
Research Article
Treatment a New Approximation Method and Its Justification for
Sturm–Liouville Problems

O. Sh. Mukhtarov ,1,2 M. Yücel,3 and K. Aydemir 4
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In this paper, we propose a new approximation method (we shall call this method as α-parameterized differential transform
method), which differs from the traditional differential transform method in calculating the coefficients of Taylor polynomials.
Numerical examples are presented to illustrate the efficiency and reliability of our own method. Namely, two Sturm–Liouville
problems are solved by the present α-parameterized differential transform method, and the obtained results are compared with
those obtained by the classical DTM and by the analytical method. )e result reveals that α-parameterized differential transform
method is a simple and effective numerical algorithm.

1. Introduction

Many problems inmathematical physics, theoretical physics,
and chemical physics are modelled by the so-called initial
value and boundary value problems in the second-order
ordinary differential equations. In most cases, these prob-
lems may be too complicated to solve analytically. Alter-
natively, the numerical methods can provide approximate
solutions rather than the analytic solutions of problems.
)ere are various approximation methods for solving a
system of differential equations, e.g., Adomian decompo-
sition method (ADM), Galerkin method, rationalized Haar
functions method, homotopy perturbation method (HPM),
variational iteration method (VIM), and the differential
transform method (DTM).

)eDTM is one of the numerical methods which enables
to find an approximate solution in case of linear and
nonlinear systems of differential equations. )e main ad-
vantage of this method is that it can be applied directly to
nonlinear ODEs without requiring linearization. )e well-
known advantage of DTM is its simplicity and accuracy in

calculations and also wide range of applications. Another
important advantage is that this method is capable of greatly
reducing the size of computational work while still accu-
rately providing the series solution with a fast convergence
rate. With this method, it is possible to obtain highly ac-
curate results or exact solutions for differential equations.
)e concept of the differential transform method was first
proposed by Zhou [1], who solved linear and nonlinear
initial value problems in electric circuit analysis. Afterwards,
Chiou and Tzeng [2] applied the Taylor transform to solve
nonlinear vibration problems, Chen and Ho [3] developed
this method to various linear and nonlinear problems such
as two-point boundary value problems, and Ayaz [4] applied
it to the system of differential equations. Abbasov and
Bahadir [5] used the method of differential transform to
obtain approximate solutions of the linear and nonlinear
equations related to engineering problems and observed that
the numerical results are in good agreement with the ana-
lytical solutions. In recent years, many authors have used
different methods for solving various types of equations (see,
for example, [6–9]). For example, DTM has been used for
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differential algebraic equations [10], partial differential
equations [3, 11–13], fractional differential equations [14],
difference equations [15], etc. In [16–18], this method has
been utilized for Telegraph, Kuramoto–Sivashinsky, and
Kawahara equations. Shahmorad et al. developed DTM to
fractional-order integrodifferential equations with nonlocal
boundary conditions [19] and class of two-dimensional
Volterra integral equations [20]. Borhanifar and Abazari
applied this method for Schrödinger equations [21]. Dif-
ferent applications of DTM can be found in [22, 23]. Al-
though the differential transform method (DTM) is an
effective numerical method for solving many initial value
problems, there are also some disadvantages since this
method is designed for problems that have analytic solutions
(i.e., solutions that can be expanded in Taylor series).

In this paper, we suggest a new version of DTMwhich we
shall call α-parameterized differential transform method
(α-P DTM) to solve initial value and boundary value
problems, as well as eigenvalue problems. Note that, in the
special cases, the α-P DTM reduces to the standard DTM, so
our method is the extension and generalization of the
classical DTM.

2. Outline of the Classical DTM

In this section, we describe the definition and some basic
properties of the classical DTM. Recall that an arbitrary
analytic function f(x) can be expanded in Taylor series about
a point x � x0 as

f(x) � 
∞

k�0

x − x0( 
k

k!

dkf(x)

dxk
 

x�x0

. (1)

)e classical differential transformation of f(x) is
defined as

F(k) �
1
k!

dkf(x)

dxk
 

x�x0

, (2)

and the inverse differential transform is defined as

f(x) � 
∞

k�0
x − x0( 

k
F(k), (3)

(see [4]).
Let F(k), G(k), and H(k) be the differential transfor-

mation of f(x), g(x), and h(x), respectively. )e basic
mathematical operations performed by the differential
transform method are listed in following:

(i) If f(x) � g(x) ± h(x), then F(k) � G(k) ± H(k)

(ii) If f(x) � αg(x), α ∈ R, then F(k) � αG(k)

(iii) If f(x) � (dmg/dxm), then F(k) � (k + 1)(k +

2) . . . (k + m)G(k + m)

(iv) If f(x) � xm, then F(k) � δ(k − m) �

1, for k � m

0, for k≠m


(v) If f(x) � g(x)h(x), then F(k) �


k
m�0H(m)G(k − m)

3. α-Parameterized Differential Transform
Method (α-P DTM)

In this section, we suggest a new version of the classical
differential transform method by following.

Let I � [a, b] ⊂ R be an arbitrary real interval,
f: I⟶ R be an infinitely differentiable function (in real
applications, it is enough to require that f(x) is sufficiently a
large-order differentiable function), α ∈ [0, 1] be any real
parameter, and N be any integer (large enough).

Let us define a parameterized sequence D(f, α; k), k �

0, 1, 2, . . . by

D(f, α; k) ≔ αDa(f; k) +(1 − α)Db(f; k), (4)

where Da(f; k) and Db(f; k) are Taylor’s coefficients,
that is,

Da(f; k) ≔
f(k)(a)

k!
,

Db(f; k) ≔
f(k)(b)

k!
.

(5)

Definition 1. )e sequence

Dα(f)(  ≔ (D(f, α; 1), D(f, α; 2), . . .), (6)

is called the α-P transformation of the original function f(x).
)e differential inverse transformation of Dα(f) is defined
as the series

Eα Dα(f)(  ≔ 

∞

k�0
D(f, α; k) x − xα( 

k
, (7)

if the series is convergent, where xα � αa + (1 − α)b.
)e function fα(x) defined by equality

fα(x) ≔ Eα Dα(f)( , (8)

is called the α-parameterized approximation of the original
function f(x).

Remark 1. In the cases of α � 1 and α � 0, the α-P differ-
ential transform (4) reduces to the classical differential
transform (2) at the points x � a andx � b, respectively.
Namely, for α � 0 and α � 1, the equality fα(x) � f(x)

holds.

Remark 2. For practical application, instead of fα(x), it is
convenient to introduce the N-term α-parameterized ap-
proximation of the function fα(x) which we shall define as

fα,N(x) ≔ Eα,N Dα(f)(  ≔ 
N

k�0
D(f, α; k) x − xα( 

k
. (9)

Theorem 1. If f(x) is a constant function, then fα(x) � f(x)

and fα,N(x) � f(x) for each N.

Proof. )e proof is immediate from Definition 1 and Re-
mark 2. □
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Theorem 2. If f(x) � cg(x), c ∈ R, then Dα(f) �

cDα(g) and fα(x) � c gα(x).

Proof. By applying the well-known properties of classical
DTM, we get

D(f, α; k) � αDa(f; k) +(1 − α)Db(f; k)

� αcDa(g; k) +(1 − α)cDb(g; k)

� c αDa(g; k) +(1 − α)Db(g; k)( 

� cD(g, α; k).

(10)

Consequently, Dα(f) � cDα(g), from which immedi-
ately follows that fα(x) � c gα(x). □

Theorem 3. If f(x) � g(x) ± h(x), then Dα(f) �

Dα(g) ± Dα(h) and fα(x) � gα(x) ± hα(x).

Proof. By using the definition of transform (4)

D(f, α; k) � αDa(f; k) ±(1 − α)Db(f; k)

� αDa(g + h; k) ±(1 − α)Db(g + h; k)

� D(g, α; k) ± D(h, α; k).

(11)

Consequently, Dα(f) � Dα(g) ± Dα(h), from which
immediately follows that fα(x) � gα(x) ± hα(x). □

Theorem 4. Let f(x) � (dmg/dxm) and m ∈ N. =en,

D f
(m)

, α; k  �
(k + m)!

k!
D(f, α; k + m),

f
(m)

α (x) � 
∞

k�0

(k + m)!

k!
D(f, α; k + m) x − xα( 

k
,

(12)

where xα � αa + (1 − α)b.

Proof. We have from definition (4)

D f
(m)

, α; k  � αDa f
(m)

; k  +(1 − α)Db f
(m)

; k 

� α(k + 1)(k + 2) . . . (k + m)Da(f; k + m)

+(1 − α)(k + 1)(k + 2) . . . (k + m)Db(f; k + m)

� (k + 1)(k + 2) . . . (k + m) αDa(f; k)(

+(1 − α)Db(f; k + m)

�
(k + m)!

k!
D(f, α; k + m).

(13)

)us, we get D(f(m), α; k) � ((k+ m)!/k!)D

(f, α; k + m). Using this, we find f
(m)

α (x) � 
∞
k�0((k +

m)!/k!)D(f, α; k + m)(x − xα)k. □

Theorem 5. Let f(x) � xm, m ∈ N. =en,

D(f, α; k) �

m

k
  αam− k +(1 − α)bm− k( , for k<m,

1, for k � m,

0, for k>m.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

Proof. Let k<m. By using the definition of the transform
(4), we have

D(f, α; k) � αDa(f; k) +(1 − α)Db(f; k)

� αDa x
(m)

; k  +(1 − α)Db x
(m)

; k 

�
m

k
  αa

(m− k)
+(1 − α)b

(m− k)
 .

(15)

)e equalities D(xm, α; m) � 1 and D(xm, α; m + s) � 0
for s≥ 1 are obvious. □

Theorem 6. If f(x) � g(x)h(x), then D(f, α; k) �


k
m�0[αDa(g; m)Da(h; k − m) + (1 − α)Db(g; m)Db(h; k −

m)]

Proof. By using the definition of transform given in equa-
tion (4), we have

D(f, α; k) � αDa(f; k) + m(1 − α)Db(f; k)

� αDa(gh; k) +(1 − α)Db(gh; k)

�
α
k!



k

m�0

k

m

⎛⎝ ⎞⎠g
(m)

(a)h
(k− m)

(a)

+
(1 − α)

k!


k

m�0

k

m

⎛⎝ ⎞⎠g
(m)

(b)h
(k− m)

(b)

� 
k

m�0
αDa(g; m)Da(h; k − m)

+(1 − α)Db(g; m)Db(h; k − m).

(16)

□

4. Justification of the α-P DTM

In order to show the effectiveness of α-P DTM for solving
boundary value problems, we shall consider the following
Sturm–Liouville problems.

Example 1 (application to the boundary value problem). Let
us consider the Sturm–Liouville equation

ℓy ≔ y″(x) + μ2y(x) � 0, x ∈ [0, 1], μ ∈ R, (17)

with the nonhomogeneous boundary conditions

y(0) � 0,

y(1) � 1.
(18)
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)e exact solution for this problem is

y(x) �
sin μx

sin μ
. (19)

Applying the N-term α-P differential transform to both
the sides of (17) and (18), we obtain the following α-pa-
rameterized boundary value problem as

( ℓy)α,N � 0α,N,

yα,N(0) � 0α,N,

yα;N(1) � 1α,N.

(20)

By using the fundamental operations of α-P DTM, we
have

D(y, α; k + 2) � −
μ2D(y, α; k)

(k + 1)(k + 2)
. (21)

)e boundary conditions given in (18) can be trans-
formed as follows:

yα,N(0) � 
N

k�0
D(y, α; k)(α − 1)

k
� 0,

yα,N(1) � 
N

k�0
D(y, α; k)αk

� 1.

(22)

Using (21) and (22) and by taking N � 5, the following
α-P approximate solution is obtained:

yα(x) � A + x − xα( B

−
μ2 x − xα( 

2
A

2
−
μ2 x − xα( 

3
B

6
+
μ4 x − xα( 

4
A

24

+
μ4 x − xα( 

5
B

120
+ O x

6
 ,

(23)

where xα � (1 − α), according to (7), D(y, α; 0) � A, and
D(y, α; 1) � B. )e constants A and B evaluated from
equations in (21) are as follows:

A � 2880 x
4
αμ

8
− 4x

5
αμ

8
+ 6x

6
αμ

8
+ 24μ4 − 4x

7
αμ

8


− 480μ2 + x
8
αμ

8
+ 2880

− 12x
2
αμ

6
+ 40x

3
αμ

6
− 60x

4
αμ

6
+ 48x

5
αμ

6
− 16x

6
αμ

6


− 1


× xα −
μ2x3

α
6

+
μ4x5

α
120

 ,

(24)

B � 2880 x
4
αμ

8
− 4x

5
αμ

8
+ 6x

6
αμ

8
+ 24μ4 − 4x

7
αμ

8


− 480μ2 + x
8
αμ

8
+ 2880

− 12x
2
αμ

6
+ 40x

3
αμ

6
− 60x

4
αμ

6
+ 48x

5
αμ

6
− 16x

6
αμ

6


− 1


× 1 −
μ2x2

α
2

+
μ4x4

α
24

 .

(25)

Remark 3. Putting α � 0 in (23), we have the classical DTM
solution y0(x), given by

y0(x) � A +(x − 1)B − μ2(x − 1)
2A

2
− μ2(x − 1)

3B

6

+ μ4(x − 1)
4 A

24
+ μ4(x − 1)

5 B

120
+ O x

6
 .

(26)

Now, we will show that the α-P DTM can be applied not
only to find the solutions of Sturm–Liouville problems, but also
to find the eigenvalues of this type boundary value problems.

Example 2 (application to eigenvalue problems). We con-
sider the following eigenvalue problem:

y″ + λy � 0, x ∈ [0, 1], (27)

A11y(0) + A12y′(0) � 0, (28)

A21y(1) + A22y′(1) � 0. (29)

Taking the α-P differential transform of both sides of
(27), we find

D y″ + λy, α; k(  � (k + 1)(k + 2)D(y, α; k + 2)

+ λD(y, α; k) � 0.
(30)

)en, the following recurrence relation is obtained:

D(y, α; k + 2) � −
λD(y, α; k)

(k + 1)(k + 2)
. (31)

Using definition of the α-P differential transform, we get

yα(x) � 
∞

k�0
D(y, α; k) x − xα( 

k
,

yα′(x) � 
∞

k�0
kD(y, α; k) x − xα( 

k− 1
.

(32)

Consequently,

4 Complexity



yα(0) � 
∞

k�0
D(y, α; k)(α − 1)

k
� 
∞

k�0
(−1)

k
D(y, α; k)(1 − α)

k
,

yα′(0) � 
∞

k�0
kD(y, α; k)(α − 1)

k− 1

� 
∞

k�0
(−1)

k
kD(y, α; k)(1 − α)

k− 1
.

(33)

)us, the boundary condition (28) can be transformed as
follows:

A11yα(0) + A12
yα′(0)

� 
∞

k�0
A11(α − 1)

k
+ kA12(α − 1)

k− 1
 D(y, α; k) � 0.

(34)

Similarly, we have

yα(1) � 
∞

k�0
D(y, α; k)αk

,

yα′(1) � 
∞

k�0
kD(y, α; k)αk− 1

.

(35)

In this case, the boundary condition (29) can be written
as follows:

A21yα(1) + A22
yα′ (1) � 

∞

k�0
A21αk + kA22αk− 1( D(y, α; k) � 0.

(36)

Let D(y, α; 0) � A andD(y, α; 1) � B. Substituting these
values in (31), we have the following recursive procedure:

D(y, α; k) �

A(−λ)ℓ

(2ℓ!)
, for k � 2ℓ,

B(−λ)ℓ

(2ℓ + 1)!
, for k � 2ℓ + 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(37)

Substituting (37) in (34) and (36), we find

A 

∞

ℓ�0
A11(α − 1)2ℓ + 2ℓA12(α − 1)

2ℓ− 1
 

(−λ)ℓ

(2ℓ)!
⎧⎨

⎩

⎫⎬

⎭

+ B 
∞

ℓ�0
A11 (α − 1)

2ℓ+1
+(2ℓ + 1)A12(α − 1)

2ℓ
  

(−λ)ℓ

(2ℓ + 1)!

⎧⎨

⎩

⎫⎬

⎭ � 0,

A 

∞

ℓ�0
A21α

2ℓ
+ 2ℓA22α

2ℓ− 1
 

(−λ)ℓ

(2ℓ)!
⎧⎨

⎩

⎫⎬

⎭

+ B 

∞

ℓ�0
A21α

2ℓ+1
+(2ℓ + 1)A22α

2ℓ
 

(−λ)ℓ

(2ℓ + 1)!

⎧⎨

⎩

⎫⎬

⎭ � 0,

(38)

respectively. In this case, we have a linear system of the
equations with respect to the variables A and B as

AP11(λ) + BP12(λ) � 0, (39)

AP21(λ) + BP22(λ) � 0, (40)

where

P11(λ) ≔ 
∞

ℓ�0
A11(α − 1)

2ℓ
+ 2ℓA12(α − 1)

2ℓ− 1
 

(−λ)ℓ

(2ℓ)!
,

P12(λ) ≔ 
∞

ℓ�0
A11(α − 1)

2ℓ+1
+(2ℓ + 1)A12(α − 1)

2ℓ
 

(−λ)ℓ

(2ℓ + 1)!
,

P21(λ) ≔ 
∞

ℓ�0
A21α

2ℓ
+ 2ℓA22α

2ℓ− 1
 

(−λ)ℓ

(2ℓ)!
,

P22(λ) ≔ 
∞

ℓ�0
A21α

2ℓ+1
+(2ℓ + 1)A22α

2ℓ
 

(−λ)ℓ

(2ℓ + 1)!
.

(41)

Since systems (39) and (40) have a nontrivial solution for
A and B, the characteristic determinant is zero, i.e.,

P(λ) �
P11(λ) P12(λ)

P21(λ) P22(λ)




� 0. (42)

)e zeros of the characteristic equation P(λ) � 0 coin-
cide with the α-parametrized eigenvalues of the
Sturm–Liouville problem (27)–(29).

Now, let us find the exact eigenvalues and eigenfunctions
of the Sturm–Liouville problem (27)–(29). )e general so-
lution of equation (29) has the form

y(x) � C cos μx + D sin μx, (43)

where λ � μ2 and C andD are the arbitrary constants. Ap-
plying the boundary conditions (27) and (28), we get

A11C + μA12D � 0,

A21 cos − μA22 sin μ( C + A21 cos − μA22 sin μ( D � 0.

(44)

Because we cannot have C � D � 0, this implies

A11A21 + μ2A12A22 sin μ − μ A12A21 − A11A22( cos μ � 0.

(45)

)is is a transcendental equation which is solved
graphically. Let μ � μn, n ∈ N are points of intersection of the
graphs of the functions:

y � A11A21 + μ2A12A22 sin μ,

y � μ A12A21 − A11A22( cos μ.
(46)

)e eigenvalues and corresponding eigenfunctions are
therefore given by

λn � μ2n andyn(x) � Cn cos μnx + Dn sin μnx, n ∈ N.

(47)

Now, we consider a special case of the Sturm–Liouville
problem (27)–(29), given by
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y″ + λy � 0, (48)

y(0) + y′(0) � 0, (49)

y(1) − y′(1) � 0. (50)

)e eigenvalues of this problem are determined by the
following equation:

tan μ �
2μ

1 − μ2
. (51)

)is equation can be solved graphically by the points of
intersections of the graphs of functions:

y � tan μ,

y �
2μ

1 − μ2
,

(52)

as shown by the sequence (μn) in Figure 1.
)e eigenvalues of the considered problem are given by

λn � μ2n and corresponding eigenfunctions are given by

yn(x) � Cn cos μnx + Dn sin μnx, n ∈ N. (53)

Taking the α-P differential transform of both sides of
equation (48), the following recurrence relation is obtained:

D(y, α; k + 2) � −
λD(y, α; k)

(k + 1)(k + 2)
. (54)

Applying the N-term α-P differential transform to the
boundary conditions (49) and (50), we have

yα(0) + yα′ (0) � 
N

k�0
(α − 1)k + k(α − 1)k− 1

 D(y, α; k) � 0,

(55)

yα(1) − yα′ (1) � 
N

k�0
αk

− kαk− 1
 D(y, α; k) � 0. (56)

By using (54), (55), and (56), we obtain the following
equalities (for N� 6):

A 1 + (α − 1)
2

+ 2(α − 1) 
(−λ)

2!
+ (α − 1)

4
+ 4(α − 1)

3
 

λ2

4!


+ (α − 1)
6

+ 6(α − 1)
5

 
−λ3 

6!
⎤⎦

+ B α + (α − 1)
3

+ 3(α − 1)
2

 
(−λ)

3!


+ (α − 1)
5

+ 5(α − 1)
4

 
λ2

5!
 � 0,

(57)

A 1 + α2 − 2α 
(−λ)

2!
+ α4 − 4α3 

λ2

4!
+ α6 − 6α5 

−λ3 

6!
⎡⎣ ⎤⎦

+ B (α − 1) + α3 − 3α2 
(−λ)

3!
+ α5 − 5α4 

λ2

5!
  � 0.

(58)

Since systems (57) and (58) have a nontrivial solution for
A and B, the characteristic determinant is zero, i.e.,

a(λ) �
a11(λ) a12(λ)

a21(λ) a22(λ)




� 0, (59)

where

a11 � 1 + (α − 1)
2

+ 2(α − 1) 
(−λ)

2!

+ (α − 1)
4

+ 4(α − 1)
3

 
λ2

4!

+ (α − 1)
6

+ 6(α − 1)
5

 
−λ3 

6!
,

a12 � α + (α − 1)
3

+ 3(α − 1)
2

 
(−λ)

3!

+ (α − 1)
5

+ 5(α − 1)
4

 
λ2

5!
,

a21 � 1 + α2 − 2α 
(−λ)

2!
+ α4 − 4α3 

λ2

4!

+ α6 − 6α5 
−λ3 

6!
,

a22 � (α − 1) + α3 − 3α2 
(−λ)

3!
+ α5 − 5α4 

λ2

5!
.

(60)

Taking α � (1/2), we have the following algebraic
equation for approximate eigenvalues:

–10 –5 5 10

–10

–5

5

10

Figure 1:)e exact eigenvalues of problems (48)–(50) (abscissas of
intersection points of the graphs of the functions y � tan μ(black
line) and y � (2μ/1 − μ2) (red line)).
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−1 −
λ
6

+
11λ2

120
−

89λ3

15360
+

299λ4

2211840
−

11λ5

9830400
� 0. (61)

)is equation can be solved by various numerical
methods.

5. Comparison Results and Discussion

It is important to note that the α-parametrized DTM is an
extension and generalization of the classical DTM since in
the special cases α � 0 and α � 1, our method reduced to the
classical DTM.

To illustrate the accuracy of the α-parametrized DTM,
solution (23) obtained using this method is compared with
solution (26) obtained using the classical DTM and with
exact solution (19) obtained using the analytical method in
Figures 2–5.

Remark 4. As seen from Figures 2–5, in order to increase the
accuracy of the approximate solutions, it is necessary to
increase the number of terms D(t, α, k), and the conver-
gence of α-parametrized DTM is quite obvious.

6. Analysis of the Method

In this study, we have introduced a new version of classical
DTM that will extend the application of the method to
spectral analysis of various types, initial and boundary value
problems, which arise from problems of mathematical
physics. Numerical results reveal that the α-P DTM is a
powerful tool for solving many initial value and boundary
value problems. It is concluded that comparing with the
standard DTM, the α-P DTM reduces computational cost in
obtaining approximated solutions. )is method unlike most
numerical techniques provides a closed-form solution. It
may be concluded that α-P DTM is very powerful and ef-
ficient in finding approximate solutions and approximate
eigenvalues for wide classes of boundary value problems.
)e main advantage of the method is the fact that it provides
its user with an analytical approximation, in many cases an
exact solution, and in a rapidly convergent sequence with
elegantly computed terms.
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Figure 4: Comparison of the classical DTM solution for μ � 1 (red
line) and the numerical α-parametrized solution for α � (1/4) (blue
line), with μ � 1.
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Figure 5: Comparison of the exact solution for μ � 1 (red line), the
classical DTM solution for μ � 1 (blue line), and the numerical
α-parametrized solution for α � (1/4) (green line) with μ � 1.
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Figure 2: Comparison of the exact solution for μ � 1 (red line) and
the classical DTM solution for μ � 1 (blue line).
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Figure 3: Comparison of the exact solution for μ � 1 (red line) and
the numerical α-parametrized solution for α � (1/4) (blue line),
with μ � 1.
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