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Most of modern technological networks that can perform their tasks with various distinctive levels of efficiency are multistate
networks, and reliability is a fundamental attribute for their safe operation and optimal improvement. For a multistate network,
the two-terminal reliability at demand level d, defined as the probability that the network capacity is greater than or equal to a
demand of d units, can be calculated in terms of multistate minimal paths, called d-minimal paths (d-MPs) for short. ,is paper
presents an efficient algorithm to find all d-MPs for the multistate two-terminal reliability problem. To advance the solution
efficiency of d-MPs, an improved model is developed by redefining capacity constraints of network components and minimal
paths (MPs). Furthermore, an effective technique is proposed to remove duplicate d-MPs that are generated multiple times during
solution. A simple example is provided to demonstrate the proposed algorithm step by step. In addition, through computational
experiments conducted on benchmark networks, it is found that the proposed algorithm is more efficient.

1. Introduction

,e economic development and social well-being of modern
society are increasingly dependent on the quality of service
(QoS) of a variety of technological networks, such as
computer and communication networks [1, 2],
manufacturing networks [3], logistics/supply chain net-
works [4–7], and power transmission networks [8], and a
major challenge which we have to face is ensuring their
safety and normal operation against potential malfunctions.
Reliability is a fundamental attribute for the safe operation of
modern technological networks [9], and demands for the
quantification of network reliability are steadily growing in
the networked society [10].

A network that can have a number of distinctive levels of
performance is called multistate network [11, 12]. Most of
modern technological networks are often deemed as mul-
tistate networks for reliability analysis. For instance, a
computer network can be modeled as a multistate network
with a set of edges (links) and a set of nodes, in which an edge
represents a transmission line and a node denotes a com-
puter center involving several routers or switches. In

practice, a transmission line is composed of several physical
lines, such as fiber cables, twisted pairs, or coaxial cables, and
all of the physical lines may provide a specific capacity or fail,
that is, every transmission line has multiple capacities
(states) with a probability distribution, which results in a
number of different levels of transmission capacity for the
whole computer network. Such a computer network is thus
treated as a typical multistate network. Multistate network
with components having many different states (different
levels of performance) is an extension of the traditional
binary-state network with components having only two
possible states: either completely failed or perfectly func-
tioning [13–16]. Given a multistate network, the two-ter-
minal reliability at demand level d, denoted as Rd, is defined
as the probability that the network capacity is greater than or
equal to a demand of d units. A variety of algorithms have
been presented to calculate Rd, and these algorithms can be
broadly categorized into direct methods and indirect
methods [17]. One important type of indirect method for the
exact evaluation of Rd is using d-minimal paths (d-MPs). A
d-MP, say x, is a minimal network state vector with the
max-flow of the network under x being equal to d. Provided
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that all d-MPs are found, the well-known Inclusion-Ex-
clusion method [14], the Sum of Disjoint Products method
[18–20], or the State Space Decomposition method [21] are
available to exactly compute the two-terminal reliability at
demand level d. ,us, solving all d-MPs is a critical issue to
the two-terminal reliability at demand level d.

,ere are two important mathematical models with
respect to the d-MP problem. ,e first mathematical model
for solving d-MPs is originally proposed by Lin et al. [22].
,is model requires all minimal paths (MPs) and contains
three constraints that are established by the network
structure and the flow-conservation law. An MP is a subset
of edges, such that if any edge is removed from it, the
remaining is no longer a path. ,e second mathematical
model for solving d-MPs is proposed by Yeh [23]. ,is
model without requiring MPs information is a component-
based formulation with three constraints. Note that the
model by Yeh [23] is derived from the well-known max-flow
mathematical programming model; thus, it is more appli-
cable to directed networks. Based on the model of Yeh, Xu
et al. [24] combined the max-flow algorithm and the implicit
enumeration method to seek d-MPs. Niu et al. [25] recently
improved the model by Yeh [23] and pointed out that if the
model is applied to an undirected network, each undirected
edge in the network should be treated as two directed edges
with the opposite direction. In such a case, however, the
number of variables in the model is dramatically increased,
which could significantly add to the difficulty of the d-MP
problem.

,e model by Lin et al. [22] applicable to both directed
networks and undirected networks has been widely used by
most of the existing algorithms [26–30]. For example, Lin
[26] proposed a simple method to solve d-MPs of a network
with unreliable nodes; Yeh [27] proposed a cycle-checking
method to verify whether a feasible solution to the model is a
d-MP; Chen and Lin [28] suggested the fast enumeration
method to solve all of the feasible solutions to the model;
Forghani-Elahabad and Bonani [29] proposed an improved
enumeration method to search for d-MPs. Lin and Chen
[30] recently proposed a new max-flow evaluation method
to find d-MPs.

In addition to the methods based on the above two
models, there are also several other methods for solving d-
MPs. For example, Satitsatian and Kapur [31] proposed an
approximate algorithm to find a subset of d-MPs using the
minimal improvement paths algorithm; Ramirez-Marquez
et al. [32] proposed an algorithm to find potential d-MPs
using the information sharing approach that a selected
number of edges share information among each other.
Different from the abovementioned methods that find d-
MPs for a fixed demand level d, Bai et al. [33] considered the
problem of finding all d-MPs for all possible demand levels
and proposed a recursive method to solve it. By overcoming
the obstacles of the method by Bai et al. [33], Yeh [34]
recently proposed a new addition-based algorithm with
better time complexity.

As stated earlier, the model by Lin et al. [22] has been
extensively applied to the d-MP problem. And yet, we note
that the capacity constraints in this model are too relaxed,

such that a large number of enumerations need to be
implemented in order to find all d-MPs, which to an extent
influences the computational efficiency. Recently, Niu et al.
[25] improved Yeh’s model [23] by imposing stronger ca-
pacity constraints on network components. Because the
capacity constraints of network components in both models
are identical, the ideas in [25] can also be used to improve the
model by Lin et al. [22]. In addition, the major cost for
solving d-MPs from the model by Lin et al. [22] lies in
identifying duplicate d-MPs, and an effective and efficient
method for removing duplicates is always desirable. ,is
paper is devoted to developing a new efficient algorithm for
finding all d-MPs. To advance the solution efficiency of d-
MPs, an improved model is constructed by redefining ca-
pacity constraints of network components and MPs. ,e
constructed model is an improvement to the model by Lin
et al. [22]. Furthermore, a technique with better efficiency is
proposed to remove duplicate d-MPs. ,e time complexity
of the proposed algorithm is analyzed, and a simple example
is provided to illustrate the proposed algorithm. Finally,
through computational experiments, it is found that the
proposed algorithm is more efficient in finding all d-MPs.

,e rest of this paper is organized as follows. Section 2
introduces the multistate network model, the fundamental
results for solving d-MPs, and the Inclusion-Exclusion
method. In Section 3, an improved model for finding d-MPs
is constructed, and an efficient technique is developed to
remove duplicate d-MPs. Also, an algorithm for solving d-
MPs without duplicates is proposed, together with a dis-
cussion on its time complexity. In Section 4, an illustrative
example is provided to demonstrate the proposed algorithm.
Computational experiments on two benchmark networks
are performed in Section 5 to investigate the efficiency of the
proposed algorithm through comparisons with the existing
methods. Section 6 presents the concluding remarks.

2. Preliminaries

2.1. Multistate Network. Consider a multistate network
G(V, E, W) with the unique source node s and the unique
sink node t, where V � s, 1, 2, . . . , n, t{ } is the set of nodes,
E � e1, e2, . . . , em􏼈 􏼉 is the set of edges, and W � (W1,

W2, . . . , Wm) is the largest state vector with Wi being the
largest capacity of ei for 1≤ i≤m. A network state vector
x � (x1, x2, . . . , xm) indicates the current capacity of each
edge in the network, where the state of ei is defined by xi
taking integer values from 0 to Wi. ,e max-flow of the
network under x (or the network capacity under x) is
denoted by M(x), and M(x) is always called the structure
function of a multistate network [25, 31, 35]. By D, the
max-flow of the network under the largest state vector W is
denoted, i.e., D � M(W). ,en, M(x)≤D holds for any
state vector x.

,e multistate network discussed herein satisfies the
following assumptions [28, 30]. (1) Each node is perfectly
reliable, which means no capacity constraint is imposed on
nodes. (2) ,e state/capacity of each edge ei(1≤ i≤m) is a
nonnegative integer-valued random variable which takes
values from 0 toWi according to a given distribution. (3),e

2 Complexity



states/capacities of different edges are statistically inde-
pendent. (4) All flows in the network obey the conservation
law, i.e., total flows into and from a node (not source and
sink nodes) are all equal.

2.2. CalculatingRd in Terms ofD-MPs. As mentioned before,
once all d-MPs are found, the well-known Inclusion-Ex-
clusion method [14], the Sum of Disjoint Products method
[18–20], or the State Space Decomposition method [21] are
available to calculate Rd. While the Inclusion-Exclusion
method is not as efficient as the Sum of Disjoint Products
method [18–20] or the State Space Decomposition method
[21], it is simple and easy to understand. ,erefore, we
briefly introduce how it performs in calculating Rd. Assume
y1, y2, . . . , yσ are all d-MPs, and let B1 � x|x≥y1􏼈 􏼉, B2 �

x|x≥y2􏼈 􏼉, . . . , Bσ � x|x≥yσ􏼈 􏼉, where x � (x1, x2, . . . , xm),

yi � (yi
1, yi

2, . . . , yi
m), and x≥yi means that xj ≥yi

j for
j � 1, 2, . . . , m; then, Rd can be calculated via the Inclusion-
Exclusion method as follows:

Rd � Pr B1 ∪B2 ∪ · · · ∪Bσ( 􏼁 � 􏽘
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In addition, it should be pointed out that when the
number of d-MPs is huge, the Sum of Disjoint Products
method [18–20] or the State Space Decomposition method
[21] is applicable to the calculation of Rd. Readers are en-
couraged to refer to [18–21] for the details of the two
methods.

2.3. -e Fundamental Results for Solving d-MPs. A state
vector x is a d-MP if and only if (1) M(x) � d and (2) M(x −

0(ei))< d for each xi > 0, where 0(ei) � (0, . . . , 0, 1, 0, . . . ,

0), i.e., capacity is 1 for ei and 0 for other edges, that is, two
conditions must be fulfilled for a d-MP x. ,e first condition
suggests that the network capacity under x is equal to d, and
the second reveals that capacity degradation of any edge with
nonzero capacity would lead to a smaller network capacity
(below d). ,e above definition implicitly demonstrates that

a d-MP is also the minimal state vector satisfying the de-
mand level d.

,e well-known model proposed by Lin et al. [22] is one
of the two fundamental models with respect to d-MPs.
Suppose that there are totally pMPs, P1, P2, . . . , Pp, from the
source node s to the sink node t in the network, and the flow
travelling through Pj(1≤ j≤p) is denoted by fj(1≤ j≤p).
A flow vector f � (f1, f2, . . . , fp) consists of flows trav-
elling through all MPs.,e following model by Lin et al. [22]
is the foundation of most of the existing algorithms.

Lemma 1. A state vector x � (x1, x2, . . . , xm) is a d-MP
candidate when its corresponding flow vector f � (f1,

f2, . . . , fp) satisfies the following conditions:

f1 + f2 + · · · + fp � d, (3)

0≤fj ≤Uj, for 1≤ j≤p, (4)

0≤ 􏽘
ei∈Pj

fj ≤Wi, for 1≤ i≤m,
(5)

xi � 􏽘
ei∈Pj

fj, for 1≤ i≤m,
(6)

where Ui � min Wi|ei ∈ Pj􏽮 􏽯 is the maximal capacity of
Pj(1≤ j≤p). Since each unit of flow sent from source node s
to sink node t should travel through one of the MPs, the
summation of flows travelling through all MPs must be equal
to d, which is reflected by condition (3). Condition (4) points
out that the flow travelling through Pj should not exceed the
maximal capacity of Pj(1≤ j≤p), and condition (5) indi-
cates that the flow through ei should not be above the largest
capacity of ei( 1≤ i≤m). Equation (6) pinpoints the rela-
tionship between the current state of ei and the flow through
ei( 1≤ i≤m). Generally, the algorithms [22, 26–30] grounded
on Lemma 1 consist of three steps:

Step 1: solve all d-MP candidates
Step 2: verify d-MP candidates to obtain real d-MPs
Step 3: remove duplicate d-MPs.

Each d-MP is also a d-MP candidate, and most of the
existing methods need to search for all d-MP candidates
prior to determining all d-MPs (Step 1). ,e feasible solu-
tions derived from Lemma 1 are d-MP candidates. A d-MP
candidate is not necessarily a d-MP; then, a verification step
is required (Step 2). ,e methods for verifying d-MP can-
didates include the direct verification method [30], the
comparison method [22, 26, 28], and the cycle-checking
method [27]. ,e direct verification method is mainly based
on the definition of d-MPs, that is, every d-MP candidate x
derived from Lemma 1 is verified to determine whether it
satisfies M(x − 0(ei))<d for each xi > 0. If the answer is
“yes,” x is a d-MP; otherwise, x is not a d-MP. ,e rationale
behind the comparison method is that, for a d-MP candidate
x, if there exists no d-MP candidate y such that x>y(x>y

means xi ≥yi for i � 1, 2, . . . , m and xj ≥yj for at least one j
( 1≤ j≤m)), then x is a d-MP. A major drawback for the
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comparison method is the high-computational complexity.
,e cycle-checking method is to check whether the network
under x has a cycle. In contrast to the direct verification
method and the comparison method, the cycle-checking
method holds the efficiency advantage, but it is more ap-
plicable to directed networks.,e set of d-MPs derived from
Step 2 may contain duplicate d-MPs which significantly
contribute to the computational burden of reliability eval-
uation but have no effect on the final reliability value, and
then there is need to remove duplicate d-MPs (STEP 3).

3. The Proposed Algorithm

3.1. An ImprovedModel. A flow vector f � (f1, f2, . . . , fp)

satisfying conditions (3)–(5) is said to be a feasible flow
vector. It is obvious that solving all of the feasible flow
vectors is the first step and also the major obstacle for finding
all d-MP candidates. ,e burden of solving feasible flow
vectors is greatly dependent on the capacity ranges deter-
mined by conditions (4) and (5); thus, the solution efficiency
would be improved if the capacity ranges in conditions (4)
and (5) can be shrunk. As can be seen below, the lower
bounds in condition (5) have the potential to be raised and
the upper bounds in conditions (4) and (5) have the po-
tential to be dropped.

Now, we define a special state vector W(0i) � (W1, W2,

. . . , Wi−1, 0, Wi+1, . . . , Wm) in which capacity level is 0 for ei

and capacity level is the largest capacity for other edges; then,
a crucial necessary condition for a state vector to be a d-MP
can be attained.

Theorem 1. For a state vector x � (x1, x2, . . . , xm), if it is a
d-MP, then xi ≥Li for 1≤ i≤m, where Li � max d − M(W{

(0i)), 0}.

Proof. By definition, Li ≥ 0 holds. If Li � 0, it is easy to have
xi ≥ Li.

If Li ≥ 0, it implies Li � d − M(W(0i))> 0. Given that
M(W)≥ d holds, if d − M(W(0i))> 0, i.e., M(W(0i))<d, it
means that at least d − M(W(0i)) units of flow must travel
through ei in order for d units of flow to be transmitted from
s to t. If x is a d-MP, then M(x) � d follows from the
definition, i.e., d units of flow can be transmitted from s to t
under x. As a result, it is deduced that xi ≥d − M(W

(0i)) � Li, which completes the proof.
In fact, ,eorem 1 reveals that Li(1≤ i≤m) is an im-

proved lower capacity bound of ei in d-MPs, and thus can be
employed in condition (5) to shorten the capacity range. By
the renowned max-flow algorithm, computing M(W(0i))

requires O(mnlog n) time [36]; then, the time complexity of
determining all Li for 1≤ i≤m is O(m2nlog n). □

Corollary 1. -e time complexity of finding all Li for
1≤ i≤m is O(m2nlog n).

Note that f1 + f2 + · · · + fp � d in condition (3) means
fj ≤ d for 1≤ i≤m. Also, it is clear that 􏽐ei∈Pj

fj ≤f1 + f2 +

· · · + fp � d holds. Hence, the upper bounds in conditions
(4) and (5) can be replaced by min Uj, d􏽮 􏽯 and min Wi, d􏼈 􏼉,

respectively, that is, the following improved model can be
constructed to solve all d-MP candidates.

Theorem 2. A state vector x � (x1, x2, . . . , xm) is a d-MP
candidate when its corresponding flow vector
f � (f1, f2, . . . , fn) satisfies the following conditions:

f1 + f2 + · · · + fp � d, (7)

0≤fj ≤min Uj, d􏽮 􏽯, for 1≤ j≤p, (8)

Li ≤ 􏽘
ei∈Pj

fj ≤min Wi, d􏼈 􏼉, for 1≤ i≤m,
(9)

xi � 􏽘
ei∈Pj

fj, for 1≤ i≤m.
(10)

Proof. Directly from ,eorem 1 and Lemma 1.
It can be easily understandable that ,eorem 2 is an

improvement to Lemma 1 due to the stronger capacity
constraints (8) and (9). Here, we adopt an example to il-
lustrate the advantage of ,eorem 2 in comparison with
Lemma 1. ,e network in Figure 1 is a simple network with
two MPs: P1 � e1, e2􏼈 􏼉 and P2 � e3􏼈 􏼉, and the largest state
vector is W � (3, 2, 2). Given the demand level d � 3, a
3-MP candidate x � (x1, x2, x3), by Lemma 1, should satisfy
the following conditions:

f1 + f2 � 3, (11)

0≤f1 ≤ 2, (12)

0≤f2 ≤ 2, (13)

0≤x1 � f1 ≤ 3, (14)

0≤x2 � f1 ≤ 2, (15)

0≤x3 � f2 ≤ 2, (16)

that is,

f1 + f2 � 3, (17)

0≤f1 ≤ 2, (18)

0≤f2 ≤ 2, (19)

x1 � f1, (20)

x2 � f1, (21)

x3 � f2. (22)

,en, a total number of 9 flow vectors determined by
conditions (18) and (19) need to be checked to solve 3-MP
candidates in the worst case. When d � 3, L1 � max
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0, d − M(W(01))􏼈 􏼉 � max 0, 3 − 2{ } � 1; similarly, L2 � 1;

L3 � 1; min Uj, d􏽮 􏽯 � 2 for j � 1, 2; min W1, d􏼈 􏼉 � 3 and
min W2, d􏼈 􏼉 � min W3, d􏼈 􏼉 � 2. ,us, a 3-MP candidate x �

(x1, x2, x3), by ,eorem 2, should satisfy the following
conditions:

f1 + f2 � 3,

0≤f1 ≤ 2,

0≤f2 ≤ 2,

1≤ x1 � f1 ≤ 3,

1≤ x2 � f1 ≤ 2,

1≤ x3 � f2 ≤ 2,

(23)

that is,

f1 + f2 � 3, (24)

1≤f1 ≤ 2, (25)

1≤f2 ≤ 2, (26)

x1 � f1, (27)

x2 � f1, (28)

x3 � f2. (29)

As a result, a total number of 4 flow vectors determined
by conditions (25) and (26) need to be checked to solve
3-MP candidates in the worst case. By comparison, it can be
seen that ,eorem 2 holds an advantage over Lemma 1
owing to a smaller number of flow vectors to be
checked. □

3.2. Removing Duplicate d-MPs. ,e set of d-MPs derived
from Lemma 1 or ,eorem 2 may contain duplicate d-MPs
in the sense that one d-MP has the potential to be generated
multiple times. Removing duplicate d-MPs is the most time-
consuming step of the d-MP problem [22, 26–30]. ,e
traditional method for removing duplicate d-MPs is the
component-wise comparison method. Although the com-
ponent-wise comparison method is simple and easy to
understand, it has the deficiency of poor computational
efficiency. In this section, an efficient technique will be
developed to remove duplicate d-MPs and its computational
efficiency is higher than the component-wise comparison
method. Given a state vector x, its associated value Φ(x) is
defined as follows:

Φ(x) � log 􏽘
m

i�1
xiπ

i− 1⎛⎝ ⎞⎠. (30)

,en, the following theorem indicates that there exists a
one-to-one relationship between the state vector x and its
associated value Φ(x).

Theorem 3. For any two state vectors x and y,Φ(x) � Φ(y)

if and only if x � y.

Proof.

(1) If x � y, then Φ(x) � Φ(y) is directly from the
definition of associated value.

(2) By definition, Φ(x) � log(􏽐
m
i�1 xiπi− 1) and Φ(y) �

log(􏽐
m
i�1 yiπi− 1). If Φ(x) � Φ(y), then one can have

log(􏽐
m
i�1 xiπi− 1) � log(􏽐

m
i�1 yiπi− 1), i.e., 􏽐

m
i�1 xiπi− 1

� 􏽐
m
i�1 yiπi− 1, that is, 􏽐

m
i�1(xi − yi)πi− 1 � 0 holds.

Notice that 􏽐
m
i�1(xi − yi)πi− 1 � 0 is a polynomial

equation with integer coefficient, and π is a tran-
scendental number; it follows that 􏽐

m
i�1(xi − yi)

πi− 1 � 0 if and only if all of its coefficients are equal
to 0. ,us, xi − yi � 0 for all i � 1, 2, . . . , m when
􏽐

m
i�1(xi − yi)πi− 1 � 0 holds, which means x � y.

,e aim of introducing the concept of the associated
value is to transfer each state vector into a unique number.
Based on the relationship between a state vector and its
associated value, the task of removing duplicate d-MPs can
be accomplished by sorting all of the associated values. For
example, consider the network in Figure 1, and it is trivial to
obtain that x � (1, 1, 2) and y � (2, 2, 1) are all the 3-MPs.
By equation (30), Φ(x) � log(1 × π0 + 1 × π1 + 2 × π2) �

3.173075 and Φ(y) � log(2 × π0 + 2 × π1 + 1 × π2) �

2.898824. BecauseΦ(x) � 3.173075≠Φ(y) � 2.898824, it is
directly concluded that x � (1, 1, 2) and y � (2, 2, 1) are not
duplicates each other.

For a state vector x, it takes O(m) time to calculate its
associated value Φ(x). Suppose that σ is the total number of
d-MP candidates; then, it requires O(mσ) time to calculate
all of the associated values and takes O(σ log σ) time to
removing duplicates by using the quick sort or merge sort
method. ,erefore, the time complexity of removing du-
plicate d-MPs isO(mσ) + O(σ log σ) � O(σ log σ). Note that
the time complexity of the traditional comparison method is
O(mσ2). Because O(σ log σ)≪O(mσ2), the method based
on ,eorem 3 is more efficient in removing duplicates.
,erefore, the developed technique is a favorable alternative
to remove duplicate d-MPs. □

3.3. An Algorithm for Finding d-MPs. Using the obtained
results, we suggest an algorithm to solve all d-MPs below.
Given that all MPs are known in advance, all d-MPs without
duplicates can be obtained using the following steps.

Input: A multistate network G(V, E, W) with demand
level d.

s t

1
W1 = 3 W2 = 2

W3 = 2

Figure 1: A simple network.
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Output: All d-MPs without duplicates.
Step 0. Calculate min Uj, d􏽮 􏽯 for 1≤ j≤p, min Wi, d􏼈 􏼉

and Li � max 0, d − M(W(0i))􏼈 􏼉 for 1≤ i≤m, and let
Ω � ∅.
Step 1. Use the fast enumeration algorithm to solve all
of the feasible solutions (i.e., feasible flow vectors) to
conditions (7)–(9), and transform each feasible solu-
tion into its corresponding d-MP candidate by equation
(10). Suppose x1, x2, . . . , xσ are all the obtained d-MP
candidates.
Step 2. For each d-MP candidate xj � (x

j
1, x

j
2, . . . , x

j
m)

(1≤ j≤ σ), if M(x
j
i − 0(ei))<d for all x

j
i > 0, then

calculate Φ(xj) by equation (30), and let Ω � Ω∪
Φ(xj)􏼈 􏼉.
Step 3. Use the quick sort or merge sort method to
remove all duplicate elements in Ω, and the remaining
elements correspond to all of the d-MPs without
duplicates.

Step 0 is a preprocessing step for calculating lower and
upper capacity bounds in conditions (8) and (9). In Step 1,
all d-MP candidates are solved by using the enumeration
method. In particular, we notice that the fast enumeration
method reported by Chen [37] has been proven to be more
efficient than the traditional enumeration method; thus, it is
used to solve all of the feasible flow vectors in Step 1. ,e
details regarding the fast enumeration method can be re-
ferred to Chen [37] and Chen and Lin [28]. All d-MP
candidates are verified in Step 2, and the associated value
Φ(xj) corresponding to each d-MP xj is calculated. Step 3 is
to remove duplicate d-MPs.

,e computational complexity of every step is analyzed
as follows. Step 0 takes O(mp) time and O(m) time to
compute all min Uj, d􏽮 􏽯(1≤ j≤p) and all min Wj, d􏽮 􏽯(1≤
i≤m), respectively. By Corollary 1, finding all Li � max
0, d − M(W(0i))􏼈 􏼉(1≤ i≤m) requires O(m2n log n) time.
,us, the computational complexity of Step 0 is O(mp)+

O(m) + O(m2n log n) � O(mp). As analyzed in Section 3.1,
it takes O(􏽑

π
i�1 qk) time to generate all feasible flow vectors,

where π is the number of groups of alternative orders
arranged by the fast enumeration method and qk is the total
number of enumerations in the ith group. It requires
O(mσp) to transform all feasible flow vectors into d-MP
candidates, where σ is the number of all feasible flow vectors,
i.e., the number of d-MP candidates. As a result, the
computational complexity of Step 1 is O(􏽑

π
i�1 qk)+ O(mσp).

Checking all d-MP candidates requires O(m2n log n) time,
and it takes O(mσ) time to calculate all associated values in
the worst case; then, Step 2 totally takes O(m2σnlogn) time.
Using the quick sort or merge sort method to remove du-
plicates inΩ requires O(σlogσ) time in the worst case, so the
computational complexity of Step 3 is O(σlogσ).

Given that the method by Chen and Lin [28] is regarded
as an efficient algorithm for finding d-MPs, we compare it
with the proposed algorithm in terms of computational
complexity. In addition, while the method by Lin and Chen
[30] is a newly reported method and is also considered to be
efficient in solving d-MPs, it does not include the step of

removing duplicates. ,erefore, it is unfair to compare it
with the proposed algorithm from the perspective of
computational complexity. However, we will compare both
algorithms through numerical examples in Section 5 when
the step of removing duplicates is incorporated into the
method by Lin and Chen [30].

Recall that the method by Chen and Lin [28] is based on
Lemma 1 to search for all d-MP candidates. Note that the
role of Step 1 for solving all d-MP candidates in the proposed
algorithm is identical with that of Steps 1 and 2 in the
method by Chen and Lin [28]. ,e theoretical results in
Section 3.2 indicate that the time complexity of finding d-
MP candidates based on,eorem 1 is upper bounded by the
one based on Lemma 1; therefore, it is easy to conclude that
the proposed algorithm holds an advantage over Chen and
Lin’s method [28] in solving d-MP candidates.

Moreover, the role of Steps 2 and 3 in the proposed al-
gorithm is equivalent to that of Step 3 in the method by Chen
and Lin. Step 3 of Chen and Lin’s method utilizes the com-
ponent-wise comparison method to find out d-MPs and
remove duplicate d-MPs at the same time, so its computational
complexity is O(mσ2). And yet, the computational complexity
of Steps 2 and 3 in the proposed algorithm is totally
O(m2σn log n) + O(σ log σ) � O(m2σn log n). Because
O(m2σn log n)<O(mσ2), the computational complexity of
the proposed algorithm in finding out d-MPs and removing
duplicate d-MPs is lower than that of Chen and Lin’s method
[28]. Note that even though one more Step 0 needs to be
implemented by the proposed algorithm compared with the
method of Chen and Lin [28], it has no impact on the
computational complexity of the whole algorithm considering
O(mp) <O(m2σn log n)<O(mσp). ,erefore, the proposed
algorithm has a distinct efficiency advantage in solving d-MPs.

4. An Illustrative Example

,e classical bridge network shown in Figure 2 is adopted to
demonstrate how the proposed algorithm works. ,e data of
edges are presented in Table 1.,e network in Figure 2 has 4
MPs from s to t: P1 � e1, e2􏼈 􏼉, P2 � e1, e3, e5􏼈 􏼉, P3 � e4, e5􏼈 􏼉,
and P4 � e4, e3, e2􏼈 􏼉. Suppose the demand level is d � 3;
then, all 3-MPs can be obtained using the following steps.

Step 0: min U1, d􏼈 􏼉 � min 2, 3{ } � 2, similarly, min
U2, d􏼈 􏼉 � 1, min U3, d􏼈 􏼉 � 2, min U4, d􏼈 􏼉 � 1, andmin
W1, d􏼈 􏼉 � min 3, 3{ } � 3, similarly, min W2, d􏼈 􏼉 � 2,

min W3, d􏼈 􏼉 � 1, min W4, d􏼈 􏼉 � 2, min W5, d􏼈 􏼉 � 2,

and L1 � max 0, d − M(W(0i))􏼈 􏼉 � max 0, 1{ } � 1, sim-
ilarly, L2 � 1, L3 � 0, L4 � 0, andL5 � 1.
Step 1: use the fast enumeration method to solve all of
the feasible solutions f � (f1, f2, f3, f4) to the fol-
lowing conditions:

f1 + f2 + f3 + f4 � 3,

0≤f1 ≤ 2,

0≤f2 ≤ 1,

0≤f3 ≤ 2,
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0≤f4 ≤ 1,

1≤f1 + f2 ≤ 3,

1≤f1 + f4 ≤ 2,

0≤f2 + f4 ≤ 1,

0≤f3 + f4 ≤ 2,

1≤f2 + f3 ≤ 2.
(31)

,e derived feasible solutions are f1 � (1, 0, 2, 0), f2 �

(1, 0, 1, 1), f3 � (1, 1, 1, 0), f4 � (2, 0, 1, 0), and f5 �

(2, 1, 0, 0). By equation (11), Transform fj(1≤ j≤ 5)

into its corresponding d-MP candidate: f1⟶ x1 �

(1, 1, 0, 2, 2), f2⟶ x2 � (1, 2, 1, 2, 1), f3⟶ x3 �

(2, 1, 1, 1, 2), f4⟶ x4 � (2, 2, 0, 1, 1), and f5⟶ x5

� (3, 2, 1, 0, 1).
Step 2: for x1 � (1, 1, 0, 2, 2), M(x1 − 0(e1)) � 2<
3, M(x1 − 0(e2)) � 2< 3, M(x1 − 0(e3)) � 2< 3, M(x1

−0(e4)) � 2< 3, andM(x1 − 0(e5)) � 2< 3, then
Φ(x1) � 5.564414, and Ω � Ω∪ 5.564414{ }. Similarly,
for x2 � (1, 2, 1, 2, 1), M(x2 − 0(ei)) � 2< 3 for all
x2

i > 0, thenΦ(x2) � 5.173743 andΩ � Ω∪ 5.173743{ };
for x3 � (2, 1, 1, 1, 2), M(x3 − 0(ei)) � 2< 3 for all
x3

i > 0, thenΦ(x3) � 5.484115 andΩ � Ω∪ 5.484115{ };
for x4 � (2, 2, 0, 1, 1), M(x4 − 0(ei)) � 2< 3 for all
x4

i > 0, thenΦ(x4) � 4.917778 andΩ � Ω∪ 4.917778{ };
for x5 � (3, 2, 1, 0, 1), M(x5 − 0(ei)) � 2< 3, for all
x5

i > 0, thenΦ(x5) � 4.758422 andΩ � Ω∪ 4.758422{ }.
Step 3: there is no duplicate in Ω, then the elements in
Ω correspond to all of the 3-MPs without duplicates:
x1 � (1, 1, 0, 2, 2), x2 � (1, 2, 1, 2, 1), x3 � (2, 1, 1, 1, 2),

x4 � (2, 2, 0, 1, 1), and x5 � (3, 2, 1, 0, 1).

,e solution results are summarized in Table 2, indi-
cating there are totally five 3-MPs generated. Using the
Inclusion-Exclusion method shown in Section 2.2, the final
network reliability for this example is calculated as
R3 � 0.986002.

5. Efficiency Investigation by
Numerical Examples

In this section, we investigate the efficiency of the proposed
algorithm. As mentioned in Section 2.2, Lemma 1 proposed
by Lin et al. [22] is one of the most important models with
respect to d-MPs, and is also the foundation of most of the
existing methods [26–30]. As an improvement to Lemma 1,
,eorem 2 is the foundation of the proposed algorithm. So,
we compare the proposed algorithm with the ones based on
Lemma 1. Also, given that the methods by Chen and Lin [28]
and Lin and Chen [30] are newly developed algorithms and
also considered to be efficient in solving d-MPs, we im-
plement the numerical experiments to compare the pro-
posed algorithm with them. Meanwhile, since Lin and Chen
[30] did not consider the step of removing duplicate d-MPs,
we incorporate the proposed technique into the method of
Lin and Chen for a fair comparison. All of the three algo-
rithms require MPs as prior knowledge. Actually, MPs can
be easily determined using the existing methods, such as the
methods by Chen and Lin [38] and Bai et al. [39], so it is
unnecessary to include this procedure when we compare the
efficiency. All algorithms are coded in MATLAB 2009 and
are implemented on a PC with Intel(R) Core (TM) i5-3210M
2.50GHz CPU and 8GB of RAM.

5.1. Example 1. First, we consider the network shown in
Figure 3. ,e largest state vector is set to W � (7, 5, 6, 4, 4,

5, 4, 6, 7), and the max-flow of the network under the largest
state vector W is D � 12. To draw a full picture of the ef-
ficiency of different algorithms, all of the demand levels from
1 to 12 are examined, i.e., 1-MPs, 2-MPs, . . ., and 12-MPs are
solved. In numerical experiments, we are interested in the
required computational time for finding all d-MPs. In ad-
dition, we use ratios, defined as the CPU time consumed by
the reported methods by Chen and Lin [28] and Lin and
Chen [30] divided by the CPU time consumed by the
proposed algorithm, respectively, to exhibit the relative
efficiency for the sake of intuitively capturing the perfor-
mances of different algorithms. ,e computational results
are summarized in Table 3, including the number of d-MPs,
the CPU times in seconds consumed by different algorithms
and their ratios. By Table 3, we make the following
observations.

Compared with the method by Chen and Lin [28], the
proposed algorithm spends a smaller amount of CPU time in
solving d-MPs for every demand level d. ,us, the proposed
algorithm is more efficient than Chen and Lin’s method.
Notice that the ratio TCL/T, representing the advantage of
proposed algorithm over the method by Chen and Lin for
finding d-MPs, is greater than 4 for every demand level d
except d � 12, indicating that the proposed algorithm holds
a distinct advantage in most cases. Furthermore, when the
demand level d is intermediate (d � 5, 6, 7, 8), the ratio TCL/
T is above 30, which exhibits the considerable advantage of
the proposed algorithm.

,e CPU time consumed by the proposed algorithm is
less than that consumed by Lin and Chen’s method [30] in

s t

1

2

e1 e2

e3

e5e4

Figure 2: ,e bridge network.

Table 1: ,e data of edges for the bridge network in Figure 2.

Edge States State probabilities
e1 0 1 2 3 0.002 0.013 0.125 0.860
e2 0 1 2 — 0.005 0.010 0.985 —
e3 0 1 — — 0.110 0.890 — —
e4 0 1 2 — 0.003 0.012 0.985 —
e5 0 1 2 — 0.006 0.015 0.979 —
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terms of solving d-MPs for every demand level d, showing
the proposed algorithm outperforms the method by Lin and
Chen as well. It is noted that the ratio TLC/T, representing
the advantage of proposed algorithm over Lin and Chen’s
method for finding d-MPs, is between 4 and 6 for every
demand level d, thereby the proposed algorithm has a
distinct advantage in all cases.

5.2.Example2. In this section, we consider a relatively larger
network in Figure 4 and consider two scenarios, where the
largest states of all edges are equal to 4 and 5, respectively.
For each scenario, five demand levels, i.e., d � D/2 − 2,

D/2 − 1, D/2, D/2 + 1, andD/2 + 2, where D is the max-flow
of the network under the largest state vector, are examined.
We still use ratios, defined as the CPU time consumed by the
reported methods by Chen and Lin [28] and Lin and Chen
[30] divided by the CPU time consumed by the proposed

algorithm, respectively, to exhibit the relative efficiency. ,e
experimental results are summarized in Table 4, including
the number of d-MPs, the CPU times in seconds consumed
by different algorithms and their ratios.

It can be seen from Table 4 that all ratios (TCL/Tand TLC/
T) that denote the advantage of proposed algorithm over the
methods by Chen and Lin [28] and Lin and Chen [30] for
finding d-MPs are greater than 1 for every demand level d
(d � D/2 − 2, D/2 − 1, D/2, D/2 + 1, D/2 + 2) in both sce-
narios; then, the proposed algorithm is more efficient than
both methods. It is noteworthy that the method by Chen and
Lin cannot find all 6-MPs (7-MPs) within 20000 CPU
seconds, while the proposed algorithm requires 815.486
CPU seconds (1538.119 CPU seconds) that is far less than
20000 CPU seconds to generate all 6-MPs (7-MPs). In
addition, the efficiency difference between the proposed
algorithm and the method by Chen and Lin [28] is more
prominent than that between the proposed algorithm and
the method by Lin and Chen [30].

As an NP-hard problem, searching for d-MPs is a
challenging task. ,e comparative results derived from
Table 4 reveals that the proposed algorithm does con-
tribute to the efficiency improvement of solving d-MPs
without duplicates. ,us, the suggested algorithm can be
used to accelerate the computation of network reliability.
Network reliability is a key performance parameter in
network design and improvement [9]. By employing the
proposed algorithm, the network supervisor can effi-
ciently capture the quality of service of real-world systems
to make managerial decisions, especially to figure out the
bottleneck of network improvement in many enterprises
or organizations.

Table 3: Results of different algorithms for solving the network in
Figure 3.

d # of d-MPs
Computational time (s) Ratio
TCL TLC T TCL/T TLC/T

1 13 0.371 0.372 0.065 5.708 5.723
2 59 0.457 0.516 0.096 4.760 5.375
3 175 1.682 1.334 0.254 6.622 5.252
4 410 13.903 4.639 0.951 14.619 4.878
5 719 88.871 14.061 2.916 30.477 4.822
6 916 339.614 34.474 7.367 46.099 4.680
7 894 774.969 67.595 15.708 49.336 4.303
8 632 845.703 91.782 22.162 38.160 4.141
9 389 460.938 82.058 18.496 24.921 4.437
10 200 124.697 47.218 9.453 13.191 4.995
11 79 18.324 19.665 3.792 4.832 5.186
12 19 1.241 4.661 0.985 1.260 4.732
Note: TCL and TLC are the computational times of Chen and Lin’s algorithm
[28] and Lin and Chen’s algorithm [30], respectively, and T is the com-
putational time of the proposed algorithm.

Table 2: Solution results of the proposed algorithm.
j Feasible solution fj ,e corresponding 3-MP candidate A 3-MP? Φ(xj) A duplicate 3-MP
1 f1 � (1, 0, 2, 0) x1 � (1, 1, 0, 2, 2) Yes 5.564414 No
2 f2 � (1, 0, 1, 1) x2 � (1, 2, 1, 2, 1) Yes 5.173743 No
3 f3 � (1, 1, 1, 0) x3 � (2, 1, 1, 1, 2) Yes 5.484115 No
4 f4 � (2, 0, 1, 0) x4 � (2, 2, 0, 1, 1) Yes 4.917778 No
5 f5 � (2, 1, 0, 0) x5 � (3, 2, 1, 0, 1) Yes 4.758422 No
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Figure 3: A test network for example 1.
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Figure 4: A test network for example 2.
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6. Concluding Remarks

Reliability evaluation is an effective manner to capture the
operational state of practical networks. One important type
of method for multistate network reliability evaluation is
using d-MPs. ,is paper presents a new efficient method to
search for d-MPs for the multistate network reliability
problem. On the one hand, an improved model is con-
structed to solve d-MPs by redefining capacity constraints of
network components and MPs, and the model is an im-
provement to the well-known fundamental model. On the
other hand, a technique superior to the traditional com-
parison method is proposed to remove duplicate d-MPs.,e
computational complexity of the proposed algorithm is
analyzed, and a simple example is provided to illustrate the
proposed algorithm. In addition, through computational
experiments, it is found that the proposed algorithm is more
efficient in terms of finding all d-MPs.

For future research, there is still potential for im-
proving the suggested algorithm. For instance, transmis-
sion cost is also an important attribute of real-world
networks, such as transportation networks or power
transmission networks, and thus, extending the suggested
algorithm to network reliability subject to cost constraint
is worthy of study. Furthermore, it is interesting to study
how to modify the suggested algorithm to be an ap-
proximate algorithm for tradeoff between execution time
and the obtained set of d-MPs.

Notations

G(V, E, W): A multistate network with a set of nodes
V � s, 1, 2, . . . , n, t{ }, a set of edges
E � e1, e2, . . . , em􏼈 􏼉, and the largest state vector
W � (W1, W2, . . . , Wm)

s/t: ,e source node/the sink node
m/n: ,e number of edges/the number of nodes

except s and t
ei: ith edge in E
xi: A state of ei

x: A state vector
M(x): ,e max-flow of a network under x

d: Demand level
D: ,e max-flow of a network under W

Rd: Network reliability at demand level d
0(ei): A special state vector with the state of ei being 1

and the states of other edges being 0, i.e.,
0(ei) � (0, . . . , 0, 1, 0, . . . , 0)

W(0i): A special state vector
W(0i) � (W1, W2, . . . , Wi−1, 0, Wi+1, . . . , Wm)

Li: Li � max d − M(W(0i)), 0􏼈 􏼉

fj: ,e flow travelling through Pj

f: A flow vector f � (f1, f2, . . . , fp)

p: ,e number of MPs
Pi: ,e ith MP
Uj: Uj � min Wi | ei ∈ Pj􏽮 􏽯 is the maximal

capacity of Pj

Φ(x): ,e associated value with a state vector x
Ω: ,e set of Φ(x)

π: ,e number of groups of alternative orders
arranged by the fast enumeration method

qk: ,e number of enumerations in the ith group
σ: ,e number of d-MP candidates.
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