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0e phenomena, molecular path in a liquid or a gas, fluctuating price stoke, fission and fusion, quantum field theory, relativistic
wave motion, etc., are modeled through the nonlinear time fractional clannish random Walker’s parabolic (CRWP) equation,
nonlinear time fractional SharmaTassoOlver (STO) equation, and the nonlinear space-time fractional KleinGordon equation.0e
fractional derivative is described in the sense of conformable derivative. From there, the (G′/G, 1/G)-expansion method is found
to be ensuing, effective, and capable to provide functional solutions to nonlinear models concerning physical and engineering
problems. In this study, an extension of the (G′/G, 1/G)-expansion method has been introduced. 0is enhancement establishes
broad-ranging and adequate fresh solutions. In addition, some existing solutions attainable in the literature also confirm the
validity of the suggested extension. We believe that the extension might be added to the literature as a reliable and efficient
technique to examine a wide variety of nonlinear fractional systems with parameters including solitary and periodic wave
solutions to nonlinear FDEs.

1. Introduction

0e subject FDEs can be considered as a generalization of the
typical ordinary differential equations (ODEs). 0e advan-
tages of the FDEs become apparent for us to understand real
world problems. In fact, the FDEs have attracted significant
attention to the past couple of decades due to their relatively
much effectiveness than ODEs. 0ere are several definitions
of fractional derivatives, as for instance, the Rie-
mannLiouville derivative, the Caputo derivative, and the
conformal fractional derivative [1–3]. Recently, Khalil et al.
[4] proposed a compatible definition of fractional derivative
called the conformable fractional derivative. 0erefore,
several properties related to this new definition have been
studied. Jarad et al. [5] used conformable type derivatives
defined in [6] to generate new type of generalized fractional
derivatives with memory effect. In [7, 8], the authors used
conformable derivatives and integrals to formulate new
generalized Liapunov-type inequality. 0e exact solutions of

nonlinear FDEs play fundamental role in describing dif-
ferent qualitative and quantitative features of nonlinear
complex physical phenomena. For this reason, researchers
have proposed different methods to obtain exact solutions to
nonlinear FDEs such as exp(− φ(ξ))-expansion method
[9–12], the (G′/G)-expansion method [13–19], auxiliary
equation method [20, 21], (G′/G, 1/G)-expansion method
[22–27] the trial equation method [28, 29], fractional sub-
equation method [30, 31], modified simple equation method
[32], generalized Kudrayshov method [33, 34], and others
[35–38].

In this study, we introduce an extension of the
(G′/G, 1/G)-expansion method for analyzing nonlinear
FDEs in mathematical physics, engineering, and applied
mathematics. To demonstrate the reliability and advantages
of the suggested extension, the time-fractional CRWP
equation, the time fractional STO equation, and the space-
time fractional KleinGordon equation are examined and
further broad-ranging and new families of exact wave
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solutions are established. 0is new extension can be applied
to further nonlinear FDEs which can be done in forthcoming
work.

2. Conformable Fractional Derivative and Its
Important Properties

In the last years, Khalil et al. [4] introduced a simple, inter-
esting, and compatible with typical definition of derivative
named conformable fractional derivative, which can rectify the
deficiencies of the other definitions. One can also find several
useful studies related to this new definition in [5–8]. In [39], the
geometrical and physical interpretations of this definition are
investigated and the potential applications in science and
engineering are pointer out. 0e conformable fractional de-
rivative of a function g of order β is defined as

Tβ(g)(t) � lim
x⟶0

g t + x t
1− β

􏼐 􏼑 − g(t)

x
, (1)

where g: [0, ∞)⟶ R, t> 0 and β ∈ (0, 1). Some impor-
tant properties of above definition are given below:

(i) Tβ(ag + bf) � aTβ(g) + bTβ(f), ∀ a, b ∈ R

(ii) Tβ(tμ) � μtμ− β, ∀ μ ∈ R

(iii) Tβ(λ) � 0, for each constant function g(t) � λ
(iv) Tβ(gof)(t) � t1− βf′(t)g′(f(t))

3. Methodology

In this section, we will suggest an extension of the
(G′/G, 1/G)-expansion method to ascertain the analytic
solutions to nonlinear FDEs. We begin with considering the
second-order linear ODE:

G″(ξ) + λG(ξ) − μ � 0. (2)

We choose

ϕ �
G′
G

,

ψ �
1

G′
.

(3)

0us, from equation (2) and (3), it is found

(1/ϕ)′ � λ
1
ϕ

􏼠 􏼡

2

− μ ψ
1
ϕ

􏼠 􏼡 + 1,

ψ′ � λ ψ
1
ϕ

􏼠 􏼡 − μ ψ2
.

(4)

From the different general solutions of the linear ODE
(2), we attain the following:

Case 1: when λ< 0, the hyperbolic function solution is

G(ξ) � A1sinh
���
− λ

√
ξ + A2cosh

���
− λ

√
ξ +

μ
λ
, (5)

and thus we obtain

ψ′ �
− λ

λ2σ + μ2
λ

1
ϕ

􏼠 􏼡

2

− 2μψ
1
ϕ

􏼠 􏼡 + 1⎡⎣ ⎤⎦, (6)

where σ � A2
1 − A2

2 and A1, A2 are arbitrary constants.
Case 2: when λ> 0, the trigonometric function solution
is

G(ξ) � A1 sin
�
λ

√
ξ + A2 cos

�
λ

√
ξ +

μ
λ

, (7)

and corresponding relation is

ψ2
�

λ
λ2σ − μ2

λ (1/ϕ)
2

− 2μψ (1/ϕ) + 1􏽨 􏽩, (8)

where σ � A2
1 + A2

2 and A1 and A2 are arbitrary
constants.
Case 3: when λ � 0, the rational function solution is

G(ξ) �
μ
2
ξ2 + A1ξ + A2, (9)

and thus it is found

ψ2
�

1
A
2
1 − 2μA2

− 2μψ
1
ϕ

􏼠 􏼡 + 1􏼢 􏼣, (10)

where A1 and A2 are arbitrary constants.
Let us consider a general nonlinear FDE:

P u, D
α
t u, D

α
xu, D

α
yu, D

α
t D

α
t u,􏼐 􏼑 � 0, 0< α< 1, (11)

where Dα
t u, Dα

xu and Dα
yu are the conformable fractional

derivatives of the wave function u with respect to spatial
variables x andy and the temporal variable t, and P is a
polynomial of u � u(x, y, t, . . .) and its various partial
derivatives.

0e main steps of the new extension of the
(G′/G, 1/G)-expansion method to seek exact solutions of
nonlinear FDEs are as follows:

Step 1: we estimate the new form of the fractional wave
variable:

u(x, y, t) � U(ξ),

ξ � k
x
α

α
+ l

y
α

α
± v

t
α

α
,

(12)

where k and l are nonzero constants and v is the wave
velocity to be determined later. 0e complex wave
transformation (12) translates equation (11) into an
ODE as follows:
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P U, U′, U″, . . .( 􏼁 � 0. (13)

Step 2: suppose that the general solution of nonlinear
ODE (13) can be expressed by a polynomial in (1/ϕ)

and ψ as

U(ξ) � 􏽘
N

i�0
ai

1
ϕ

􏼠 􏼡

i

+ 􏽘

N

i�0
bi

1
ϕ

􏼠 􏼡

i

ψ , (14)

where G � G(ξ) satisfies the auxiliary linear ODE (2)
and ai and bi are arbitrary constants to be determined
later, and balancing the highest order derivative with
the nonlinear terms in equation (13), we can find the
positive integer N.
Step 3: inserting solution (14) into equation (13) and
utilizing (4) and (6) (here case 1 is selected as an ex-
ample), the left-hand side of equation (13) can be
converted into a polynomial in (1/ϕ) and ψ, where the
degree of ψ is not more than one. Equating all coef-
ficients of this polynomial to zero yield a set of algebraic
equations for ai, bi, k, l, v, A1, A2, λ (λ< 0), and μ.
Step 4: the solution of the algebraic equations found in
the step 3 can be found with the aid of Maple software
package. Making use of the values of
ai, bi, k, l, v, A1, A2, λ, and μ into (14), we might
determine exact solutions expressed by hyperbolic
functions of equation (13).
Step 5: similar to step 3 and step 4, substituting (14) into
equation (13) and utilizing equation (4) and (6) (or
equation (4) and (10)), we can get the exact solutions of
equation (13) expressed by the trigonometric functions
(or expressed by the rational functions).

4. Determination of Solutions

In this paragraph, we will search out solutions to three
conformable FDEs as appertain of the new extension of the
(G′/G, 1/G)-expansion method.

4.1. Time Fractional CRWP Equation. First, we consider the
time fractional CRWP equation [22, 40]:

D
α
t u − ux + 2uux + uxx � 0, 0< α≤ 1. (15)

0e ensuing wave transformation is

u(x, t) � U(ξ),

ξ � kx − c
t
α

α
,

(16)

where k is the wave number and c is the velocity; reducing
the equation (15) into the subsequent ODE, we get

− (c + k)U′ + 2kUU′ + k
2
U″ � 0. (17)

Integrating (17) once, we find

− (c + k)U + kU
2

+ k
2
U′ + ξ0 � 0, (18)

where ξ0 is a constant of integration. It is clear that the
homogeneous balance between U2 and U′ present in
equation (18) gives N � 1. 0erefore, the shape of the exact
solution of equation (18) is

U(ξ) � a0 + a1
1
ϕ

􏼠 􏼡 + b1ψ. (19)

0ere are three cases to be considered:

Case 1: when λ< 0, substituting solution (19) into
equation (18) and utilizing (4) and (6), equation (18)
can be transmuted to a polynomial in (1/ϕ) and ψ.
Equalizing its coefficients to zero yields a set of alge-
braic equations in a0, a1, b1, k, c, σ, λ, μ, and ξ0:

1
ϕ

􏼠 􏼡

2

:
b1k

2μ λ2

λ2σ + μ2
−

b
2
1kλ

2

λ2σ + μ2
+ a

2
1k + a1k

2λ � 0,

1
ϕ

􏼠 􏼡ψ:
2b

2
1kλμ

λ2σ + μ2
−
2b1k

2μ2 λ
λ2σ + μ2

− a1k
2μ + b1k

2λ + 2a1b1k � 0,

1
ϕ

􏼠 􏼡: a1k − a1c + 2a0a1k � 0,

ψ: b1k + 2a0b1k − b1c � 0,

ψ0
:

b1k
2μ λ

λ2σ + μ2
−

b
2
1kλ

λ2σ + μ2
+ a

2
0k − a0c + a0k + a1k

2
+ ξ0 � 0.

(20)

Resolving these algebraic equations by Maple software
package, we attain the following values:

a0 �
c + k

2k
,

a1 � − kλ,

b1 � μk,

ξ0 �
4k

4λ + c
2

+ 2ck + k
2

4k
,

(21)

a0 �
c + k

2k
,

a1 � −
1
2

kλ,

b1 �
1
2

k(μ∓λ
���
− σ

√
),

ξ0 �
k
4λ + c

2
+ 2ck + k

2

4k
,

(22)

where k and c are free constants.
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Inserting the values of the parameters assembled in (21)
into solution (19) along with (6) and (16), the following
wide-ranging hyperbolic function solution is
ascertained:

u1(x, t) �
c + k

2k
+ k

���
− λ

√ A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

A1sinh
���
− λ

√
ξ + A2cosh

���
− λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

+
μκ
���
− λ

√
1

A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

􏼠 􏼡. (23)

In particular, if we set A1 � 0, A2 ≠ 0, and μ � 0 (or
A2 � 0, A1 ≠ 0 and μ � 0) into the solution (23), we
obtain the successive singular kink and kink soliton
solutions to the CRWP equation (15), respectively:

u11 �
c + k

2k
+ k

���
− λ

√
coth

���
− λ

√
ξ, (24)

u12 �
c + k

2k
+ k

���
− λ

√
tanh

���
− λ

√
ξ, (25)

where ξ � kx − c(tα/α).
Furthermore, by means of the parameter values
gathered in (22), we derive

u2(x, t) �
c + k

2k
+
1
2

k
���
− λ

√ A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

A1sinh
���
− λ

√
ξ + A2cosh

���
− λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

+
κ

2
���
− λ

√
μ∓ λ

���
− σ

√

A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

􏼠 􏼡.

(26)

Since A1 and A2 are integral constants, one might select
their values spontaneously. 0us, if we select A1 � 0,
A2 > 0, and μ � 0 (or A2 � 0, A1 > 0, and μ � 0) into
solution (26), we gain the following solitary wave so-
lutions to the CRWP equation, respectively:

u21 �
c + k

2k
+
1
2

k
���
− λ

√
(coth

���
− λ

√
ξ ± csc h

���
− λ

√
ξ), (27)

u22 �
c + k

2k
+
1
2

k
���
− λ

√
(tanh

���
− λ

√
ξ ± i sec h

���
− λ

√
ξ), (28)

where ξ � kx − c(tα/α).
Case 2: when λ> 0, embedding solution (19)
int(1/ϕ)o (18) and putting in use (4) and (8),
equation (18) becomes polynomial in and ψ.
Computing the action similar to case 1 and after
resolving the algebraic equations, we ascertain the
following values:

a0 �
c + k

2k
,

a1 � − kλ,

b1 � μk,

ξ0 �
4k

4λ + c
2

+ 2ck + k
2

4k
,

(29)

a0 �
c + k

2k
,

a1 � −
1
2

kλ,

b1 �
1
2

k(μ ± λ
��
σ

√
),

ξ0 �
k
4λ + c

2
+ 2ck + k

2

4k
,

(30)

where k and c are arbitrary constants.
Substituting the values scheduled in (29) into solution
(19) along with (8) and (16), the succeeding trigono-
metric solution to the CRWP equation (15) is
established:

u3(x, t) �
c + k

2k
− k

�
λ

√ A1 cos
�
λ

√
ξ − A2 sin

�
λ

√
ξ

A1 sin
�
λ

√
ξ + A2 cos

�
λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

+
μk

�
λ

√
1

A1 cos
�
λ

√
ξ − A2 sin

�
λ

√
ξ

􏼠 􏼡.

(31)

Since A1 and A2 are free constants, we may set
A1 � 0, A2 ≠ 0, and μ � 0 (or A2 � 0, A1 ≠ 0, and
μ � 0) into solution (31), we derive the under
mentioned periodic wave solutions to the CRWP
equation:

u31 �
c + k

2k
+ k

�
λ

√
cot

�
λ

√
ξ, (32)

u32 �
c + k

2k
− k

�
λ

√
tan

�
λ

√
ξ, (33)
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where ξ � kx − c(tα/α).
By means of the values organized in (30), we extract the
following solution:

u4(x, t) �
c + k

2k
−
1
2

k
�
λ

√ A1 cos
�
λ

√
ξ − A2 sin

�
λ

√
ξ

A1 sin
�
λ

√
ξ + A2 cos

�
λ

√
ξ + μ/λ

􏼠 􏼡

− 1

+
k

2
�
λ

√
μ ± λ

��
σ

√

A1 cos
�
λ

√
ξ − A2 sin

�
λ

√
ξ

􏼠 􏼡.

(34)

Now, if we set A1 � 0, A2 > 0, and μ � 0 (or
A2 � 0, A1 > 0, and μ � 0) into solution (34), we obtain
other periodic wave solutions to the CRWP equation:

u41 �
c + k

2k
+
1
2

k
�
λ

√
(cot

�
λ

√
ξ∓i csc

�
λ

√
ξ), (35)

u42 �
c + k

2k
−
1
2

k
�
λ

√
(tan

�
λ

√
ξ∓ sec

�
λ

√
ξ), (36)

where ξ � kx − c(tα/α).
Case 3: when λ � 0, introducing (19) into equation (18)
and executing (4) and (10), equation (18) becomes a
polynomial in (1/ϕ) and ψ. Vanishing the coefficients
yields a set of algebraic equations, and solving this
system the following results are obtained:

a0 �
c + k

2k
,

a1 � 0,

b1 � μk,

ξ0 �
(c + k)

2

4k
.

(37)

Setting the values gathered in (37) into solution (19)
along with (10) and (16), we carry out the next rational
function solution to the CRWP equation:

u5 �
c + k

2k
+

k μ
μ ξ + A1

, (38)

where ξ � kx − c(tα/α).
0e obtained solutions can be compared with the so-

lutions accessible in the literature. We detect that, by setting
c � − k2λ + 2a0k − k and μ � − (λ2/4), the obtained solutions
(24) and (25) fully agree with the corresponding solutions
(3.19) and (3.20) established in [22], while the other solu-
tions are different.

4.2. General Time Fractional STO Equation. 0e conform-
able general time fractional STO equation [41–43] is

D
α
t u + 3βu

2
x + 3βu

2
ux + 3βuuxx + βuxxx � 0, t> 0, 0< α≤ 1,

(39)

where β is nonzero constant. 0e wave transformation is as
follows:

u(x, t) � U(ξ),

ξ � x + ω
t
α

α
,

(40)

where ω is the velocity of the travelling wave; converting
equation (39) into an ODE, we get

ωU′ + 3β U′( 􏼁
2

+ 3βU
2
U′ + 3βUU″ + βU′″ � 0. (41)

Integrating equation (41) once, we find

ωU + 3βUU′ + βU
3

+ βU′ � 0. (42)

Balancing U′ andU3 obtained from equation (42), we get
N � 1 0us, the solution structure of equation (42) is same
of solution (19). 0ree cases as described in Section 3 will be
discussed further:

Case 1: when λ< 0, placing the solution (19) into (42)
and utilizing (4) and (6), equation (42) modifies to a
polynomial in (1/ϕ) and ψ. Setting each coefficient of
the polynomial to zero yields a set of algebraic equa-
tions in a0, a1, b1, σ, λ, μ, β, andω. From these equations
with the help of Maple algebra software, we find the
ensuing results of constants:

a0 � ±
1
2

���
− λ

√
,

a1 � −
1
2
λ,

b1 �
1
2

(μ∓λ
���
− σ

√
),

ω � βλ,

(43)

a0 � 0,

a1 � −
1
2
λ,

b1 �
1
2

(μ∓λ
���
− σ

√
),

ω �
1
4
βλ,

(44)

a0 � 0,

a1 � − λ,

b1 � μ∓λ
���
− σ

√
,

ω � βλ,

(45)
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a0 � ±
���
− λ

√
,

a1 � − λ,

b1 � μ,

ω � 4βλ,

(46)

a0 � 0,

a1 � − λ,

b1 � μ,

ω � βλ,

(47)

a0 � 0,

a1 � − 2λ,

b1 � 2μ,

ω � 4βλ.

(48)

By means of parameter values sorted out in (43), along
with (6) and (40), the following hyperbolic function
solutions of the general time fractional STO equation
are obtained:

u1(x, t) � ±
1
2

���
− λ

√
+
1
2

���
− λ

√ A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

A1sinh
���
− λ

√
ξ + A2cosh

���
− λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

+
1

2
���
− λ

√
μ∓ λ

���
− σ

√

A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

􏼠 􏼡.

(49)

In solution (49), A1 and A2 are free parameters;
therefore, we freely can choose our values. 0us, if we
choose A1 � 0, A2 > 0, and μ � 0 or A2 � 0, A1 > 0, and
μ � 0, from solution (49), we obtain the under men-
tioned soliton solutions to the general time fractional
STO equation:

u11 � ±
1
2

���
− λ

√
(1 ± coth

���
− λ

√
ξ + csc h

���
− λ

√
ξ), (50)

u12 � ±
1
2

���
− λ

√
(1 ± tanh

���
− λ

√
ξ) ±

1
2

�
λ

√
sec h

���
− λ

√
ξ,

(51)

where ξ � x + βλ(tα/α).
Furthermore, by means of the values scheduled in (44),
we establish

u2(x, t) �
1
2

���
− λ

√ A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

A1sinh
���
− λ

√
ξ + A2cosh

���
− λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

+
1

2
���
− λ

√
μ∓ λ

���
− σ

√

A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

􏼠 􏼡.

(52)

Now, if we use A1 � 0, A2 > 0, and μ � 0 or A2 � 0,
A1 > 0, and μ � 0, in (52), we attain the next soliton
solutions to the general time fractional STO equation:

u21 �
1
2

���
− λ

√
(coth

���
− λ

√
ξ ± csc h

���
− λ

√
ξ), (53)

u22 �
1
2

���
− λ

√
tanh

���
− λ

√
ξ ±

1
2

�
λ

√
sec h

���
− λ

√
ξ, (54)

where ξ � x + (1/4)βλ(tα/α).
Moreover, by means of the values organized in (45), we
carry out

u3(x, t) �
���
− λ

√ A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

A1sinh
���
− λ

√
ξ + A2cosh

���
− λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

+
1
���
− λ

√
μ∓ λ

���
− σ

√

A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

􏼠 􏼡.

(55)

If we consider A1 � 0, A2 ≠ 0, and μ � 0 or
A2 � 0, A1 ≠ 0, and μ � 0, from solution (55), we derive
the solitary wave solutions given underneath:

u31 �
���
− λ

√
(coth

���
− λ

√
ξ ± csc h

���
− λ

√
ξ), (56)

u32 �
���
− λ

√
tanh(

���
− λ

√
ξ) ±

�
λ

√
sec h

���
− λ

√
ξ, (57)

where ξ � x + βλ(tα/α).
Similarly, making use of the values accumulated in
(46), we determine

u4(x, t) � ±
���
− λ

√
+

���
− λ

√ A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

A1sinh
���
− λ

√
ξ + A2cosh

���
− λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

+
μ
���
− λ

√
1

A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

􏼠 􏼡.

(58)

For A1 � 0, A2 ≠ 0, and μ � 0 or A2 � 0, A1 ≠ 0, and
μ � 0, the solution (58) generates the kink and singular
kink solutions given underneath:

u41 � ±
���
− λ

√
(1 ± coth

���
− λ

√
ξ), (59)

u42 � ±
���
− λ

√
(1 ± tanh

���
− λ

√
ξ), (60)

where ξ � x + 4βλ(tα/α).
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Likewise, with the help of the parametric values
amassed in (47), we achieve

u5(x, t) �
���
− λ

√ A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

A1sinh
���
− λ

√
ξ + A2cosh

���
− λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

+
μ
���
− λ

√
1

A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

􏼠 􏼡.

(61)

Choosing A1 � 0, A2 ≠ 0, and μ � 0 or A2 � 0, A1 ≠ 0,
and μ � 0, solution (61) turns into

u51 �
���
− λ

√
coth

���
− λ

√
ξ, (62)

u52 �
���
− λ

√
tanh

���
− λ

√
ξ, (63)

where ξ � x + βλ(tα/α).
For the values gathered in (48), we found

u6(x, t) � 2
���
− λ

√ A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

A1sinh
���
− λ

√
ξ + A2cosh

���
− λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

+
2μ
���
− λ

√
1

A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

􏼠 􏼡.

(64)

In particular, if we set A1 � 0, A2 ≠ 0, and μ � 0 (or
A2 � 0, A1 ≠ 0, and μ � 0), the solution (64) reduces to

u61 � 2
���
− λ

√
coth

���
− λ

√
ξ, (65)

u62 � 2
���
− λ

√
tanh

���
− λ

√
ξ, (66)

where ξ � x + 4βλ(tα/α).
Case 2: when λ> 0, we established by completing the
parallel course of algorithms to case 1 and the following
values for the constants:

a0 � ±
1
2

i
�
λ

√
,

a1 � −
1
2
λ,

b1 �
1
2

(μ ± λ
��
σ

√
),

ω � βλ,

(67)

a0 � 0,

a1 � −
1
2
λ,

b1 �
1
2

(μ ± λ
��
σ

√
),

ω �
1
4
βλ,

(68)

a0 � 0,

a1 � − λ,

b1 � μ ± λ
��
σ

√
,

ω � βλ,

(69)

a0 � ± i
�
λ

√
,

a1 � λ,

b1 � μ,

ω � 4βλ,

(70)

a0 � 0,

a1 � − λ,

b1 � μ,

ω � βλ,

(71)

a0 � 0,

a1 � − 2λ,

b1 � 2μ,

ω � 4βλ.

(72)

Substituting the sets of values ((67)–(72)) into solution
(19) along with (8) and (40), we get the trigonometric
function solutions for equation (39) as follows:

By means of (67), we obtain
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u7(x, t) � ±
1
2

i
�
λ

√
−
1
2

�
λ

√ A1 cos
�
λ

√
ξ − A2 sin

�
λ

√
ξ

A1 sin
�
λ

√
ξ + A2 cos

�
λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

+
1

2
�
λ

√
μ ± λ

��
σ

√

A1 cos
�
λ

√
ξ − A2 sin

�
λ

√
ξ

􏼠 􏼡.

(73)

If we consider A1 � 0, A2 > 0, and μ � 0 (or
A2 � 0, A1 > 0, and μ � 0) in (73), the periodic wave solu-
tions of equation (39) are found as follows:

u71 � ±
1
2

�
λ

√
(i ± cot

�
λ

√
ξ − csc

�
λ

√
ξ), (74)

u72 � ±
1
2

�
λ

√
(i∓ tan

�
λ

√
ξ + sec

�
λ

√
ξ), (75)

where ξ � x + βλ(tα/α).
0rough the values of the parameters gathered in (68),

we derive

u8(x, t) � −
1
2

�
λ

√ A1 cos
�
λ

√
ξ − A2 sin

�
λ

√
ξ

A1 sin
�
λ

√
ξ + A2 cos

�
λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

+
1

2
�
λ

√
μ ± λ

��
σ

√

A1 cos
�
λ

√
ξ − A2 sin

�
λ

√
ξ

􏼠 􏼡.

(76)

Since A1 and A2 are subjective constants, one may pick
their values freely. 0us, if we pick A1 � 0, A2 ≠ 0, and μ � 0
(or A2 � 0, A1 ≠ 0, and μ � 0), from (76), we found the
periodic wave solutions of equation (39) as follows:

u81 �
1
2

�
λ

√
(cot

�
λ

√
ξ∓ csc

�
λ

√
ξ), (77)

u82 � −
1
2

�
λ

√
(tan

�
λ

√
ξ∓ sec

�
λ

√
ξ), (78)

where ξ � x + (1/4)βλ(tα/α).
By virtue of the values scheduled in (69), we obtain

u9(x, t) � −
�
λ

√ A1 cos
�
λ

√
ξ − A2 sin

�
λ

√
ξ

A1 sin
�
λ

√
ξ + A2 cos

�
λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

+
1
�
λ

√
μ ± λ

��
σ

√

A1 cos
�
λ

√
ξ − A2 sin

�
λ

√
ξ

􏼠 􏼡.

(79)

If we set A1 � 0, A2 ≠ 0, and μ � 0 (or A2 � 0, A1 ≠ 0, and
μ � 0) into solution (79), we ascertain the following periodic
wave solutions to the general time fractional STO equation:

u91 �
�
λ

√
(cot

�
λ

√
ξ∓ csc

�
λ

√
ξ), (80)

u92 � −
�
λ

√
(tan

�
λ

√
ξ∓ sec

�
λ

√
ξ), (81)

where ξ � x + βλ(tα/α).
For the values accumulated in (70), we establish

u10(x, t) � ± i
�
λ

√
−

�
λ

√ A1 cos
�
λ

√
ξ − A2 sin

�
λ

√
ξ

A1 sin
�
λ

√
ξ + A2 cos

�
λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

+
μ
�
λ

√
1

A1 cos
�
λ

√
ξ − A2 sin

�
λ

√
ξ

􏼠 􏼡.

(82)

Setting A1 � 0, A2 ≠ 0, and μ � 0 (or A2 � 0, A1 ≠ 0, and
μ � 0), the solution (82) transformed to

u101 � ±
�
λ

√
(i ± cot

�
λ

√
ξ), (83)

u102 � ±
�
λ

√
(i∓ tan

�
λ

√
ξ), (84)

where ξ � x + 4βλ(tα/α).
Utilizing the values of the parameters arranged in (71),

we obtain

u11(x, t) � −
�
λ

√ A1 cos
�
λ

√
ξ − A2 sin

�
λ

√
ξ

A1 sin
�
λ

√
ξ + A2 cos

�
λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

+
μ
λ

1
A1 cos

�
λ

√
ξ − A2 sin

�
λ

√
ξ

􏼠 􏼡.

(85)

Now setting A1 � 0, A2 ≠ 0, and μ � 0 (or A2 � 0 and
μ � 0), the solution (85) becomes

u111 �
�
λ

√
cot

�
λ

√
ξ, (86)

u112 � −
�
λ

√
tan

�
λ

√
ξ, (87)

where ξ � x + βλ(tα/α).
Embedding the parametric values compiled in (72), we

find out

u12(x, t) � − 2
�
λ

√ A1 cos
�
λ

√
ξ − A2 sin

�
λ

√
ξ

A1 sin
�
λ

√
ξ + A2 cos

�
λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

+
2μ

�
λ

√
1

A1 cos
�
λ

√
ξ − A2 sin

�
λ

√
ξ

􏼠 􏼡.

(88)

Suppose that A1 � 0, A2 ≠ 0, and μ � 0 (or
A2 � 0, A1 ≠ 0, and μ � 0), then the solution (88) developed
into

u121 � 2
�
λ

√
cot

�
λ

√
ξ, (89)

u122 � − 2
�
λ

√
tan

�
λ

√
ξ, (90)

where ξ � x + 4βλ(tα/α).
From the obtained broad-ranging solutions, it is ob-

served that setting definite values of the associated pa-
rameters, we manage to determine some particular solutions
which coincide with those accessible in the literature and
some fresh solutions are established. It is seen that, by
putting β � d, the obtained solutions (53), (54), (77), and
(78) completely agree with the solutions (4.8), (4.7), (4.11),
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and (4.10), respectively, found in [43]. In addition to these
solutions, we found many more solutions that were not
found in any other studies.

4.3. Space-Time Fractional KleinGordon Equation. In this
subsection, we extract the closed form solutions to the space-
time fractional KleinGordon equation. Let us consider the
KleinGordon equation with space-time fractional order [44, 45]:

D
α
t D

α
t u( 􏼁 − D

α
x D

α
xu( 􏼁 − βu − cu

3
� 0, t> 0, 0< α≤ 1,

(91)

where β and c are nonzero constants. We apply the following
transformation for reducing equation (91) to an ODE:

u(x, t) � U(ξ),

ξ � k
x
α

α
− c

t
α

α
,

(92)

where k and c are nonzero constants. 0us, the space-time
fractional KleinGordon equation turns out as follows:

k
2

− c
2

􏼐 􏼑U″ + βU + cU
3

� 0. (93)

Balancing U″ and U3 in equation (93), we found N � 1.
On account of this, the structure of the solution of equation
(93) is identical to the shape of the solution of equation (19)
and therefore has not been repeated. 0ere are three cases
should be discussed as described in Section 3:

Case 1: when λ< 0, plugging in (19) into equation (93)
and utilizing (4) and (6), equation (93) will be con-
verted into a polynomial in (1/ϕ) and ψ. Equalizing the
coefficients of this polynomial to zero yields a set of
algebraic equations for a0, a1, b1, c, k, σ, λ, μ, β, and c.
Resolving these equations with the assistance of
computer algebra, like Maple software package, we
found the following values for the constants:

a0 � 0,

a1 � ±

��
λβ
c

􏽳

,

b1 � ± μ

��
β
λc

􏽳

,

c � ±

�������

2λk
2

+ β
2λ

􏽳

,

(94)

a0 � 0,

a1 � 0,

b1 � ±

�����
2λβσ

c

􏽳

,

c � ±

������

λk
2

− β
λ

􏽳

,

(95)

a0 � 0,

a1 � ±

��
λβ
c

􏽳

,

b1 � ±

��
β
λc

􏽳

(μ ± λ
���
− σ

√
),

c � ∓

�������

λk
2

+ 2β
λ

􏽳

,

(96)

where k, β, c, and μ are free parameters.
Inserting the sets of constant values from (94) to (96)
into solution (19) along with (6) and (92), the following
hyperbolic function solutions to the space-time frac-
tional KleinGordon are obtained:
By means of the values assembled in (94), we attain

u1(x, t) � ±

���
− β
c

􏽳
A1cosh

���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

A1sinh
���
− λ

√
ξ + A2cosh

���
− λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

∓
μ
λ

���
− β
c

􏽳
1

A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

􏼠 􏼡,

(97)

where ξ � k(xα/α)∓
������������
(2λk2 + β/2λ)

􏽰
(tα/α).

With the help of the values arranged in (95), we carry
out

u2(x, t) � ±

�����
− 2βσ

c

􏽳
1

A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

􏼠 􏼡,

(98)

where ξ � k(xα/α)∓
�����������
((λk2 − β)/λ)

􏽰
(tα/α).

On the other hand, by means of (96), we derive

u3(x, t) � ±

���
− β
c

􏽳
A1cosh

���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

A1sinh
���
− λ

√
ξ + A2cosh

���
− λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

∓
1
λ

���
− β
c

􏽳
μ ± λ

���
− σ

√

A1cosh
���
− λ

√
ξ + A2sinh

���
− λ

√
ξ

􏼠 􏼡,

(99)

where ξ � k(xα/α) ±
�����������
(λk2 + 2β/λ)

􏽰
(tα/α).

Case 2: when λ> 0, executing the analogous steps as
case 1, a system of algebraic equations can be found and
after resolving this system of equations, we obtain three
sets of values of the constants as follows:
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a0 � 0,

a1 � ∓

��
λβ
c

􏽳

,

b1 � ±μ

��
β
λc

􏽳

,

c � ±

�������

2λk
2

+ β
2λ

􏽳

,

(100)

a0 � 0,

a1 � 0,

b1 � ±

������

−
2λβσ

c

􏽳

,

c � ±

������

λk
2

− β
λ

􏽳

,

(101)

a0 � 0,

a1 � ±

��
λβ
c

􏽳

,

b1 � ∓

��
β
λc

􏽳

(μ∓λ
��
σ

√
),

c � ±

�������

λk
2

+ 2β
λ

􏽳

,

(102)

where k, β, c, and μ are arbitrary constants.
By the use of the constant values scheduled in

(100)–(102) into solution (19) alongside with (8) and (92)
function solutions to the space-time, the following trigo-
nometric function solutions to the space-time fractional
KleinGordon equation are obtained.

For the values arranged in (100), we obtain the general
solution:

u4(x, t) � ∓

��
β
c

􏽳
A1 cos

�
λ

√
ξ − A2 sin

�
λ

√
ξ

A1 sin
�
λ

√
ξ + A2 cos

�
λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

±
μ
λ

��
β
c

􏽳
1

A1 cos
�
λ

√
ξ − A2 sin

�
λ

√
ξ

􏼠 􏼡,

(103)

where ξ � k(xα/α)∓
�������������
((2λk2 + β)/2λ)

􏽰
(tα/α).

Similarly, for the values organized in (101), we
accomplish

u5(x, t) � ±

�����
− 2βσ

c

􏽳
1

A1 cos
�
λ

√
ξ − A2 sin

�
λ

√
ξ

􏼠 􏼡, (104)

where ξ � k(xα/α)∓
�����������
((λk2 − β)/λ)

􏽰
(tα/α).

And, for the values laid out in (102), we ascertain

u6(x, t) � ±

��
β
c

􏽳
A1 cos

�
λ

√
ξ − A2 sin

�
λ

√
ξ

A1 sin
�
λ

√
ξ + A2 cos

�
λ

√
ξ +(μ/λ)

􏼠 􏼡

− 1

∓
1
λ

��
β
c

􏽳
μ∓ λ

��
σ

√

A1 cos
�
λ

√
ξ − A2 sin

�
λ

√
ξ

􏼠 􏼡,

(105)

where ξ � k(xα/α)∓
�����������
(λk2 + 2β/λ)

􏽰
(tα/α).

In this section, we have established the general solutions
(97)–(99) and (103)–(105) to the space-time fractional
KleinGordon equation from where scores of periodic soli-
tary wave solutions can be extracted selecting special values
for parameters. But, for simplicity, particular solutions are
omitted.

0e obtained results can be compared with the exact
solutions accessible in the literature. In [45], the exact
solutions of the space-time fractional KleinGordon
equation are established by using the (G′/G, 1/G)-ex-
pansion method. It is seen that the solutions established
in this study are different than the solutions found in
[45].

1
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40 20 0 –20 –40 40 30 20 10 0

x t
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–40 –20 0 20 40

1
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–1

x

(b)

Figure 1: Kink-shape wave of (63) when λ � − 1, β � − 1, α � 0.5, − 50≤x≤ 50, and 0≤ t≤ 50.
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5. Physical Explanations

In this section, we put forth the physical explanation and the
2D and 3D graphical representation of the solutions ob-
tained for the time fractional CRWP equation, the general
time fractional STO equation, and the space-time fractional
KleinGordon equation as follows:

Solutions (25), (28), (51), (54), (57), (60), (63), (66), and
(97) are the kink-shape soliton. Kink waves are travelling
waves which arise from one asymptotic position to another.
Figure 1 shows the shape of the kink solution (63). Other
figures are omitted for convenience.

Moreover, solutions (24), (27), (50), (53), (56), (59), (62),
(65), and (99) are singular kink solitons. Figure 2 shows the

30
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–20

2 4 6 8 10 12 14 16 18 20

x t
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20100–10–20
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1
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Figure 2: Singular kink-shape wave of (24) when c � 1, k � − 1, λ � − 1, α � 0.5, − 20≤x≤ 20, and 0.1≤ t≤ 20.
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Figure 3: Singular periodic wave shape of (104) when β � 1, k � 1, c � − 1, λ � 1, α � 0.5, − 20≤x≤ 20, and 0≤ t≤ 20.
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Figure 4: Soliton wave shape of (98) when β � 1, k � 1, c � − 1, λ � − 1, α � 0.95, − 10≤x≤ 10, and 0≤ t≤ 7.
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shape of the singular kink solution (24). 0e residual figures
are left for simplicity.

On the other hand, solutions (32), (33), (35), (36), (74),
(75), (77), (78), (80), (81), (83), (84), (86), (87), (89), 90), and
(103)–(105) are the exact periodic wave solutions. Periodic
solutions are travelling wave solutions that are periodic like
sin(x − t). Figure 3 shows the singular periodic solution of
(104). 0e remaining graphs are left for minimalism.

Solution (98) is the soliton solution. Figure 4 shows the
shape of the exact soliton solution of (98) of the space-time
fractional KleinGordon equation.

6. Conclusion

In this article, we have introduced an extension of the
(G′/G, 1/G)-expansion method to look into nonlinear
fractional differential equations in the sense of conformable
derivative. Taking the advantage of this extension, the time
fractional CRWP equation, the general time fractional STO
equation, and the space-time fractional Klein-Gordon
equation have been investigated. Scores of broad-ranging
exact solutions have successfully been found as a linear
combination of hyperbolic, trigonometric, and rational
function associated with free parameters. For definite
values of these parameters, some known periodic, kink, and
solitary wave solutions accessible in the literature are de-
rived from the general solutions and some fresh solutions
are originated. 0is study shows that the proposed ex-
tension is quite efficient, useful, direct, and easily com-
putable with the aid of Maple software package and
practically well suited to be used in finding analytical exact
solutions to many other nonlinear FDEs, and this is our
scheme in the future.
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