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,e stability of grazing bifurcation is lost in three ways through the local analysis of the near-grazing dynamics using the
classical concept of discontinuity mappings in the two-degree-of-freedom vibroimpact system with symmetrical con-
straints. For this instability problem, a control strategy for the stability of grazing bifurcation is presented by controlling the
persistence of local attractors near the grazing trajectory in this vibroimpact system with symmetrical constraints. Discrete-
in-time feedback controllers designed on two Poincare sections are employed to retain the existence of an attractor near the
grazing trajectory. ,e implementation relies on the stability criterion under which a local attractor persists near a grazing
trajectory. Based on the stability criterion, the control region of the two parameters is obtained and the control strategy for
the persistence of near-grazing attractors is designed accordingly. Especially, the chaos near codimension-two grazing
bifurcation points was controlled by the control strategy. In the end, the results of numerical simulation are used to verify
the feasibility of the control method.

1. Introduction

Grazing bifurcation, one type of discontinuity-induced
bifurcations, has been extensively studied in vibroimpact
system as it has complex dynamics and is widely en-
countered in many engineering examples. On analysis of
the dynamics near grazing in a general class of impact
oscillator systems, a classical concept of analysis is the so-
called discontinuity-mapping approach initially con-
ceived of by Nordmark [1, 2] (see [3, 4] for an overview).
,e analysis is usually carried out by finding an appro-
priate local map describing the system dynamics in
neighborhood of the grazing event. ,e local map can
then be combined with an analytic Poincaré map to give
the so-called grazing normal form whose dynamics can be
shown to be topologically equivalent to those of the
underlying flow. ,e grazing normal form derived by the
discontinuity-mapping approach is used to analyze the

local dynamics in the vicinity of a grazing trajectory. As
shown in [5–8], the normal form map of the rigid impact
oscillator contains a square-root term causing a singu-
larity in the first derivative, which results in an abrupt loss
of the stability. And different bifurcation scenarios as-
sociated with switching between impacting motions and
nonimpacting motions near grazing were also described.
In particular, the discontinuity-mapping approach was
used by Fredriksson and Nordmark [9] to establish
conditions for the persistence or disappearance of a local
attractor in the vicinity of a grazing periodic trajectory. In
addition, some conditions for the persistence of a local
attractor in the immediate vicinity of quasiperiodic
grazing trajectories in an impacting dynamical system
were formulated by ,ota and Dankowicz [10]. When the
stability conditions of grazing bifurcation are degenerate,
the codimension-two would occur, which is always a hot
topic. Kowalczyk et al. [11] proposed a strategy for
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classification of codimension-two discontinuity-induced
bifurcations of limit cycles in piecewise smooth systems
and studied their nonsmooth transitions. Foale [12]
analyzed the results of a special codimension-two grazing
bifurcation in a single-degree-of-freedom impact oscil-
lator by using the impact surface as a Poincaré section. In
addition, the study also shows that the bifurcation of the
saddle node bifurcation and the flip bifurcation can meet
at a certain codimension-two grazing points in the pa-
rameter plane. ,ota et al. [13] studied the distribution of
codimension-two grazing bifurcation point according to
the discontinuous mapping in the single-degree-of-
freedom collision oscillator and discussed the possible
dynamic characteristics of the system response near this
bifurcation point. Xu et al. [14] studied the codimension-
two grazing bifurcation of n-degree-of-freedom vibrators
with bilateral constraints and obtained and simplified the
existence conditions of codimension-two grazing bifur-
cation. Similar phenomena about codimension-two
grazing bifurcation can also be found in Refs. [15, 16]. Yin
et al. [17] discussed the important role of some degen-
erated grazing bifurcation points in the transition be-
tween saddle node bifurcation and period doubling
bifurcation. Dankowicz and Zhao [18, 19] studied the
grazing bifurcations of the codimension-one and the
codimension-two of a class of impact microactuators.

,e loss of local attractors near grazing bifurcation
may arise catastrophic changes of system response and
lead to codimension-two or more complicated bifurca-
tion; therefore, controlling near-grazing dynamics be-
comes necessary and significant. Dankowicz and Jerrelind
[20] used the linear feedback control method to control
the grazing bifurcation of the piece smooth dynamic
system, so that the system has local attractors near the
grazing orbit. Dankowicz and Svahn [21] presented for the
existence of event-driven control strategies that guarantee
the local persistence of system attractors with at most low-
velocity contact in vibro impacting oscillators. Misra and
Dankowicz [22] developed a rigorous control paradigm
for regulating the near-grazing bifurcation behavior of
limit cycles in piecewise-smooth dynamical systems. Yin
et al. [23] analyzed the stability for near-grazing period-
one impact motion to suppress grazing-induced insta-
bilities. ,e bounded eigenvalues are further confined to
the unit circle, and the continuous transition between the
nonimpact motion and the controlled impact motion is
obtained. Xu et al. [24] discussed the control problem of
near-grazing dynamics in a two-degree-of-freedom
vibroimpact system with a clearance.

Based on the concept of controlling the persistence of
local attractors near the grazing trajectory in impact os-
cillator with unilateral constraints mentioned in [20–24],
this paper aims to control the stability of grazing bifur-
cation or control the persistence of local attractors near
the grazing trajectory in this vibroimpact system with
symmetrical constraints. Compared with impact oscillator

with unilateral constraint, the instability problems near
grazing trajectory become more complex for impact os-
cillator with symmetrical constraints as mentioned in
[17]. ,e stability of double grazing motion bifurcation in
the system is lost in three ways, and the existence con-
ditions of the codimension-two grazing bifurcation occur
in four different cases accordingly. For this complex
unstable problem, analytic expressions of stability crite-
rion are obtained in this paper. Based on the stability
criterion, the stability control strategy of the persistence of
near-grazing attractors is proposed. Furthermore, the
chaos near codimension-two grazing bifurcation points
was controlled by the control strategy. ,is paper is or-
ganized as follows. In Section 2, a two-degree-of-freedom
vibroimpact system with symmetrical constraints is in-
troduced. In Section 3, near-grazing bifurcation dynamics
are analyzed. In Section 4, the discrete-in-time feedback
control method is designed to maintain the persistence of
the local attractor of double grazing period motion. In
Section 5, numerical simulation is used to verify the
feasibility of the control method. Finally, the conclusion is
given in Section 6.

2. Mechanical Model and Double Grazing
Periodic Motion

Figure 1 shows the schematic model of a two-degree-of-
freedom impact oscillator with a clearance. Masses M1
and M2 are connected to linear viscous dampers C1 and C2
by linear springs with stiffness K1 and K2, respectively.
,e harmonic forces of the amplitude P1 and P2 are
applied to the masses M1 and M2, respectively, and the
harmonic force is applied only to the mass in the hori-
zontal direction. ,e mass M1 moves between the sym-
metrical rigid stops A and C. When the mass M1 strikes
rigid stop A or C, the motion becomes a nonlinear motion
and the impact is described by the recovery factor R.
Assuming that the damping in the mechanical model is
the Rayleigh type proportional damping, it can be known
that (C1/K1) � (C2/K2).

,e governing equation is described by
M1 0

0 M2

⎡⎢⎣ ⎤⎥⎦
€X1

€X2

⎡⎢⎢⎣ ⎤⎥⎥⎦ +
C1 −C1

−C1 C1 + C2

⎡⎢⎣ ⎤⎥⎦
_X1

_X2

⎡⎢⎢⎣ ⎤⎥⎥⎦

+
K1 −K1

−K1 K1 + K2

⎡⎢⎣ ⎤⎥⎦
X1

X2

⎡⎢⎣ ⎤⎥⎦ �
P1

P2

⎡⎢⎣ ⎤⎥⎦sin(ΩT + τ), X1


<D .

(1)

When |X1| � D, the collision occurs. At this time, the
collision equation is as follows:

_X1+ � −R _X1−, X1


 � D , (2)

where _X and €X represent the first and second derivatives of
X with respect to time T, respectively. _X1+ indicates the
instantaneous speed at which the mass M1 approaches the
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rigid stop A or C. _X1− indicates the instantaneous speed at
which the mass M1 leaves the rigid stop A or C.

Introduce the nondimensional quantities as follows:

μm �
M2

M1
,

μk �
K2

K1
,

μc �
C2

C1
,

μc � μk,

p �
P2

P1 + P2
,

ω � Ω

���
M1

K1



,

t � T

���
K1

M1



,

ζ �
C1

2
������
K1M1

 ,

d �
DK1

P1 + P2
,

x1 �
X1K1

P1 + P2
,

x2 �
X2K1

P1 + P2
.

(3)

According to equations (1)–(3), the system can be
transformed into nondimensional forms.

1 0

0 μm

 
€x1

€x2
  +

2ζ −2ζ

−2ζ 2ζ 1 + μc( 
 

_x1

_x2
 

+
1 −1

−1 1 + μk

 
x1

x2
  �

1 − p

p
 sin(ωt + τ), x1


<d ,

(4)

_x1+ � −R _x1−, x1


 � d ,

(5)
where _x and €x represent the first and second derivatives of x

with respect to the nondimensional time t, respectively.
Suppose Ψ be the canonical modal matrix of equation

(4), and coordinate transformation of equation (4). Let x �

Ψξ 4.
(4)

I€ξ + C _ξ + Λξ � P sin(ωt + τ), (6)
where ω1 and ω2 represent the eigenfrequencies of the
system, x � (x1, x2)

T, ξ � (ξ1, ξ2)
T, I is the unit matrix, Λ

and C are diagonal matrices, Λ � diag[ω2
1,ω2

2],
C � 2ζΛ � diag[2ζω2

1, 2ζω2
2], and P � ΨT(1 − p, p)T. ,e

general solution of equation (4) is given by

xi � 
2

j�1
Ψij e

− ηj t− t0( ) aj cosωdjt + bj cosωdjt 

+ Aj sin(ωt + τ) + Bj cos(ωt + τ),

_xi � 
2

j�1
Ψij e

− ηj t− t0( ) bjωdj − ajηj cosωdjt

− ajωdj + bjηj sinωdjt

+ Ajω cos(ωt + τ) − Bjω sin(ωt + τ),

(7)

where i � 1, 2, t0 represents the time at which the mass M1
collides with the rigid stop A or C; we set the mass M1 to
collide with the rigid stop A when t0 � 0.Ψij is an element of
the canonical modal matrix Ψ, ηj � ζω2

j , and
ωdj �

������
ω2

j − η2j


. ,e initial conditions and modal parame-
ters of the system determine the integral constants aj and bj.
Aj and Bj are amplitude parameters, and the expression is
given by

Aj �
1

2ωdj

ω + ωdj

ω + ωdj 
2

+ η2j
−

ω − ωdj

ω − ωdj 
2

+ η2j
⎛⎜⎝ ⎞⎟⎠fj,

Bj �
ηj

2ωdj

1

ω + ωdj 
2

+ η2j
−

1

ω − ωdj 
2

+ η2j
⎛⎜⎝ ⎞⎟⎠fj.

(8)

According to the initial conditions and periodic con-
ditions of the double grazing periodic-n motion, the exis-
tence conditions of two-degree-of-freedom impact oscillator
double grazing periodic-n motion is as follows:

C2 C1

K2 K1

X2 X1

M2 M1

2B

A

P2sin(ΩT + τ) P1sin(ΩT + τ)

Figure 1: Schematic of the two-degree-of-freedom impact oscil-
lator with symmetrical constraints.
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d �

������

d2
1 + d2

2



,

τ � arctan
d1

d2
 ,

(9)

where d1 � Ψ11A1 + Ψ12A2 and d2 � Ψ11B1 + Ψ12B2.
In addition, in order to ensure that the impacting cycle of

the mass M1 does not adhere to rigid stop, the acceleration
a∗ of the mass M1 satisfies a∗ < 0 and the acceleration a∗ of
the mass M2 satisfies a∗ > 0.

3. Near-Grazing Dynamics

3.1. *e Stability Criterion of Double Grazing Bifurcation.
Let p be a state vector, such that x � (x1, v1, x2, v2, p)T ∈ R5,
and it follows that

dx

dt
� _x � f(x) � v1, a1, v2, a2, 0( 

T
, (10)

where ai represents the acceleration of the oscillator as a
function of xi, vi. Define ϕ(x, t) as the local flow function
associated with f(x). Suppose that the movement of the
oscillator is limited by symmetrical rigid constraints placed
at |x1| � d corresponding to state space discontinuity sur-
faces D1 and D2, where

D1 � h
D1(x, d) � d − x1 � 0,

D2 � h
D2(x, d) � −d − x1 � 0.

(11)

,e oscillator moves between two rigid stops when
hD1(x, d)> 0 and hD2(x, d)< 0. When hD1(x, d) � 0 or
hD2(x, d) � 0, the oscillator collides with the rigid stop. In
addition, let hP1(x) � h

D1
x (x, d)f(x) � −v1, h

P2
x (x) � hD2

(x, d)f(x) � −v1.
When the oscillator collides with the constraint, we

establish a function R(x) with a characteristic restitution
coefficient R to represent the jumpmap, i.e., R(x) represents
the instantaneous state after the collision and before the
collision, where

R(x) � x1, −Rv1, x2, v2, p( 
T
. (12)

,e state space trajectory and the grazing contact points
of D1 and D2 are, respectively, corresponding to points x∗1

and x∗2, so that

h
D1 x
∗1

, d
∗

  � 0,

h
P1 x
∗1

  � −v
∗1
1 � 0,

d
dt

h
P1(x)

x�x∗1
� h

P1
x x
∗1

 f x
∗1

  � −a
∗1
1 > 0,

h
D2 x
∗2

, d
∗

  � 0,

h
P2 x
∗2

  � −v
∗2
1 � 0,

d
dt

h
P2(x)

x�x∗2
� h

P2
x x
∗2

 f x
∗2

  � −a
∗2
1 < 0.

(13)

Choose a constant phase angle θ∗ as a Poincaré section,
and it has the following form: Π1 � x ∈ R5 × S1 | θ � θ∗ ,
where x � (x1, _x1, x2, _x2, p, θ)T, θ � ωt + τ. ,e modulus of
θ is 2π, θ∗ � τ∗. Since the periodic trajectory of the system is
symmetrical, we set another Poincaré section as
Π2 � x ∈ R5 × S1 | θ � θ∗ + π .

With d as the bifurcation parameter, we define the flow
maps P1(x) and P2(x) by the evolution of the smooth flow
Φ(·, T) on the Poincaré sections Π1 and Π2; the expressions
of P1(x) and P2(x) are as follows:

P1(x) � x
∗2

+ N1 x − x
∗1

  + M1 d − d
∗

(  + h.o.t, (14)

where N1 �(z/zx)P1(x)|x�x∗1 ,d�d∗ and M1 �(z/zd)P1
(x)|x�x∗1 ,d�d∗.

P2(x) � x
∗1

+ N2 x − x
∗2

  + M2 d − d
∗

(  + h.o.t, (15)

where N2 �(z/zx)P2(x)|x�x∗2 ,d�d∗ and M2 �(z/zd)

P2(x)|x�x∗2 ,d�d∗.
,e critical bifurcation value d∗ can be obtained from

expression (9). Since the vector field f(x) and the smooth
flow function Φ(·, T) do not contain the bifurcation pa-
rameter d, the values of the matrices M1 � M2 � 0.

We use the discontinuous mapping method introduced
by Nordmark to analyze the system; the two discontinuous
maps DM1 and DM2 are introduced into the neighborhood
of points x∗1 and x∗2 such that the surface P1(x) is invariant
under DM1,i.e., x ∈ P1(x), DM1(x) ∈ P1(x). ,e same
surface P2(x) is invariant under DM2, i.e.,
x ∈ P2(x), DM2(x) ∈ P2(x). According to the discontin-
uous mapping method, the discontinuous mapping of DM1
and DM2 is expressed by

DM1 �

Id, hD1(x, d)≥ 0,

x∗1 + β1

������������
2

h
P1
x x∗1( )f ∗1( )


���������
−hD1(x, d)


, hD1(x, d)< 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

where

β1 � f x
∗1

  − gx x
∗1

 f x
∗1

 ,

DM2 �

Id, hD2(x, d)≤ 0,

x∗2 + β2

������������
2

h
P2
x x∗2( )f ∗2( )


���������
−hD2(x, d)


, hD2(x, d)> 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

where

β2 � f x
∗2

  − gx x
∗2

 f x
∗2

 . (18)

According to (13)–(17), the composite maps
P1 � P1(x) ∘ DM1 and P2 � P2(x) ∘ DM2 are written as
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P1 �

x∗2 + N1 x − x∗1(  + h.o.t, hD1(x, d)≥ 0,

x∗2 + N1β1

�������������
2

h
P1
x x∗1( )f x∗1( )


���������
−hD1(x, d)


+ h.o.t, hD1(x, d)< 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

P2 �

x∗1 + N2 x − x∗2(  + h.o.t, hD2(x, d)≤ 0,

x∗1 + N2β2

�������������
2

h
P2
x x∗2( )f x∗2( )


���������
−hD2(x, d)


+ h.o.t, hD2(x, d)> 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(20)

We will discuss the stability of double grazing bifurca-
tion using the Poincaré map P � P2 ∘ P1. Starting from the
vicinity of the grazing point, whether it is at the impact side
or the nonimpact side, if it is still close to the grazing point
after the iterative mapping P, then the local attractor near
the grazing trajectory exists; we refer to such scenario as a
continuous grazing bifurcation or we say that the grazing
bifurcation is stable. Otherwise, we refer to scenario as a
discontinuous grazing bifurcation.

When point x starts from the impact side near the
grazing point x∗1, hD1(x, d)< 0. Here, we can think of the
hD1(x, d) approximation as h

D1
x (x∗1)(x − x∗1). Similarly, we

consider the hD2(x, d) approximation as h
D2
x (x∗2)(x − x∗2).

If

h
D2
x x
∗2

  P1(x) − x
∗2

 

� h
D2
x x
∗2

 N1β1

�������������
2

h
P1
x x∗1( )f x∗1( )


���������
−hD1(x, d)


≤ 0,

(21)

it means P1(x) is located at the nonimpact side near the
grazing point x∗2.

After the iteration of the mapping P2, if

h
D1
x x
∗1

  P2
P1(x) − x

∗1
 

� h
D1
x x
∗1

 N2N1β1

�������������
2

h
P1
x x∗1( )f x∗1( )


���������
−hD1(x, d)


< 0,

(22)

then,

h
D1
x x
∗1

 N2N1β1 < 0. (23)

It means the impact point impacts discontinuity surface
D1 again and the impact will be perpetuated, which results in
a large stretching in a direction given by the image of the
vector β1 under the Jacobian N1 and N2. ,erefore, the local
attractor near the grazing trajectory does not exist.
According to the analysis, the stability criterion of grazing
bifurcation under which a local attractor persists near a
grazing trajectory is formulated as follows:

h
D2
x x
∗2

 N1 N2N1( 
(n− 1)β1 ≤ 0, (24)

and

h
D1
x x
∗1

  N2N1( 
nβ1 ≥ 0, (25)

for all positive integer n.
According the same method, another stability criterion

of grazing bifurcation under which a local attractor persists
near a grazing trajectory is formulated as follows:

h
D1
x x
∗1

 N2 N1N2( 
(n− 1)β2 ≥ 0, (26)

and

h
D2
x x
∗2

  N1N2( 
nβ2 ≤ 0, (27)

for all positive integer n.

3.2. Codimension-Two Grazing Bifurcation. ,e local
attractor near grazing trajectory is lost in there ways.

Case 1. If

h
D2 x
∗2

  P1(x), d( 

� h
D2
x x
∗2

 N1β1

�������������
2

h
P1
x x∗1( )f x∗1( )


���������
−hD1(x, d)


< 0,

(28)

i.e., h
D2
x (x∗2)N1β1 < 0, and

h
D1 x
∗1

  P2
P1(x)( , d( 

� h
D1
x x
∗1

 N2N1β1

�������������
2

h
P1
x x∗1( )f x∗1( )


���������
−hD1(x, d)


< 0,

(29)

i.e., h
D1
x (x∗1)N2N1β1 < 0, then it means that the point from

the impact side near the grazing point x∗1 will impact the
discontinuous surface D1 again after the iteration of the
mapping P and the impact will continue, which results in a
large stretching in a direction given by the image of the
vector β1 under the Jacobian N1 and N2; therefore, the local
near-grazing attractor will lose, where discontinuous grazing
bifurcation occurs.

If the impact point is followed by nonimpacting for some
iterations but eventually impacts discontinuous surface D1,
the impact will be perpetuated which lead to the instability of
grazing bifurcation or the loss of near-grazing attrators.

,erefore,
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h
D2
x x
∗2

 N1 N2N1( 
iβ1 < 0,

h
D1
x x
∗1

  N2N1( 
j+1β1 < 0,

(30)

for any 0≤ i≤ j, the stability of grazing bifurcation will be
lost, where i and j are positive integers.

Case 2. When the point x satisfying h
D1
x (x − x∗1)< 0 is from

the impact side near the grazing point x∗1, if
h

D2
x (x∗2)N1β1 > 0 and h

D2
x (x∗2)N1N2β2 > 0, it means that

the impact point will impact with the discontinuous surface
D2 again and the impact will continue, and the grazing
bifurcation is discontinuous.

If the impact point is followed by nonimpacting for some
iterations but eventually impacts discontinuous surface D2,
the impact will be perpetuated. Finally, the stability of
grazing bifurcation will also be lost.

,at is,

h
D2
x x
∗2

 N1 N2N1( 
iβ1 > 0,

h
D2
x x
∗2

  N1N2( 
j+1β2 > 0,

(31)

for any j≥ i≥ 0, the stability of grazing bifurcation will be
lost.

Case 3. When the point x satisfying h
D1
x (x − x∗1)< 0 is from

the impact side near the grazing point x∗1, if
h

D2
x (x∗2)N1β1 > 0 and h

D1
x (x∗1)N2β2 < 0, this means that the

impact point will impact with the discontinuous surfaces D1
and D2 again and the impact will continue, and the grazing
bifurcation is discontinuous. If the impact point is followed
by non-impacting for some iterations but eventually impacts
discontinuous surface D1 and D2 the impact will be per-
petuated. Finally, the stability of grazing bifurcation will also
be lost.

,at is,

h
D2
x x
∗2

 N1 N2N1( 
iβ1 > 0,

h
D1
x x
∗1

 N2 N1N2( 
jβ2 < 0,

(32)

for any j≥ i≥ 0, the stability of grazing bifurcation will be
lost.

According to the above analysis, the conditions of
codimension-two grazing bifurcation are obtained as follows
(the definition of such points is seen in Ref. [10]):

h
D1
x x
∗1

  N2N1( 
nβ1 � 0,

h
D1
x x
∗1

 N2 N1N2( 
nβ2 � 0,

h
D2
x x
∗2

 N1 N2N1( 
nβ1 � 0,

h
D2
x x
∗2

  N1N2( 
nβ2 � 0,

(33)

where n � 0, 1, 2, . . ..

4. Controlling the Persistence of Near-
Grazing Attractors

As the lose of stability for grazing bifurcation may arise
catastrophic changes of system response and codimension-
two even more complicated bifurcation, it is necessary to
control the stability of grazing bifurcation by controlling the
persistence of the local near-grazing attractor. We use
discrete-in-time feedback control to stabilize the grazing
bifurcation. Two constant phase angles are defined as
Poincaré sections, and two discrete-in-time feedback con-
trollers on Poincaré sections are designed. After that, we
obtain a new compound map and then control the stability
of the grazing bifurcation by controlling the parameters on
the controller.

We define the other two constant phase angles as
Poincaré sections Π3 and Π4, where Π3 � x ∈ R5 × S1 | θ �

θ∗ + (π/2)} and Π4 x ∈ R5 × S1 | θ � θ∗ + (3π/2) .
According to P1(x) and Π3, we define the mappings

P3(x): Π1⟶Π3 and P4(x): Π3⟶Π2, and the resulting
expansion is as follows:

P3(x) � x
∗3

+ N3 x − x
∗1

  + h.o.t,

P4(x) � x
∗2

+ N4 x − x
∗3

  + h.o.t,
(34)

where x∗3 is the fixed point of the grazing orbit on the
Poincaré section Π3, N3 �(z/zx)P3(x)|x�x∗1, and
N4 �(z/zx)P4(x)|x�x∗3.

In the same way, according to P2(x) and Π4, we define
the mappings P5(x): Π2⟶Π4 and P6(x): Π4⟶Π1,
and the expansion is as follows:

P5(x) � x
∗4

+ N5 x − x
∗2

  + h.o.t,

P6(x) � x
∗1

+ N6 x − x
∗4

  + h.o.t,
(35)

where x∗4 is the fixed point of the grazing orbit on the
Poincaré section Π4, N5 �(z/zx)P5(x)|x�x∗2, and
N6 �(z/zx)P6(x)|x�x∗4.

Discrete-in-time feedback controllers are designed on
the Poincaré sections Π3 and Π4, respectively, as follows:

G1(x) �

x1

v1

x2

v2

k1 x1 − x∗31(  + k2 v1 − v∗31(  + k3 p − p∗(  + p∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G2(x) �

x1

v1

x2

v2

k4 x1 − x∗41(  + k5 v1 − v∗41(  + k6 p − p∗(  + p∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(36)
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We can calculate the expressions of maps G1(x) and
G2(x) which have the following forms:

G1(x) � x
∗3
1 + G1x x − x

∗3
1 ,

G2(x) � x
∗4
1 + G2x x − x

∗4
1 ,

(37)

where

G1x �

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 1 0

k1 k2 0 0 k3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G2x �

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 1 0

k4 k5 0 0 k6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(38)

,e combining the map G1(x) and P3(x), P4(x), obtain
a controlled map as Pg1(x) � P4(x)∘G1(x)∘P3(x), expan-
sion as follows:

Pg1(x) � x
∗2

+ N4G1xN3 x − x
∗1

  + h.o.t, (39)

where G1x �(z/zx)G1(x)|x�x∗3.
Similarly, combining the map G2(x) with the map

P5(x), P6(x), the map under control
Pg2(x) � P6(x)∘G2(x)∘P5(x), is obtained and its expansion
has the following forms:

Pg2(x) � x
∗1

+ N6G2xN5 x − x
∗2

  + h.o.t, (40)

where G2x �(z/zx)G2(x)|x�x∗4.
We can calculate the expressions of Ni as follows:

Ni �

△ △ △ △ △

△ △ △ △ △

△ △ △ △ △

△ △ △ △ △

0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (41)

where i � 3, 4, 5, 6 and the symbol Δ refers to a nontrivial
coefficient.

Combining (39) and (15), we construct a composite map
of Pg1 � Pg1(x)∘DM1; the expressions are as follows:

Pg1 �

x∗2 + Ng1 x − x∗1(  + h.o.t, hD1(x, d)≥ 0,

x∗2 + Ng1β1

�������������
2

h
P1
x x∗1( )f x∗1( )


���������
−hD1(x, d)


+ h.o.t, hD1(x, d)< 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(42)

where Ng1 � N4G1xN3. Similarly, we can combine (40) and (17) to construct a
composite map of Pg2 � Pg2(x)∘DM2; the expression is as
follows:

Pg2 �

x∗1 + Ng2 x − x∗2( h.o.t, hD2(x, d)≤ 0,

x∗1 + Ng2β2

�������������
2

h
P2
x x∗2( )f x∗2( )


���������
−hD2(x, d)


+ h.o.t, hD2(x, d)> 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(43)

where Ng2 � N6G2xN2.
According to the analysis in Section 3, there are three

cases in which the grazing bifurcation is unstable, where
discontinuous grazing bifurcation occurs. For Case 1, the
impact point will impact with the discontinuous surface D1
again after some iterations and the impact will be perpet-
uated. Based on the stability criteria (24) and (25), we control
k1 − k6 on the controller to ensure that h

D2
x (x∗2)Ng1

(Ng2Ng1)
n− 1β1 ≤ 0 and h

D1
x (x∗1)(Ng2Ng1)

nβ1 ≥ 0, for

positive integer n, such that the grazing bifurcation will be
continuous.

For Case 2, the impact point will impact with the dis-
continuous surface D2 again after some iterations and the
impact will be perpetuated. Based on the stability criteria
(26) and (27), we control k1 − k6 on the controller so that
h

D2
x (x∗2)(Ng1Ng2)

nβ2 ≤ 0 and h
D1
x (x∗1)Ng2(Ng1Ng2)

n− 1

β2 ≥ 0 for positive integer n. ,e grazing bifurcation will be
continuous.
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For Case 3, the impact point will impact with the dis-
continuous surfaces D1 and D2 again, and after some itera-
tions, the impact will be perpetuated. Based on the stability
criteria (24) and (25) or (26) and (27), the grazing bifurcation
will be continuous by controlling parameters k1 − k6 to ensure
the local attractor near grazing bifurcation persists.

For the codimension-two grazing bifurcation point, the
persistence of near-grazing attractors is also controlled by
controlling k1 − k6 based on the stability criteria (24) and
(25) or (26) and (27). For example, if h

D1
x (x∗1)(N2

N1)
nβ1 � 0, we might let h

D2
x (x∗2)Ng1(Ng2Ng1)

n− 1β1 ≤ 0
and h

D1
x (x∗1)(Ng2Ng1)

nβ1 ≥ 0 by controlling k1 − k6.
If h

D1
x (x∗1)N2(N1N2)

nβ2 � 0, we might let h
D2
x (x∗2)

(Ng1Ng2)
nβ2 ≤ 0 and h

D1
x (x∗1)Ng2(Ng1Ng2)

n− 1β2 ≥ 0 by
controlling k1 − k6.

5. Numerical Experiments

For this system, we take suitable parameters μm � 6.0, μk �

3.0, ω � 0.63, R � 0.82, ζ � 0.2, andp � 2.513 as an exam-
ple. d is supposed as the bifurcation parameter; the critical
value d∗ � 1.61139 for grazing bifurcation is obtained from
formula (9). According to the analysis of near-grazing dy-
namics in Section 3, under the set of fixed parameters,
h

D2
x (x∗2)N1β1 � −0.128027< 0 and h

D1
x (x∗1)N2N1β1 �

−0.078865< 0. ,e impact point will impact with the dis-
continuous surfaces D1 again and the impact will be per-
petuated, which satisfies the instability conditions in Case 1.
,e bifurcation diagram as shown in Figure 2(a) is obtained
through numerical simulation by discontinuity maps (19)
and (20). It is clear that the grazing bifurcation is discon-
tinuous because the discontinuous transition occurs at the
bifurcation point d − d∗ � 0. In addition, we take Π2 as the
Poincaré section; the bifurcation diagram as shown in
Figure 2(b) is obtained through direct numerical simulation
by (4) and (5), and it is clear that the discontinuous jump
also occurs at the grazing bifurcation point d − d∗ � 0.

We use the control method in Section 4 to stabilize the
unstable grazing bifurcation phenomena. When the parame-
ters of k1, k3 and k4, k6are fixed, the ranges of parameters k2
and k5 are calculated according to control strategy, which is
named two-dimensional control region of k2 and k5. Here, we
select k1 � −0.5, k3 � −1, k4 � −0.5, and k6 � −1 as the fixed
parameters; a two-dimensional control region graph of k2 and
k5 is obtained as shown in Figure 3(a), where k2 is x−axis, k5 is
y−axis, and the blue region is the region of control parameters
for ensuring the stability of the grazing bifurcation.

We select k2 � −5.8 and k5 � −5.8 to control the system
and draw Figure 4(a) through the discontinuity maps (40)
and (41). At the same time, we take Π2 as the Poincaré
section and obtain Figure 4(b) by direct numerical simu-
lation. As shown in Figures 4(a) and 4(b), there exists the
local attractor near grazing bifurcation.

Take the set of parameters μm � 6.0, μk � 3.0, ω � 0.48,

R � 0.82, ζ � 0.2, p � 2.013, as an example. d∗ � 0.65183, is
obtained from equation (9). Without control,
h

D2
x (x∗2)N1N2N1β1 � −0.00868998< 0 and h

D1
x (x∗1)

(N2N1)
2β1 � −0.00822255< 0. are obtained under the

above fixed parameters. It satisfies the instability conditions
in case 1 according to expression (30). ,e bifurcation di-
agram as shown in Figure 2(c) is obtained through nu-
merical simulation by discontinuity maps (19) and (20). It is
clear that the grazing bifurcation is discontinuous because
the discontinuous transition occurs at the bifurcation point
d − d∗ � 0. In addition, we take Π2 as the Poincaré section,
and the bifurcation diagram as shown in Figure 2(d) is
obtained through direct numerical simulation by (4) and (5);
it is clear that the discontinuous jump also occurs at the
grazing bifurcation point d − d∗ � 0.

Based on the stability criterion mentioned in Section 4,
we select k1 � −0.6, k3 � −1, k4 � −0.6, and k6 � −1 as the
fixed parameters; a two-dimensional control region graph of
k2 and k5 is obtained as shown in Figure 3(b), where k2 is
x−axis, k5 is y−axis, and the blue region is the region of
control parameters for ensuring the stability of the grazing
bifurcation.,en, we select k2 � −5.8 and k5 � −5.8 to control
the system, and the bifurcation diagram is obtained as shown in
Figure 4(c) by the discontinuity maps (40) and (41). In ad-
dition, we take Π2 as the Poincaré section and obtain
Figure 4(d) by direct numerical simulation. As shown in
Figures 4(c) and 4(d), there exists the local attractor near
grazing bifurcation.

Fixed parameters μm � 6.0, μk � 3.0, ω �

0.5649677, R � 0.82, ζ � 0.2, p � 0.813. the critical val-
ued∗ � 1.821554, such that h

D1
x (x∗1)(N2N1)

5β1 � 0. It
corresponds to the codimension-two grazing bifurcation.
We obtain the bifurcation diagram Figure 2(e) through
numerical simulation by the discontinuity maps (19) and
(20). As shown in Figure 2(e), the system is in a complex
chaotic state near the grazing point. ,en, we take Π2 as the
Poincaré section and obtain Figure 2(f ) by direct numerical
simulation.

Based on the control strategy mentioned in Section 4, we
select k1 � −0.6, k3 � −1, k4 � −0.6, and k6 � −1 as the
fixed parameters; a two-dimensional control region graph of
k2 and k5 is obtained as shown in Figure 3(c), where k2 is
x−axis, k5 is y−axis, and the blue region is the region of
control parameters for suppressing the chaos. ,en, we
select k2 � −5.8 and k5 � −5.8 to control the system, and the
bifurcation diagram is obtained as shown in Figure 4(e) by
the discontinuity maps (40) and (41). In addition, we takeΠ2
as the Poincaré section and obtain Figure 4(f ) by direct
numerical simulation.

Comparing Figure 2 with Figure 4, it is shown that the
results obtained bymappings are in good agreement with the
direct numerical simulation, and the control effect is further
verified.
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6. Conclusions

,e discontinuous grazing bifurcation is often accompanied
by a jump phenomenon. In addition, complex chaotic re-
gions occur near the codimension-two bifurcation points.

How to avoid the dramatic change of system response
caused by jump phenomenon of grazing bifurcation or the
codimension-two bifurcation point is an urgent requirement
for the control mechanism of discontinuous grazing bi-
furcation. In this paper, a discrete-in-time feedback control
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Figure 2: Bifurcation diagram from the grazing bifurcation. (a)(1/1) impact periodic motions based on the numerical simulation obtained
by the discontinuity maps (19) and (20). (b) Direct numerical simulation on Poincaré sectionΠ2 of (1/1) impact periodic motions. (c)(1/2)

impact periodic motions based on the numerical simulation obtained by the discontinuity maps (19) and (20). (d) Direct numerical
simulation on Poincaré section Π2 of (1/2) impact periodic motions. (e) ,e codimension-two grazing bifurcation points based on the
numerical simulation obtained by the discontinuity maps (19) and (20). (f ) Direct numerical simulation on Poincaré section Π2 of the
codimension-two grazing bifurcation points.
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strategy is used to control the near-grazing dynamics of
double grazing period motion in a two-degree-of-freedom
vibroimpact system with symmetrical constraints. Com-
pared to unilateral constrained systems, the stability crite-
rion of double grazing period motion becomes more
complex. Based on the stability criterion, the control strategy

is designed to control the near-grazing dynamics and the two
parameters’ control region is obtained. For the case of
discontinuous grazing bifurcation, we take two jumping
phenomena (jumping from nonimpact periodic motion to
(1/1) and (1/2) impact periodic motion) as examples to
stabilize grazing bifurcation by controlling the parameters
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Figure 3:,e parameters k2 and k5 control region. (a),e grazing bifurcation of (1/1) impact periodic motions. (b),e grazing bifurcation
of (1/2) impact periodic motions. (c) ,e codimension-two grazing bifurcation points.
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Figure 4: Bifurcation diagram of a stable grazing bifurcation after control. (a)(1/1) impact periodic motions based on the numerical
simulation obtained by the discontinuity maps (38) and (39). (b) Direct numerical simulation on Poincaré section Π2 of (1/1) impact
periodic motions. (c)(1/2) impact periodic motions based on the numerical simulation obtained by the discontinuity maps (38) and (39). (d)
Direct numerical simulation on Poincaré section Π2 of (1/2) impact periodic motions. (e) ,e codimension-two grazing bifurcation points
based on the numerical simulation obtained by the discontinuity maps (38) and (39). (f ) Direct numerical simulation on Poincaré sectionΠ2
of the codimension-two grazing bifurcation points.
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on the controller. In addition, the chaos dynamics near
codimension-two grazing bifurcation point is controlled by
using this strategy. Finally, the feasibility of the control
strategy is illustrated by comparing the numerical simulation
of composite mapping with the direct numerical simulation
of Poincare section.
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