of p is more than 0.05 for
ILxBBO versus GLPSO, so ILxBBO is not significantly better
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Figure 6: Flow and distance matrixes of the hospital departments.

Facility
Location 8 5 1 7 10 4 2 6 3 9

1 2 3 4 5 6 7 8 9 10

(a)

8 9 5 10 7 3 4 2 6 1

2.36 1.98 6.79 0.85 3.55 10.65 9.72 12.31 4.88 13.26

(b)

Figure 7: (a) Solution representation; (b) real value mapping.

Table 5: Results of 4 algorithms on the 10 datasets.

Data Best-known Algorithm Mean Std

had12 1652

ILxBBO 1652 0
LxBBO 1663.73 10.63
IPSO 1656.87 6.80
IFA 1652.87 2.44

had14 2724

ILxBBO 2724 0
LxBBO 2736.6 13.29
IPSO 2734.07 11.16
IFA 2724.13 0.73

had16 3720

ILxBBO 3720 0
LxBBO 3732.53 20.16
IPSO 3726.87 17.93
IFA 3720.93 1.01

scr12 31410

ILxBBO 31410 0
LxBBO 33172.2 819.14
IPSO 32544.07 732.37
IFA 31633.4 360.20

scr15 51140

ILxBBO 51358.6 610.78
LxBBO 54920.27 1810.98
IPSO 55402.53 1177.87
IFA 54398.27 1037.19

tal12a 224416

ILxBBO 224416 0
LxBBO 240554.07 6099.48
IPSO 235268.33 7034.64
IFA 230336.13 4266.16

tal12b 39464925

ILxBBO 39464925 0
LxBBO 40958448.6 1549935.98
IPSO 41329078.33 1846814.90
IFA 39552017 177161.72

tal15a 388214

ILxBBO 390914.73 1916.80
LxBBO 404106.93 5864.4646
IPSO 401980.2 6964.16
IFA 397428.6 5088.67

chr12a 9552

ILxBBO 9644 191.22
LxBBO 11111.73 884.95
IPSO 10935.67 1078.83
IFA 10065.07 383.58

chr12b 9742

ILxBBO 9742 0
LxBBO 11781.07 2067.43
IPSO 10591.13 969.71
IFA 9917.53 387.15

Table 6: Wilcoxon signed rank test results.

Problem ILxBBO versus p R+ R− n/w/t/l

30D

TDBBO 1.30e− 03 324.5 81.5 28/21/5/2
BIBBO 9.40e− 06 379 27 28/26/0/2
BBOM 1.66e− 04 341.5 64.5 28/23/2/3
DEBBO 4.41e− 02 282 124 28/18/2/8
BLPSO 4.47e− 08 390 16 28/26/1/1
WRBBO 1.64e− 02 286 120 28/17/4/7
EMBBO 9.61e− 03 309 97 28/19/1/8
BHCS 3.20e− 07 396 10 28/26/0/2
YYPO 1.38e− 02 298.5 107.5 28/17/2/9

DPCABC 6.82e− 03 307 99 28/17/2/9
DFnABC 9.64e− 03 297.5 108.5 28/16/3/9
FMPSO 1.51e− 05 347.5 58.5 28/22/3/3
GLPSO 4.41e− 01 234 172 28/13/2/13
HFPSO 3.13e− 07 384.5 21.5 28/25/1/2
MEGWO 5.22e− 08 402 4 28/27/0/1

50D

PRBBO 7.50e− 05 338.5 67.5 28/13/3/6
TDBBO 2.09e− 06 366.5 39.5 28/22/2/4
DEBBO 1.78e− 03 321.5 84.5 28/22/2/4
WRBBO 9.19e− 04 327.5 78.5 28/21/2/5
BHCS 3.18e− 05 371 35 28/25/0/3
EMBBO 1.30e− 02 299.5 106.5 28/18/2/8

QAP
LxBBO 1.95e− 03 55 0 10/0/0
IPSO 1.95e− 03 55 0 10/0/0
IFA 1.95e− 03 55 0 10/0/0
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than GLPSO. However, ILxBBO wins 13 compared with
GLPSO and the two functions that are equal. )at is because
themean is equal, and the variance of ILxBBO is less than the
variance of GLPSO from Table 4. On the 30-dimensional
functions, the optimization performance of ILxBBO is
significantly better than those of TDBBO, BIBBO, BBOM,
DEBBO, BLPSO,WRBBO, EMBBO, BHCS, YYPO, DPCABC,
DFnABC, FMPSO, and HFPSO. On the 50-dimensional
functions, the optimization performance of ILxBBO is
significantly better than those of PRBBO, TDBBO, DEBBO,
WRBBO, BHCS, and EMBBO. On QAP, ILxBBO is sig-
nificantly better than LxBBO, IPSO, and IFA. Generally, the
optimization performance of ILxBBO is better. )e Wil-
coxon signed rank tests show again that ILxBBO obtains
better optimization performance and verify the previous
conclusions.

5. Conclusions and Future Work

In this paper, an improved LxBBO (ILxBBO) is proposed to
improve the optimization performance of LxBBO. )ese
improvements are as follows: the mutation operator is de-
leted to simplify the search process and to reduce the
computational complexity. A dynamic two-differential
perturbing operator is proposed to update the first two best
habitats so that the global search ability and the local one can
be improved in the early search phase and in the late one,
respectively. )e worst habitat adopts a two-global-best
guiding operator to improve the search ability. An improved
Laplace migration operator is used for other habitats'
updating to reduce some parameters setting and fasten the
convergence speed. In addition, some approaches such as
example learning selection instead of roulette wheel selec-
tion, greedy selection instead of elitism strategy, and so on
are adopted to reduce the computation complexity and
enhance the performance. In order to verify ILxBBO, a large
number of experiments are made on the CEC-2013 test set.
Experiment results verify ILxBBO outperforms quite a few
state-of-the-art algorithms on most cases. Moreover, the
obtained results indicate how effective ILxBBO is in solving
QAP. In the future, the improved Laplace operator of this
paper may be applied to other BBO variants and other IOAs,
and it is expected to apply ILxBBO to other more engi-
neering problems.

Data Availability

CEC-2013 databases used in this paper are publicly available for
download and, in particular, can be accessed from http://
www.rforge.net/cec2013/files/, whereas QAP databases can be
downloaded from http://anjos.mgi.polymtl.ca/qaplib/inst.html.
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[34] J. Brest, B. Boškovic, S. Greiner, V. Zumer, and S. M. Maucec,
“Performance comparison of self-adaptive and adaptive dif-
ferential evolution algorithms,” Soft Computing, vol. 11, no. 7,
pp. 617–629, 2007.

[35] W. Y. Gong, Y. Wang, Z. H. Cai, and S. X. Yang, “A weighted
biobjective transformation technique for locating multiple
optimal solutions of nonlinear equation systems,” IEEE
Transactions on Evolutionary Computation, vol. 21, no. 5,
pp. 697–713, 2017.

[36] L. H.Wu, Y. N. Wang, and S. W. Zhou, “Self-adapting control
parameters modified differential evolution for trajectory
planning of manipulators,” Journal of Control Heory &
Applications, vol. 5, no. 4, pp. 365–373, 2007.

[37] X. M. Zhang, D. D. Wang, and H. Y. Chen, “Improved
biogeography-based optimization algorithm and its applica-
tion to clustering optimization and medical image segmen-
tation,” IEEE Access, vol. 7, pp. 28810–28825, 2019.

[38] J. Liang, P. N. Suganthan, and A. G. Hernández-Dı́az,
“Problem definitions and evaluation criteria for the CEC 2013
special session on real-parameter optimization,” Technical
report 201212, Computational Intelligence Laboratory,
Zhengzhou University, Zhengzhou China and Technical
Report, Nanyang Technological University, Singapore, 2013.

[39] F. Q. Zhao, S. Qin, Y. Zhang, W. M. Ma, C. Zhang, and
H. B. Song, “A two-stage differential biogeography-based
optimization algorithm and its performance analysis,” Expert
Systems with Applications, vol. 115, pp. 329–345, 2019.

[40] Q. Niu, L. T. Zhang, and K. Li, “A biogeography-based op-
timization algorithm with mutation strategies for model
parameter estimation of solar and fuel cells,” Energy Con-
version and Management, vol. 86, pp. 1173–1185, 2014.

[41] X. Chen, B. Xu, and W. L. Du, “An improved particle swarm
optimization with biogeography-based learning strategy for
economic dispatch problems,” Complexity, Article ID
7289674, 15 pages, 2018.

[42] X. Chen and K. J. Yu, “Hybridizing cuckoo search algorithm
with biogeography-based optimization for estimating pho-
tovoltaic model parameters,” Solar Energy, vol. 180,
pp. 192–206, 2019.

[43] V. Punnathanam and P. Kotecha, “Yin-yang-pair optimiza-
tion: a novel lightweight optimization algorithm,” Engineering
Applications of Artificial Intelligence, vol. 54, pp. 62–79, 2016.

[44] L. Z. Cui, G. G. Li, Y. L. Luo et al., “An enhanced artificial bee
colony algorithm with dual-population framework,” Swarm
and Evolutionary Computation, vol. 43, pp. 184–206, 2018.

[45] L. Z. Cui, K. Zhang, G. H. Li et al., “A smart artificial bee
colony algorithm with distance-fitness-based neighbor search
and its application,” Future Generation Computer Systems,
vol. 89, pp. 478–493, 2018.

[46] N. Lynn and P. N. Suganthan, “A fitness-based multi-role
particle swarm optimization,” Swarm and Evolutionary
Computation, vol. 44, pp. 349–364, 2019.

18 Complexity



[47] Y. J. Gong, J. J. Li, Y. C. Zhou et al., “Genetic learning particle
swarm optimization,” IEEE Transactions on Cybernetics,
vol. 46, no. 10, pp. 2277–2290, 2015.

[48] I. B. Aydilek, “A hybrid firefly and particle swarm optimi-
zation algorithm for computationally expensive numerical
problems,” Applied Soft Computing, vol. 66, pp. 232–249,
2018.

[49] Q. Tu, X. Chen, and X. Liu, “Multi-strategy ensemble grey
wolf optimizer and its application to feature selection,” Ap-
plied Soft Computing, vol. 76, pp. 16–30, 2019.

[50] T. C. Koopmans and M. Beckmann, “Assignment problems
and the location of economic activities,” Econometrica,
vol. 25, no. 1, pp. 53–76, 1957.

[51] Yarpiz, “Quadratic assignment problem using GA, PSO and
FA,” 2015, http://yarpiz.com/359/ypap104-quadratic-
assignmentproblem.

[52] D. Joaquı́n, S. Garcı́a, D. Molina, and F. Herrera, “A practical
tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm intel-
ligence algorithms,” Swarm and Evolutionary Computation,
vol. 1, no. 1, pp. 3–18, 2011.

Complexity 19

http://yarpiz.com/359/ypap104-quadratic-assignmentproblem
http://yarpiz.com/359/ypap104-quadratic-assignmentproblem

