Research Article

Stochastically Globally Exponential Stability of Stochastic Impulsive Differential Systems with Discrete and Infinite Distributed Delays Based on Vector Lyapunov Function

Xiaoyan Liu and Quanxin Zhu

1MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, China
2School of Information Science and Engineering, Chengdu University, Chengdu 610106, China

Correspondence should be addressed to Quanxin Zhu; zqx22@126.com

Received 23 July 2020; Revised 19 September 2020; Accepted 25 September 2020; Published 1 December 2020

1.Introduction

During the past few years, stochastic differential systems (SDSs) have been paid a great deal of attention in various fields. For example, there have been a number of works on the stability of SDSs (e.g., see [1–6]), and such a topic is of great significance in many practical applications. On the other hand, delay problems are often encountered in the chemical industry system, neural network system, and other systems. As a result, the stability analysis problem of SDSs with delays was studied in [2–12], where the delays were divided into constant delays, time-varying delays, and distributed delays. For a kind of SDSs with DDs and IDDs, there are many researchers to pay much attention on this topic, SDSs with DDs and IDDs were applied to study neural network systems [13–15], especially. However, these modes do not include some dynamic phenomena with impulses even if they are indeed important in practice.

Systems with impulses have been widely applied in practice. For instance, they are often used to describe dynamic processes that mutate at successive times [7, 8, 11, 12, 16–20]. In the past few decades, addressed system was studied extensively (e.g., see [16, 19]) and it was found that impulsive systems can contribute the exponential stability of SDSs (e.g., see [8, 11, 12]). The impulse one can not only cause complex dynamic behaviors such as instability, but also stabilize the unstable dynamic system. How to use the appropriate impulse control to stabilize the unstable SDSs or let impulses play a negative role on the stable system is of great significance. This paper aims to study these interesting topics for SIDSs with DDs and IDDs.

In order to deal with the stability of systems with DDs and IDDs, there have appeared many methods such as the fixed point theory, Lyapunov-Krasovskii function or the scalar Lyapunov function. For example, the Lyapunov-Krasovskii function and matrix inequality method were used in [13]; Chen et al. in [15] employed the fixed point theorem; Huang and Cao in [14] applied the Lyapunov functional method and the semimartingale convergence theorem. However, until now, there have been essentially no results to deal with SIDSs with DDs and IDDs by using the vector Lyapunov method. To investigate the stability issue,
two new methods were recently proposed: the VLF method [9, 12, 19–23] and the ADT method [18, 24]. The ADT effectively limits the impulse and could promote the stability of the system. By using VLF, inequality techniques, and impulse conditions, some useful exponential stability criteria are obtained. As a feasible alternative to scalar Lyapunov function, VLF has attracted more and more attention in recent years (e.g., see [9]). In [25], VLF was first introduced and widely used in various fields owing to its outstanding advantages. In the terms of construction, the theory of VLF provides a more flexible method for dealing with the complexity of SIDSs (e.g., see [19, 26]). The real reason is that the theory of VLF can reduce the dimension and reduce the requirement of system component (e.g., see [26]). Therefore, there are many related results reported on the vector Lyapunov function method (e.g., see [9, 12, 19–23]). However, the joint system with IDDs of stochastic impulsive and DDs has not been solved, which greatly limits the effectiveness of VLF.

Motivated by the above discussions, we study SGES of SIDS with DDs and IDDs by using ADT condition and VLF. We consider two cases: unstable impulse dynamics and stable impulsive dynamics. For these two cases, some sufficient conditions are established for SIDS with DDs and IDDs based on the strength of VLF and ADT condition. Moreover, the results show that continuous SIDSs with DDs and IDDs are stable and the impulsive one is unstable, according to the relationship between ADT and impulse, a lower bound of ADT is given to the mixed system is exponential stability. When continuous SIDSs with DDs and IDDs are not stable, the impulsive effect can stabilize the system successfully under the upper bound condition of the given ADT.

There are three contributions to the paper. (1) To the best of our knowledge, there have been no studies on the stability of SIDS with DDs and IDDs by VLF. (2) The discrete delay term is coupled with the nondelay term and the infinitely distributed delay term is coupled with the nondelay term. It should be mentioned that the comparison principle was used [19, 20, 23] and the components of VLF were separate, but the coupling of distributed delay term with nondelay term was not considered in [9, 12]. (3) The third is infinitely distributed delay: due to its infinite nature, we deal with it by the construction formula \(\sum_{j=1}^{\infty} k_j(s) \exp(\eta_j s) \sigma \) and \(\sum_{j=1}^{\infty} k_j(s) \exp(-\eta_j s) \sigma \). Thus, our results are innovative than those in [9, 19, 20, 23].

The remainder of this paper is organized as follows. In the second part, the model and the preliminary knowledge are introduced. Two novel stability criteria are established for the stochastic impulsive systems with DDs and IDDs in the third part. In the fourth part, two examples are given to verify the correctness of our results.

2. Preliminaries

Through the paper, no special instructions, we will use the following instructions.

\(w(t) \) is an \(\mathbb{R}^m \)-valued Brownian motion defined on a complete probability space \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P})\). \(N_{\geq 0} \) represents the set of positive integer and \(\mathbb{R} \) denotes the real number. For a given \(t_0 \geq 0 \), let \(\mathbb{R}_{t_0} := \{t_0, +\infty\} \). Given \(a, b \in \mathbb{R}^n \), \(a > b \) if \(a_i > b_i \) for all \(i \in I = \{1, \ldots, n\} \). Define \((a, b) := (a^T, b^T)^T\). Given a vector or matrix \(\alpha \), its transpose is denoted by \(C^T \). \(A \subseteq D = \{z \in A, z \in D\} \) for two given sets \(A \) with \(D, tr[B] \) represents the trace of the matrix \(B \), where \(B = B^T \in \mathbb{R}^{m \times n} \). Let \(| \cdot | \) be the Euclidean norm and \(E \) present the vector that all the components are 1. \(I \) means identity matrix. For a given function \(p: \mathbb{R}^n \rightarrow \mathbb{R}^n \) and the initial time \(-\infty < t \leq t_0 \), define \(\| p \|_{kg} = \sup_{t_0 < s < t} \| p(t) \| \). Given a function \(g: \mathbb{R}_{t_0} \rightarrow \mathbb{R}^n \), denote \(g(t^+) := \limsup_{s \rightarrow t} g(t) \). A function \(a: \mathbb{R}_{t_0} \rightarrow \mathbb{R}_{t_0} \) is of class \(C_{t_0}^{\infty} \) if it is of class \(C \) and concave. A function \(\gamma: \mathbb{R}_{t_0} \times \mathbb{R}_{t_0} \rightarrow \mathbb{R}_{t_0} \) is of class \(C \), if \(\gamma(s, t) \) is of class \(C \) for each fixed \(t \geq 0 \) and decreases to zero as \(t \rightarrow +\infty \) for each fixed \(s \geq 0 \). The inverse of the function \(\beta \) is denoted by \(\beta^{-1} \).

We will consider the following SIDSs with DDs and IDDs:

\[
\begin{align*}
\dot{x}(t) &= f(t, x_t, \int_0^t k(s)x(t-s)ds)dt + g(t, x_t, \int_0^t k(s)x(t-s)ds)dw(t), \quad t \in \mathbb{R}_{t_0} \setminus \mathcal{T}, \\
\Delta x(t)/_{t=t_k} &= x(t_k) - x(t_k^-) = h_k(t_k, x(t_k^-)), \\
x(t) &= \xi(t), \quad t \in (-\infty, t_0],
\end{align*}
\]

where \(x(t) \in \mathbb{R}^n \) is the system state, \(x_t := x(t - r) \), \(r \) is a bounded and positive constant. \(\mathcal{T} := \{t_0, t_1, \ldots, t_n\} \) is a impulsive time sequence satisfying \(0 \leq t_0 \leq t_1 \leq \cdots \leq t_n \). The initial function \(\xi: [-\infty, t_0] \rightarrow \mathbb{R}^n \) is a \(\mathcal{T} \)-adapted continuous stochastic variable with finite \(E[\| \xi \|^2] \). For all \(k \in \mathbb{N}_{t_0} \), the function \(f: \mathbb{R}_{\geq t_0} \times \mathbb{R}^n \rightarrow \mathbb{R}^n \), \(g: \mathbb{R}_{\geq t_0} \times \mathbb{R}^n \rightarrow \mathbb{R}^{m \times n} \), and \(h_k: \mathbb{R}_{t_0} \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) are assumed to be Lipschitz and Borel measurable. For the aim of stability, we assume that \(f(t, 0, 0) \equiv 0 \) and \(g(t, 0, 0) \equiv 0 \), and thus \(x(t) \equiv 0 \) is a trivial solution of system (1). As a usual, we assume with no emphasis on conditions that there exists a unique global solution \(x(t, \xi) \) for the initial value \(\xi \).

In this paper, we always assume that \(K := \int_0^\infty \{ k_j(s)ds \}_{x} \) is meaningful. That is, the delay kernels \(k_j: [0, +\infty) \rightarrow [0, +\infty) \) are real-valued nonnegative continuous functions and satisfy \(\int_0^{\infty} \exp(-\mu s)k_j(s)ds < \infty \), where \(\mu \) is a positive number.

Definition 1 (see [6]): For arbitrary \(\varepsilon \in (0, 1) \), if there is \(\varrho \in \mathcal{K} \), \(x(t_0) \in \mathbb{R}^n \), \(t \in \mathbb{R}_{\geq t_0} \), \(M \geq 0 \), \(b > 0 \) such that
\[P\{ |x(t)| \leq 0 \mid |x(t_0)|, t - t_0 \} \geq 1 - \varepsilon. \]
\[(2) \]

Then, system (1) is stochastically globally asymptotically stable. Furthermore, if \(g(a, t) = Ma^2 e^{-at} \), then system (1) is stochastically globally exponentially stable (SGES).

Definition 2 (see [11, 24]): For an impulsive sequence \(\{t_k\} \) and \(N, t, s \) shows the number of impulses that occur in the half-open interval \((s, t) \). If
\[\frac{t-s}{\tau_c} - N_0 \leq N(t, s) \leq \frac{t-s}{\tau_c} + N_0, \]
\[(3) \]

\[\mathcal{L}V_i(t, x, t) \int_0^\infty k(s)x(t-s)ds = \frac{\partial V_i(t, x(t))}{\partial t} + \frac{\partial V_i(t, x(t))}{\partial x} f(t, x_i, \int_0^\infty k(s)x(t-s)ds) + \frac{1}{2} \sum_{ij} g^T(t, x_i, \int_0^\infty k(s)x(t-s)ds) \frac{\partial^2 V_i(t, x(t))}{\partial x^2} g(t, x_i, \int_0^\infty k(s)x(t-s)ds). \]
\[(4) \]

Define \(V(t,x(t)) = \{ V_1(t,x(t)), \ldots, V_n(t,x(t)) \} \). In particular, if \(n = 1 \), then \(V \) becomes a scalar.

Let \(\Psi: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\leq 0} \) be a continuous function. Then, the upper Dini derivative of \(\Psi(t) \) is defined as \(D^+\Psi(t) = \limsup_{s \to t} - (\Psi(s) - \Psi(t))/s \). In particular, if \(E[\mathcal{L}V_i(t, x(t), x_i)] \) is continuous, then it follows from [27] that \(E[\mathcal{L}V_i(t, x(t), x_i)] = D^+[E V_i(t, x(t), x_i)] \).

Definition 4 (see [28]) Let off-diagonal elements of the matrix \(A = (a_{ij})_{n \times n} \) be nonpositive. If each of the following statements holds, then \(A \) is a nonsingular M-matrix.

1. If the diagonal elements of \(A \) are all positive, then there exists a positive vector \(a \) such that \(Aa > 0 \) or \(A^T a > 0 \).
2. \(A = C - M, \rho(C^{-1}M) < 1 \), where \(M \geq 0 \), \(C = \text{diag}[c_1, c_2, \ldots, c_n] \) and \(\rho(\cdot) \) is the spectral radius of the matrix \(\cdot \).

\[\mathcal{L}V_i(t, x(t), t) \int_0^\infty k(s)x(t-s)ds \leq -\mu_i V_i(t) + \sum_{j=1}^n p_{ij}(V_j(t))^{1/r} (V_j(t))^{1/r} + \sup_{t \in \mathbb{R}_{\geq 0}} \sum_{j=1}^n q_{ij}(V_i(t))^{1/r} (V_j(t+\theta))^{1/r} \]
\[+ \sum_{j=1}^n \int_0^\infty k_{ij}(s)(V_i(t))^{1/r} (V_j(t-s))^{1/r} ds, \]
\[(5) \]

where \(\mu - P - Q - K \) is a nonsingular M-matrix, \(\theta \in [-r, 0], r^* = (1 - r^{-1})^{-1} \).

(i) \(i \in i \) and \(k \in N_{>0} \).

Definition 3 (see [9]): Let \(\mathcal{G}^{1,2} \) denote the family of the nonnegative functions \(V_i(t, x): \mathbb{R}_{\geq 0} \times \mathbb{R}^n \rightarrow \mathbb{R}_{>0} \) that are continuously twice differentiable in \(x \) and once in \(t \), \(n \) is bounded. Then, for any \(\mathcal{G}^{1,2} \), the operator of \(\mathcal{L}V_i(t, x, t, \int_0^\infty k(s)x(t-s)ds) \) is defined as
\[\mathcal{L}V_i(t, x(t), x_i) = \mathcal{D}^+ [E V_i(t, x(t), x_i)]. \]

For a nonsingular M-matrix \(A \), it can denote \(\Omega(A) \equiv \{ z \in \mathbb{R}^n | Az > 0, z > 0 \} \).

3. Main Results

In this section, we will establish the SGES of system (1) with destabilizing impulses.

Theorem 1. For system (1), assume that there is locally Lipschitz Lyapunov function \(V_i: \mathbb{R}_{\geq 0} \times \mathbb{R}^n \rightarrow \mathbb{R}_{>0}, i \in i, r > 1, \xi \geq E, \psi \in \mathcal{X}^{\psi_0}, \xi \in \mathcal{G}^{1,2}, \psi_0 \) positive matrices \(\mu = \text{diag}(\mu_1, \mu_2, \ldots, \mu_n), \xi = \text{diag}(\xi_1, \xi_2, \ldots, \xi_n) \) and non-negative matrices \(P = [p_{ij}]_{n \times n}, Q = [q_{ij}]_{n \times n} \) and non-negative matrices \(K = \int_0^\infty k(i,j)(s)ds_{n \times n} \) is continuous function and \(k_{ij}(s) \geq 0 \) such that the following conditions:

(i) \(i \in i, t \in \mathbb{R}_{\geq 0}, \psi(\{x(t)\}) \leq V_i(t) \leq \xi(\{x(t)\}) \).

(ii) \(i \in i, t \in \mathbb{R}_{\geq 0} \setminus \mathcal{F} \).

\[V_i(t_k) \leq \xi V_i(t_k) + \left(\sum_{j=1}^n o_{ij} \right) (V_i(t_k))^{1/r} (V_j(t_k))^{1/r}. \]
\[(6) \]
\(\tau_i > \max \ln(\xi_i + \sum_{j=1}^{n} a_{ij})/\lambda, \) where \(\lambda \in (0, \bar{\lambda}), \)
\(V_i(t) \triangleq V_i(t, x(t)), \)

\[\bar{\lambda} = \max \left\{ \eta_i > 0: \mu_i \alpha_i + \sum_{j=1}^{n} p_{ij} \alpha_j + \sum_{j=1}^{n} q_{ij} \alpha_j \exp(\tau \eta_j) + \sum_{j=1}^{n} \int_{0}^{\infty} k_{ij}(s) \exp(\eta_i s) a_i ds < 0 \right\}, \tag{7} \]

where \(i \in I, \alpha \in \Omega_M(\mu - P - Q - K), \) with \(\min_{1 \leq i \leq n} [a_{i}] \geq 1, \)
\(\tilde{\sigma} = \max\{a_{i}\}. \)

Then, system (1) is SGES.

\[\mathbb{E} \mathcal{D} V_i(t, x(t), x_i, \int_{0}^{\infty} k(s) x(t - s) ds) \leq -\mu_i \mathbb{E} V_i(t) + \sum_{j=1}^{n} p_{ij} (\mathbb{E} V_j(t))^{1/\rho} (\mathbb{E} V_j(t))^{1/\rho} + \sup_{s \in [0, t]} \sum_{j=1}^{n} q_{ij} (\mathbb{E} V_j(t))^{1/\rho} (\mathbb{E} V_j(t + \theta))^{1/\rho} \]
\[+ \sum_{j=1}^{n} \int_{0}^{\infty} k_{ij}(s) (\mathbb{E} V_j(t))^{1/\rho} (\mathbb{E} V_j(t + \theta))^{1/\rho} ds, \quad i \in I, t \in \mathbb{R}_{\geq 0}, \mathcal{F}. \]

\[\mathbb{E} V_i(t_k) \leq \xi_i \mathbb{E} (V_i(t_{k-1})) + \left(\sum_{j=1}^{n} a_{ij} \right) (\mathbb{E} V_i(t_k))^{1/\rho} (\mathbb{E} V_j(t_k))^{1/\rho}, \quad i \in I \text{ and } k \in \mathbb{N}_{>0}. \]

Proof. By taking expectation on both sides of (5) and (6) and using Holder inequality in [6], we have

\[\mu_i \alpha_i - \sum_{j=1}^{n} p_{ij} \alpha_j - \sum_{j=1}^{n} q_{ij} \alpha_j \exp(\tau \eta_j) - \sum_{j=1}^{n} \int_{0}^{\infty} k_{ij}(s) \exp(\eta_i s) a_i ds > 0, \quad i \in I. \tag{10} \]

For any given \(i, \) let

\[H_i(\eta) = -\mu_i \alpha_i + \mu_i \alpha_i - \sum_{j=1}^{n} p_{ij} \alpha_j - \sum_{j=1}^{n} q_{ij} \alpha_j \exp(\tau \eta_j) - \int_{0}^{\infty} k_{ij}(s) \exp(\eta_i s) a_i ds. \]

Obviously, it follows from (11) that \(H_i(0) > 0 \) and \(H_i(\infty) = -\infty, \) where \(\eta \longrightarrow \infty. \) On the other hand, we have

\[H_i(\eta) = -\mu_i \alpha_i - \sum_{j=1}^{n} q_{ij} \alpha_j \exp(\tau \eta_j) - \sum_{j=1}^{n} \int_{0}^{\infty} s k_{ij}(s) \exp(\eta_i s) a_i ds < 0 \]

Thus, there is a unique constant \(\eta_i > 0 \) such that \(H_i(\eta_i) = 0. \) Letting \(\bar{\lambda} = \max_{1 \leq i \leq n} \eta_i > 0, \) there is a constant \(\lambda \) such that \(\lambda \in (0, \bar{\lambda}). \)

Step 2. Next, we need to prove that for \(i \in I \) and \(\lambda \in (0, \bar{\lambda}), \)
\[\mathbb{E} [V_i(t)] \leq \mathbb{E} [V_i(t_0)] \exp(-\lambda(t - t_0)). \tag{13} \]

For simplicity, let \(W_i(t) = [\mathbb{E} V_i(t_0)]^{1/\rho} \mathbb{E}^{N(t_0)} \tilde{\sigma} \exp(-\lambda(t - t_0)), \)
\[U_i(t) = [\mathbb{E} V_i(t)]^{1/\rho}. \]

It is easy to check that (13) is equivalent to the following:
Now suppose that (13) is not valid in some interval, then there are two cases:

Case 1. (13) is not true at the nonimpulse point of the certain interval;

Case 2. (13) does not hold at the impulse point of the certain interval.

For Case 1, there exists a k such that $U_i(t) \leq W_i(t-t_0)$ holds for all $t \in [t_0, t_k]$ and $i \in t$, and $U_i(t) \leq W_i(t-t_0)$ is not true for $i \in t$ and $t \in (t_k, t_{k+1})$. Define

$$t^* = \inf\{t \in (t_k, t_{k+1}): U_i(t) > W_i(t-t_0)\}.$$ \hfill (15)

Noting that $U_i(t)$ and $W_i(t-t_0)$ are continuous for $t \in \mathbb{R}_{\geq t_0}$, there exist t^* and $t^* + \Delta t$ such that

$$U_i(t^*) = W_i(t^*-t_0),$$ \hfill (16)

$$U_i(t) > W_i(t-t_0), \quad t \in (t^*, t^* + \Delta t),$$ \hfill (17)

where $\Delta t > 0$ is arbitrarily small. Hence, it follows from (16) and (17) that

$$D^+ U_i(t^*) = D^+ W_i(t^*-t_0).$$ \hfill (18)

$$D^+ W_i(t^*-t_0) = -\lambda \alpha_i \mu_i \inf_{t \in \mathbb{R}} W_i(t-t_0) [\exp(-\lambda (t^*-t_0))].$$ \hfill (19)

By the definition of λ, we have

$$-\lambda \alpha_i > \frac{1}{r} \left(-\mu_i \alpha_i + \sum_{j=1}^{n} p_{ij} \alpha_j + \sum_{j=1}^{n} q_{ij} \alpha_j \exp(\tau \lambda) + \sum_{j=1}^{n} \int_{0}^{\infty} k_{ij}(s) \exp(\lambda \alpha_j) ds \right),$$ \hfill (20)

which together with (19) yields

$$D^+ W_i(t^*-t_0) > \frac{1}{r} \left(-\mu_i \alpha_i + \sum_{j=1}^{n} p_{ij} \alpha_j + \sum_{j=1}^{n} q_{ij} \alpha_j \exp(\tau \lambda) + \sum_{j=1}^{n} \int_{0}^{\infty} k_{ij}(s) \exp(\lambda \alpha_j) ds \right) \times \frac{1}{r} [\inf_{t \in \mathbb{R}} W_i(t-t_0)]^{1/r} \exp(-\lambda (t^*-t_0))$$

$$= \frac{1}{r} (-\mu_i \alpha_i \mu_i \inf_{t \in \mathbb{R}} W_i(t-t_0))^{1/r} \exp(-\lambda (t^*-t_0))$$

$$+ \frac{1}{r} \sum_{j=1}^{n} p_{ij} \alpha_j \inf_{t \in \mathbb{R}} W_i(t-t_0) \exp(-\lambda (t^*-t_0))$$

$$+ \frac{1}{r} \sum_{j=1}^{n} q_{ij} \alpha_j \exp(\tau \lambda) \inf_{t \in \mathbb{R}} W_i(t-t_0) \exp(-\lambda (t^*-t_0))$$

$$+ \frac{1}{r} \sum_{j=1}^{n} \int_{0}^{\infty} k_{ij}(s) \exp(\lambda \alpha_j) ds \inf_{t \in \mathbb{R}} W_i(t-t_0) \exp(-\lambda (t^*-t_0))$$

$$\geq \frac{1}{r} (-\mu_i \inf_{t \in \mathbb{R}} W_i(t^*))^{1/r} + \frac{1}{r} \sum_{j=1}^{n} p_{ij} \left(\inf_{t \in \mathbb{R}} W_i(t^*) \right)^{1/r}$$

$$+ \frac{1}{r} \sum_{j=1}^{n} q_{ij} \sup_{-\Delta t \leq \theta \leq 0} \exp(\lambda (\tau + \theta)) \inf_{t \in \mathbb{R}} W_i(t^*) \left(\inf_{t \in \mathbb{R}} W_i(t^*) \right)^{1/r}$$

$$+ \frac{1}{r} \sum_{j=1}^{n} \int_{0}^{\infty} k_{ij}(s) \left(\inf_{t \in \mathbb{R}} W_i(t^*-s) \right)^{1/r} ds.$$
Due to $U_i(t) = [\mathbb{E} V_i(t)]^{1/r}$, then $\mathbb{E} V_i^r(t) = [U_i(t)]^r$, for $i \in I$. By virtue of Dini-derivation, (8), and the Itô formula, we obtain

\[
D^+ \mathbb{E} V_i(t) = r [U_i(t)]^{r-1} D^+ U_i(t)
\]

\[
\leq -\mu_i [U_i(t)]^r + \sum_{j=1}^{n} p_{ij} [U_i(t)]^r U_j(t) + \sum_{j=1}^{n} q_{ij} \sup_{-\tau \leq \theta \leq 0} [U_i(t)]^r U_j(t + \theta)
\]

\[
+ \sum_{j=1}^{n} \int_{0}^{\infty} k_{ij}(s) [U_i(t)]^r U_j(t - s) ds.
\]

Then, it follows from (22) that

\[
D^+ U_i(t) \leq \frac{1}{r} \left(-\mu_i U_i(t) + \sum_{j=1}^{n} p_{ij} U_j(t) + \sum_{j=1}^{n} q_{ij} \sup_{-\tau \leq \theta \leq 0} U_j(t + \theta) + \sum_{j=1}^{n} k_{ij}(s) U_j(t - s) ds \right).
\]

Combining (21) and (23), we get $D^+ U_i(t^*) \leq D^+ W_i(t^* - t_k)$, which contradicts with (18). Thus, $U_i(t) \leq W_i(t_k - t_0)$ holds for all $t \in (t_k, t_{k+1})$. That is, (13) holds for all $t \in (t_k, t_{k+1})$.

For case 2, we have that (13) holds for all $t \in [t_0, t_k)$ and does not hold at t_k. Thus, for some $i \in I$,

\[
\mathbb{E} [V_i(t_k)] \leq \zeta_i \mathbb{E} V_i(t_k) + \left(\sum_{j=1}^{n} a_{ij} \right) \left(\mathbb{E} V_i(t_k^{-}) \right)^{1/r} \left(\mathbb{E} V_j(t_k^{-}) \right)^{1/r}
\]

\[
\leq \zeta_i \mathbb{E} [V(t_0)]^N(t_i^{-}, t_k) \hat{\varphi} \exp(-r\lambda (t_k^{-} - t_0))
\]

\[
+ \left(\sum_{j=1}^{n} a_{ij} \right) \mathbb{E} [V(t_0)]^N(t_i^{-}, t_k) \hat{\varphi} \exp(-r\lambda (t_k^{-} - t_0))^{1/r} \left(\mathbb{E} V(t_0) \right)^N(t_i^{-}, t_k) \hat{\varphi} \exp(-r\lambda (t_k^{-} - t_0))^{1/r}
\]

\[
\leq \left(\zeta_i + \sum_{j=1}^{n} a_{ij} \right) \mathbb{E} [V(t_0)]^N(t_i^{-}, t_k) \hat{\varphi} \exp(-r\lambda (t_k^{-} - t_0))
\]

\[
\leq \mathbb{E} [V(t_0)]^N(t_i^{-}, t_k) \hat{\varphi} \exp(-r\lambda (t_k^{-} - t_0)),
\]

which contradicts with (24). Therefore, (13) holds for $t = t_k$.

Therefore, by using the mathematical induction, we see that (13) is satisfied for all $t \in [t_0, \infty)$.

Step 3. Finally, we will prove that system (1) is SGES. In fact, it follows from condition (i) and Jensen’s inequality in [29] that

\[
\mathbb{E} [V_i(t_k)] \leq \mathbb{E} [V(t_0)]^N(t_i^{-}, t_k) \hat{\varphi} \exp(-r\lambda (t_k^{-} - t_0))
\]

\[
\leq \mathbb{E} [V(t_0)]^N(t_i^{-}, t_k) \hat{\varphi} \exp(-r\lambda (t_k^{-} - t_0))
\]

\[
= \mathbb{E} [V(t_0)]^N(t_i^{-}, t_k) \hat{\varphi} \exp(-r\lambda (t_k^{-} - t_0))
\]

\[
\leq c \mathbb{E} [\|\xi\|_{\mathbb{H}}] \mathbb{E} [\|\xi\|_{\mathbb{H}}] \hat{\varphi} \exp(-r\lambda (t_k^{-} - t_0)).
\]

(26)
Complexity

According to (iv), we obtain \(-r\lambda + (r/\tau_c)\ln r < 0\). This fact together with and (26) gives

\[
E[V_i(t)] \leq \zeta E[\|\xi\|_i]^{r/r_c\times \ln r} \exp((-r\lambda + r/\tau_c \times \ln r)(t - t_0)).
\]

(27)

By using Markov inequality in [29] and (27), we have that for arbitrary \(\epsilon \in (0, 1)\) and \(i \in I\), \(P[V_i(t) \leq \epsilon^{-1} \zeta E[\|\xi\|_i]^{r/r_c\times \ln r} \exp((-r\lambda + r/\tau_c \times \ln r)(t - t_0))] \geq 1 - \epsilon\), which together with (i) yields

\[
P(|x(t)| \leq \phi(E[\|\xi\|_i], t - t_0)) \geq 1 - \epsilon,
\]

(28)

where \(\phi(a, t) = v^{-1} [\epsilon^{-1} \zeta(a)E[\|\xi\|_i]^{r/r_c\times \ln r} \exp((-r\lambda + r/\tau_c \times \ln r)t)]\). This verifies that system (1) is SGES. \(\square\)

\[
\mathcal{L}V_i(t_i, x_i, \sum_{0}^{\infty} k(s)x(t - s)ds) \leq -\mu V_i(t) + \sum_{j=1}^{n} p_{ij} V_j(t) + \sup_{-r < t < 0} \sum_{j=1}^{n} q_{ij} V_j(t + \theta) + \sum_{j=1}^{n} 0 \int_{0}^{\infty} \kappa_{ij}(s) \phi_V(t - s)ds,
\]

where \(\mu - P - Q - K\) is a nonsingular M-matrix, \(\theta \in [-r, 0]\).

(C): \(i \in I\) and \(k \in N_{>0}\).

\[
V_i(t_k) \leq \zeta V_i(t_k) + \left(\sum_{j=1}^{n} o_{ij}\right) V_i(t_k). \tag{30}
\]

\[
\mathcal{T} := \sup \left\{\eta > 0: \alpha_i \eta - \mu_i \alpha_i + \sum_{j=1}^{n} p_{ij} \alpha_j + \sum_{j=1}^{n} q_{ij} \alpha_j \exp(\tau \eta) + \sum_{j=1}^{n} 0 \int_{0}^{\infty} k_{ij}(s)\exp(\eta s)\alpha_j ds < 0\right\},
\]

where \(i \in I\), \(\alpha \in \Omega_M(\mu - P - Q - K)\), with \(\min_{1 \leq i \leq n} \{\alpha_j\} \geq 1\), \(\overline{\alpha} = \max \{\alpha_i\}\).

Then, system (1) is SGES.

Remark 1. In Theorem 1, a difficulty is that condition \(\zeta E > E\) destabilizes system (1). To overcome this difficulty, we give a lower bound by using the relation between the ADT and impulses, and it may guarantee that the number of destabilizing impulses can be reduced. As a consequence, we can prove that system (1) is SGES.

Corollary 1. For system (1), assume that there is locally Lipschitz Lyapunov function \(V_i: \mathbb{R}_{\geq 0} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}, i \in I, r = 1, \zeta \in \mathcal{K}_{\infty}, \zeta \in \mathcal{K}_{\infty}, \mu = \text{diag}(\mu_1, \mu_2, \ldots, \mu_n), \zeta = \text{diag}(\zeta_1, \zeta_2, \ldots, \zeta_n), \) and nonnegative matrices \(P = [p_{ij}]_{\text{non}}, Q = [q_{ij}]_{\text{non}}, O = [o_{ij}]_{\text{non}}\), where \(K = \int_{0}^{\infty} k_{ij}(s)ds\) is continuous function and \(k_{ij}(s) \geq 0\) such that the following conditions hold.

(A): \(i \in I, t \in \mathbb{R}_{\geq 0}, \nu(|x(t)|) \leq V_i(t) \leq \zeta (|x(t)|); \)

(B): \(i \in I, t \in \mathbb{R}_{\geq 0} \backslash \mathcal{T}\).

(D): \(r_c > \max_{r \in [0, L]} (\zeta + \sum_{j=1}^{n} o_{ij})/\lambda, \) where \(\lambda \in (0, L), V_i(t) = V_i(t, x(t)).\)

The next theorem will show that the impulses can promote the stability of system (1) even if system (1) without impulses may be unstable.

Theorem 2. For system (1), assume that that there exist locally Lipschitz Lyapunov function \(V_i: \mathbb{R}_{\geq 0} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}, \) for all \(i \in I, r > 1, \nu \in \mathcal{K}_{\infty}, \zeta \in \mathcal{K}_{\infty}, \mu = \text{diag}(\mu_1, \mu_2, \ldots, \mu_n), \zeta = \text{diag}(\zeta_1, \zeta_2, \ldots, \zeta_n), \) and nonnegative matrices \(P = [p_{ij}]_{\text{non}}, Q = [q_{ij}]_{\text{non}}, O = [o_{ij}]_{\text{non}}\), where \(K = \int_{0}^{\infty} k_{ij}(s)ds\) be continuous function, \(k_{ij}(s) \geq 0\) and \((\zeta + O)E < E:\)
\[(A1) \quad i \in \mathcal{I}, \quad t \in \mathbb{R}_{\geq 0}, \quad \nu(|x(t)|) \leq V_i(t) \leq \zeta(|x(t)|); \]
\[(A2) \quad i \in \mathcal{I}, \quad t \in \mathbb{R}_{\geq 0} \setminus \mathcal{T}. \]

\[\mathbb{E}[V_i(t) \int_0^\tau k(s)(t - s)ds \leq \mu_i \mathbb{E}[V_i(t)] + \sum_{j=1}^n p_{ij}(EV_j(t))^{1/r}(EV_j(t))^{1/r} \]
\[- \sup_{-\tau \leq s \leq 0} \sum_{j=1}^n q_{ij}(EV_j(t))^{1/r}(EV_j(t + \theta))^{1/r} \]
\[+ \sum_{j=1}^n \int_0^\infty k_{ij}(s)(EV_j(t))^{1/r}(EV_j(t - s))^{1/r} ds, \]
\[\text{where } \mu + P - Q + K \text{ is a nonsingular M-matrix, } \theta \in [-\tau, 0], r = (1 - r')^{-1}. \]
\[(A3) \quad i \in \mathcal{I} \text{ and } k \in \mathcal{N}_{\mathbb{R}_+}. \]

\[V_i(t_k) \leq \xi_i V_i(t_k) + \sum_{j=1}^n a_{ij}(V_i(t_k))^{1/r}(V_j(t_k))^{1/r}. \]
\[(33) \]

\[\bar{\lambda} = \inf \left\{ \omega > 0: -r\pi_i \omega + \mu_i \pi_i + \sum_{j=1}^n p_{ij} \pi_j - \sum_{j=1}^n q_{ij} \pi_j \exp(\tau \omega) + \sum_{j=1}^n \int_0^\infty k_{ij}(s) \exp(-\omega s) \pi_j ds < 0 \right\}. \]
\[(34) \]

\[\mu_i \pi_i + \sum_{j=1}^n p_{ij} \pi_j - \sum_{j=1}^n q_{ij} \pi_j + \sum_{j=1}^n \int_0^\infty k_{ij}(s) \pi_j ds > 0, \quad i \in \mathcal{I}. \]
\[(35) \]

\[\bar{\Pi}_i(\omega) = -r\pi_i \omega + \mu_i \pi_i + \sum_{j=1}^n p_{ij} \pi_j - \sum_{j=1}^n q_{ij} \pi_j \exp(\tau \omega) + \sum_{j=1}^n \int_0^\infty k_{ij}(s) \exp(-\omega s) \pi_j ds. \]
\[(36) \]

Obviously, it follows from (36) that \(\bar{\Pi}_i(0) > 0 \) and \(\bar{\Pi}_i(\infty) = -\infty \), where \(\omega \to \infty \). On the other hand, we have
\[\bar{\Pi}_i(\omega) = -r\pi_i - \tau \sum_{j=1}^n q_{ij} \pi_j \exp(\tau \omega) \]
\[= -\sum_{j=1}^n \int_0^\infty sk_{ij}(s) \exp(-\omega s) \pi_j ds. \]
\[(37) \]

Then \(\bar{\Pi}_i(\omega) < 0 \), and so there is a unique constant \(\omega_i > 0 \) such that \(\bar{\Pi}_i(\omega_i) = 0 \). Setting \(\bar{\lambda} = \min_{1 \leq i \leq n}(\omega_i) \), it is clear that there exists a constant \(\lambda > \bar{\lambda} > 0 \).

Step 2. Next, for \(i \in \mathcal{I} \) and \(\lambda > \bar{\lambda} \), then \((\xi + O)E < E \), we need to prove that
\[\mathbb{E}[V_i(t)] \leq \mathbb{E}[V(t_0)] \bar{\Pi}^{N(t_0)} \Pi \exp(r\lambda(t - t_0)), \]
\[(38) \]
Complexity

Now suppose that (38) is not true in some interval, then there are two cases:

Case 1. (38) is not true at the non-impulsive time of certain interval;

Case 2. (38) is not true at the impulsive time of certain interval.

For Case 1, there exists a $\Delta t > 0$ is arbitrarily small. Therefore, it follows from (41) and (42) that

$$D^*U_i(t^*) > D^*W_i(t^* - t_0).$$

(43)

By the definition of λ, we have

$$\lambda \pi_i > \frac{1}{r} \left(\mu_i \pi_i + \sum_{j=1}^{n} q_{ij} \pi_j \exp(\tau \lambda) + \sum_{j=1}^{n} \int_{0}^{\infty} k_{ij}(s) \exp(-\lambda s) \pi_j ds \right).$$

(45)

which together with (44) yields

$$D^*W_i(t^* - t_0) = \lambda \pi_i R(t^* - t_0) \exp(\lambda (t^* - t_0)).$$

(44)

where $\Delta t > 0$ is arbitrarily small. Therefore, it follows from (41) and (42) that

$$D^*U_i(t^*) > D^*W_i(t^* - t_0).$$

(43)

For convenience, define $W_i(t - t_0) = \hat{\pi} \exp(\lambda (t - t_0)), U_i(t) = [EV_i(t)]^{1/r}$. It is easy to check that (38) is equivalent to the following:

$$[EV_i(t)]^{1/r} \leq \max_{t_i \in \pi_i} \left\{ [EV(t_0)]^{1/r} \hat{\pi} \exp(\lambda (t - t_0)) \right\} = \max_{t_i \in \pi_i} [W_i(t - t_0)].$$

(39)

Now suppose that (38) is not true in some interval, then there are two cases:

Case 1. (38) is not true at the non-impulsive time of certain interval;

Case 2. (38) is not true at the impulsive time of certain interval.

For Case 1, there exists a k such that $U_i(t) \leq W_i(t - t_0)$ holds for all $t \in [t_0, t_k]$ and $i \in t$, and $U_i(t) \leq W_i(t - t_0)$ is not true for $i \in t$ and $t \in (t_k, t_{k+1})$. Define

$$t^* = \inf \{ t \in (t_k, t_{k+1}) : U_i(t) > W_i(t - t_0) \}.$$

(40)

Since $U_i(t)$ and $W_i(t - t_0)$ are continuous for $t \in \mathbb{R}_{\geq t_0} \setminus \mathbb{F}$, there exist t and t^* such that

$$U_i(t^*) = W_i(t^* - t_0),$$

(41)

$$U_i(t) > W_i(t - t_0), t \in (t^*, t^* + \Delta t).$$

(42)
Due to $U_i(t) = [EV_i(t)]^{1/r}$, then $EV_i(t) = [U_i(t)]^r$, for $i \in I$. By virtue of Dini-derivation and the Itô formula, we obtain $D^t EV_i(t) = \mathbb{E}ZV_i$ and

$$
D^t EV_i(t) = r[U_i(t)]^{r-1} D^t U_i(t) \leq \mu_i[U_i(t)] + \sum_{j=1}^n p_{ij}[(U_i(t))]^{1/r} U_j(t)
$$

$$
- \sum_{j=1}^n q_{ij} \sup_{-\infty \leq \theta \leq 0} [(U_i(t))]^{1/r} U_j(t + \theta) + \sum_{j=1}^n \int_0^{\infty} k_{ij}(s)[(U_i(t))]^{1/r} U_j(t + s)ds.
$$

Therefore, it follows from (47) that

$$
D^t U_i(t) \leq \frac{1}{r} \left(\mu_i U_i(t) + \sum_{j=1}^n p_{ij}(U_j(t)) - \sum_{j=1}^n q_{ij} \sup_{-\infty \leq \theta \leq 0} (U_j(t + \theta)) + \sum_{j=1}^n \int_0^{\infty} k_{ij}(s)(U_j(t + s))ds \right).
$$

Combining (46) and (48), we get $(EV_i(t))^{1/r} = D^t U_i(t^{*}) \leq D^t W_i(t^{*} - t_{i-1})$, which contradicts with (39). In the end, $U_i(t) \leq W_i(t - t_{i-1})$ holds for all $t \in (t_{i-1}, t_i]$. In other words, (39) holds for all $t \in (t_{i-1}, t_i]$.

For Case 2, (38) holds for all $t \in [t_0, t_k]$ and does not hold at t_k. Then, for some $i \in I$,

$$
\mathbb{E}[V_i(t_k)] \leq \zeta_i \mathbb{E}V_i(t_k) \left(\sum_{j=1}^n o_{ij} \right) (\mathbb{E}V_i(t_k))^{1/r}(\mathbb{E}V_j(t_{i-k}))^{1/r}
$$

$$
\leq \zeta_i \mathbb{E}[V(t_{i-1})]|\mathbb{P}^{N(t_{i-1})} \mathbb{P}^r \exp(\lambda(t_{i-k} - t_{i-1})) + \left(\sum_{j=1}^n o_{ij} \right)
$$

$$
\times \left(\mathbb{E}[V(t_{i-1})]|\mathbb{P}^{N(t_{i-1})} \mathbb{P}^r \exp(\lambda(t_{i-k} - t_{i-1})) \right)^{1/r} \left(\mathbb{E}[V(t_{i-1})]|\mathbb{P}^{N(t_{i-1})} \mathbb{P}^r \exp(\lambda(t_{i-k} - t_{i-1})) \right)^{1/r}
$$

$$
\leq \left(\zeta_i + \sum_{j=1}^n o_{ij} \right) \mathbb{E}[V(t_{i-1})]|\mathbb{P}^{N(t_{i-1})} \mathbb{P}^r \exp(\lambda(t_{i-k} - t_{i-1}))
$$

$$
\leq \mathbb{E}[V(t_{i-1})]|\mathbb{P}^{N(t_{i-1})} \mathbb{P}^r \exp(\lambda(t_{i-k} - t_{i-1}))
$$

which contradicts with (49). This verifies that (38) holds for $t = t_k$. Therefore, by using the mathematical induction, we see that (38) is valid for all $t \in [t_0, \infty)$.

Step 3. Finally, we will prove that system (1) is SGES. According to (A1) and Jensen’s inequality, we have

$$
\mathbb{E}[V(t_{i-1})]|\mathbb{P}^{N(t_{i-1})} \mathbb{P}^r \exp(\lambda(t_{i-k} - t_{i-1}))
$$

$$
\leq \mathbb{E}[V(t_{i-1})]|\mathbb{P}^{N(t_{i-1})} \mathbb{P}^r \exp(\lambda(t_{i-k} - t_{i-1}))
$$

$$
= \mathbb{E}[V(t_{i-1})]|\mathbb{P}^{N(t_{i-1})} \mathbb{P}^r \exp((r + r/T \ln \bar{\mu})(t_{i-k} - t_{i-1}))
$$

$$
\leq c \mathbb{E}[[\xi]|\mathbb{P}^{N(t_{i-1})} \mathbb{P}^r \exp((r + r/T \ln \bar{\mu})(t_{i-k} - t_{i-1}))
$$

It follows from condition (A4) that $r\lambda + (r/\tau)\ln \eta < 0$. The rest of the proof is similar to that in Theorem 1, and thus we omit it here. This completes the proof. □

Corollary 2. For system (1), assume that there is locally Lipschitz Lyapunov function V_i: $\mathbb{R}_{2n} \times \mathbb{R}^n \to \mathbb{R}_{2n}$. $i \in \mathbb{N}$, $r = 1$, $(\zeta + O)E < E$, $\nu \in \mathcal{F}_{\eta}$, $\theta \in \mathcal{C}_{\zeta}$, positive matrices $\mu = \text{diag}(\mu_1, \mu_2, \ldots, \mu_n)$, $\zeta = \text{diag}(\zeta_1, \zeta_2, \ldots, \zeta_n)$, and nonnegative matrices $P = [p_{ij}]_{n \times n}$, $Q = [q_{ij}]_{n \times n}$, $O = [o_{ij}]_{n \times n}$.

\[\mathcal{L}V_i(t, x_i, \int_0^\infty k(s)x(t - s)ds) \leq \mu_i V_i(t) + \sum_{j=1}^n p_{ij} V_j(t) - \sup_{-\tau \leq \theta_0 < 0} \sum_{j=1}^n q_{ij} V_j(t + \theta) + \sum_{j=1}^n \int_0^\infty k_{ij}(s)V_j(t - s)ds, \]

where $\mu + P - Q + K$ is a nonsingular M-matrix, $\theta \in [-\tau, 0]$.
(C): $i \in I$ and $k \in N_{\geq 0}$.
\[V_i(t_k) \leq \zeta_i V_i(t_k) + \left(\sum_{j=1}^n o_{ij} \right) V_j(t_k). \] (53)

Then, system (1) is SGES.

Remark 2. In Theorem 2, the condition $(\zeta + O)E < E$ shows that the impulses can do the contribution of the stability of system (1). Although system (1) may not be stable, we can give an upper bound by using the relation between ADT and impulses and prove that SIDSs with DDs and IDDs are SGES.

Remark 3. When $k_{ij} = 0$, $r = 2$, Theorems 1 and 2 will be reduced to the case of stochastic differential systems with only DDs, which was studied in [12]. It should be mentioned that [12] only considered time-delay terms coupled with nondelay terms. However, we consider the effect of mixed delay terms including the DDs item and IDDs item coupled

Where $K := \int_0^\infty k_{ij}(s)ds$, μ_i is continuous function and $k_{ij}(s) \geq 0$ such that the following conditions hold:
(A): $i \in I$, $t \in \mathbb{R}_{2\tau} \setminus \mathcal{F}$,
(B): $i \in I$, $t \in \mathbb{R}_{\tau} \setminus \mathcal{F}$.

\[\lambda + (1/\tau)\ln \eta < 0, \quad \mu_i = \max_{\pi \in \pi_i} \{ \zeta_i + \sum_{j=1}^n o_{ij} \} \]
and $\lambda > \lambda$ and $V_i(t) = V_i(t, x(t))$. with delay-free item, which also appears in the $\mathcal{L}V$-operator differential inequality. Thus, our results not only avoid to use elementary inequality to analyze cross term problem but also is more representative.

Remark 4. Conditions (ii) and (A2) are the vector version of the Halandy inequality in [9], which is an important tool in the stability analysis of SDSs. Especially, they also play an important role in discussing stochastically perturbed neural networks and stochastically generalized ecological systems.

4. Two Examples

In this section, two numerical examples are used to check the validity of our theories.

Consider a two-neuron stochastically perturbed neural network with impulsive control.

\[\begin{align*}
 dx(t) &= \left[Ax(t) + Bf(x(t)) + Cf(x_t) + Df\left(\int_0^t k(s)x(t - s)ds \right) \right]dt \\
 &+ \sigma(t, x(t))dw(t), t \in \mathbb{R}_{\tau} \setminus \mathcal{F}, \\
 x(t_k) &= hX(t_k), \quad t_k \in \mathcal{F}, k = 1, 2, \ldots n,
\end{align*} \] (55)
where $x(t) \in \mathbb{R}^2$, \mathcal{T} is a given impulsive time sequence. Define $f(x) = (f_1(x_1), f_2(x_2)) = (0.05 \cdot \tanh(x_1), 0.05 \cdot \tanh(x_2))$, $x_i = (x_1(t - \tau), x_2(t - \tau))$, then we have

$$0 \leq (f_i(z_1) - f_i(z_2))/(z_1 - z_2) \leq 0.05,$$

for all $z_1, z_2 \in \mathbb{R}$ and $i = 1, 2$.

4.1. Example I. Set

$$A = \begin{bmatrix} -2.4 & 0 \\ 0 & -2.8 \end{bmatrix},$$

$$B = \begin{bmatrix} 1.6 & 3.5 \\ 0.3 & 0.4 \end{bmatrix},$$

$$C = \begin{bmatrix} 0.1 & 0.6 \\ 0.4 & 0.1 \end{bmatrix},$$

$$D = \begin{bmatrix} 0.4 & 0.5 \\ 0.3 & 0.1 \end{bmatrix},$$

$$\sigma = \begin{bmatrix} 0.2 \cdot x_1(t) & 0 \\ 0 & 0.2 \cdot x_2(t) \end{bmatrix},$$

$$h = \begin{bmatrix} 1.5 & 0 \\ 0 & 1.5 \end{bmatrix},$$

Then

$$\mathcal{L}V_1(t, x(t)) \leq (-2.32p + 0.02(p^2 - p))|x_1(t)|^p + 0.175p|x_1(t)|^{p-1}|x_2(t)| + 0.05p|x_1(t)|^{p-1}|x_1(t - \tau)|$$

$$+ 0.03p|x_1(t)|^{p-1}|x_2(t - \tau)| + 0.02p|x_1(t)|^{p-1} \int_0^6 e^{-s} |x_1(t - s)| ds$$

$$+ 0.025p|x_1(t)|^{p-1} \int_0^6 \frac{e^{-s}}{1 - e^{-s}} |x_1(t - s)| ds,$$

$$\mathcal{L}V_2(t, x(t)) \leq (-2.78p + 0.02(p^2 - p))|x_2(t)|^p$$

$$+ 0.015p|x_2(t)|^{p-1}|x_1(t)| + 0.02p|x_2(t)|^{p-1}|x_1(t - \tau)|$$

$$+ 0.005p|x_2(t)|^{p-1}|x_2(t - \tau)| + 0.015p|x_2(t)|^{p-1} \int_0^6 e^{-s} |x_2(t - s)| ds$$

$$+ 0.005p|x_2(t)|^{p-1} \int_0^6 \frac{e^{-s}}{1 - e^{-s}} |x_2(t - s)| ds V_i(t_k) \leq 1.5V_i(t_k) (i = 1, 2).$$
Then, we can easily obtain

\[
\begin{align*}
\mu &= \begin{bmatrix} 2.32p - 0.02(p^2 - p) & 0 \\ 0 & 2.78p - 0.02(p^2 - p) \end{bmatrix}, \\
P &= \begin{bmatrix} 0 & 0.175p \\ 0.015p & 0 \end{bmatrix}, \\
Q &= \begin{bmatrix} 0.005p & 0.03p \\ 0.02p & 0.05p \end{bmatrix}, \\
K &= \begin{bmatrix} 0.02p & 0.025p \\ 0.015p & 0.005p \end{bmatrix}, \\
\zeta &= \begin{bmatrix} 1.5 & 0 \\ 0 & 1.5 \end{bmatrix}.
\end{align*}
\]

(59)

Thus, we have that \(\mu - P - Q - K\) is a nonsingular M-matrix, for any \(p \in (1, 1.124376)\). In particular, when \(p = 4, \alpha_1 = 1, \alpha_2 = 1.5, \tau = 1\), we can calculate \(\bar{\lambda} = 0.5453\) and \(\tau_c = 2.9743\), which verifies that all the conditions of Theorem 1 are satisfied. Thus, system (1) is SGES. Choosing \(\tau_c = 6\) and a proper \(\mathcal{T}\), the initial state \(x_0 = (0.7, -0.6)\), the sample path of solution is given in Figure 1.

4.2. Example II. Set

\[
\begin{align*}
A &= \begin{bmatrix} -0.04 & 0 \\ 0 & -0.01 \end{bmatrix}, \\
B &= \begin{bmatrix} 1.6 & 3.5 \\ 0.5 & 0.4 \end{bmatrix}, \\
C &= \begin{bmatrix} -0.1 & -0.6 \\ -0.4 & -0.1 \end{bmatrix}, \\
D &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \\
\sigma &= \begin{bmatrix} 2 \ast x_1(t) & 0 \\ 0 & 2 \ast x_2(t) \end{bmatrix}, \\
h &= \begin{bmatrix} 0.75 & 0 \\ 0 & 0.75 \end{bmatrix},
\end{align*}
\]

(60)

where \(k(s) = e^{-s}/1 - e^{-6}\).

Define \(V(t, x(t)) = (V_1(t, x(t)), V_2(t, x(t)))\), where \(V_i(t, x(t)) = |x_i(t)|^p, i = 1, 2 (p > 1)\). Applying the Itô formula, we get

\[
\begin{align*}
\mathcal{L}V_1(t, x_t) &\leq (0.04p + 2(p^2 - p))|x_1(t)|^p + 0.175p|x_1(t)|^{p-1}|x_2(t)| \\
&\quad - 0.005p|x_1(t)|^{p-1}|x_1(t - \tau)| - 0.03p|x_1(t)|^{p-1}|x_2(t - \tau)| \\
&\quad + 0.05p|x_1(t)|^{p-1}\int_0^t e^{-s}d|x_1(t - s)|ds,
\end{align*}
\]

(61)

\[
\begin{align*}
\mathcal{L}V_2(t, x_t) &\leq (0.01p + 2(p^2 - p))|x_2(t)|^p + 0.025p|x_2(t)|^{p-1}|x_1(t)| \\
&\quad - 0.02p|x_2(t)|^{p-1}|x_1(t - \tau)| - 0.005p|x_2(t)|^{p-1}|x_2(t - \tau)| \\
&\quad + 0.05p|x_2(t)|^{p-1}\int_0^t e^{-s}d|x_2(t - s)|ds.
\end{align*}
\]

By taking expectation on both sides of the inequality and using the Holder inequality, we have

\[
\begin{align*}
\mathbb{E}\mathcal{L}V_1(t, x_t) &\leq (0.04p + 2(p^2 - p))\mathbb{E}V_1(t) + 0.175p(\mathbb{E}V_1(t))^{p-1/p}(\mathbb{E}V_2(t))^{1/p} \\
&\quad - 0.005p(\mathbb{E}V_1(t))^{p-1/p}(\mathbb{E}V_1(t - \tau))^{1/p} - 0.03p(\mathbb{E}V_1(t))^{p-1/p}(\mathbb{E}V_2(t - \tau))^{1/p} \\
&\quad + 0.05p(\mathbb{E}V_1(t))^{p-1/p}\int_0^t e^{-s}(\mathbb{E}V_1(t - s))^{1/p}ds,
\end{align*}
\]

(62)

\[
\begin{align*}
\mathbb{E}\mathcal{L}V_2(t, x_t) &\leq (0.01p + 2(p^2 - p))\mathbb{E}V_2(t) + 0.025p(\mathbb{E}V_2(t))^{p-1/p}(\mathbb{E}V_1(t))^{1/p} \\
&\quad - 0.02p(\mathbb{E}V_2(t))^{p-1/p}(\mathbb{E}V_1(t - \tau))^{1/p} - 0.005p(\mathbb{E}V_2(t))^{p-1/p}(\mathbb{E}V_2(t - \tau))^{1/p} \\
&\quad + 0.05p(\mathbb{E}V_2(t))^{p-1/p}\int_0^t e^{-s}(\mathbb{E}V_2(t))^{1/p}ds,
\end{align*}
\]

(62)

\[
\mathbb{E}V_i(t_k) \leq 0.75\mathbb{E}V_i(t_k) (i = 1, 2).
\]
Then, we see that $\mu + P - Q + K$ is a nonsingular M-matrix for any $p \in (1, +\infty)$. Specially, when $p = 2$, $\pi_1 = 1$, $\pi_2 = 1.5$, $\tau = 1$, we can calculate $\bar{\lambda} = 1.9695$ and $\tau_c < 0.1661$. Thus, all the conditions of Theorem 2 are true, which verifies that (1) is SGES. Choosing $\tau_c = 0.16$ and a proper T, the initial state $x_0 = (0.7, -0.6)$, the sample path of solution is presented in Figure 2.

5. Conclusion

In this paper, we have used the ADT condition and VLF to study SGES of SIDSs with DDs and IDDs under two cases: unstable impulse dynamics situation and stable impulse dynamics situation. By using VLF and ADT conditions, two sufficient stability criteria are established. One is that the lower bound of the mixed system relative to the average dwell-time is SGES when continuous SIDSs with DDs and IDDs is stable and the impulsive effect is unstable. The other is that the impulses can stabilize the system successfully under the upper bound condition of the given average dwell-time when continuous SIDSs with DDs and IDDs could not stochastic stable. Finally, two examples are provided to verify the effectiveness of our results. In future, we will consider apply our method to neural networks [30, 31] and semi-Markov switching systems [32–34].

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China (61773217), the Natural
Science Foundation of Hunan Province (2020J4054), the Hunan Provincial Science and Technology Project Foundation (2019RS1033), and the Scientific Research Fund of Hunan Provincial Education Department (18A013).

References

