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-is paper constructs a supply chain consisting of a manufacturer and a retailer. Considering channel integration and service
cooperation, two dynamic Stackelberg gamemodels are established: one without unit profit allocation (M) and the other one with
unit profit allocation (Mε). In two dynamic models, we analyze the influence of relevant parameters on the stability and
complexity of the dynamic system and system profit by nonlinear system theory and numerical simulation.We find that the higher
adjustment parameters can cause the system to lose stability, showing double period bifurcation or wave-shape chaos. -e stable
region becomes larger with increase in service value and value of unit profit sharing. Besides, when the system is in chaotic state,
we find that the profit of the system will fluctuate or even decline sharply; however, keeping the parameters in a certain range is
helpful in maintaining the system stability and is conducive to decision-makers to obtain steady profits. In order to control the
chaos phenomenon, the state feedback method is employed to control the chaotic system well. -is study provides some valuable
significance to supply chain managers in channel integration and service cooperation.

1. Introduction

In recent years, the development of e-commerce has brought
a strong impact on offline stores [1]. Customer volume
migrates from offline to online on a large scale. In 2018,
Tmall platform “double eleven” shopping carnival achieved a
total turnover of 12135 billion yuan.-is phenomenon is not
conducive to the development of offline stores. However,
online shopping also brings a series of problems. For ex-
ample, when buying clothes online, we cannot see the real
thing, the clothes we buy often cannot meet our needs, and
even the phenomenon of returns occurs. It can be seen that
online shopping sometimes cannot bring consumers a
perfect shopping experience. Under this background, the
retail mode of online order delivery and offline store pur-
chase emerges as the times require, namely, channel inte-
gration. At present, JD, Tmall, and Suning have arranged
offline retailer outlets to achieve effective integration of
online and offline channels. In addition, the international
fast fashion brand: UNIQLO and Zara also provides a perfect

shopping experience for customers through channel inte-
gration. Relevant empirical research studies have proved that
this mode not only meets the consumer’s shopping needs
but also increases the flow of customers in offline stores
[2, 3].

Over the past few years, many scholars have conducted
in-depth research on dual-channel and multichannel supply
chains [4–6] but rarely pay attention to online and offline
integration. Because of the conflict between traditional
channel and online channel and the change of consumer
demand, channel integration as an important model of
omnichannel has gained significant interest among aca-
demics and practitioners [3, 7]. -rough a questionnaire
survey, Lin et al. [8] revealed that the drivers of innovation in
channel integration are positively correlated with supply
performance. -e development of channel integration is
inseparable from the support of information technology.
Based on survey data from 125 multichannel retailers in
Singapore, Oh et al. [9] found that retail channel integration
enables enterprises to not only provide current products
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efficiently but also be innovative in creating future products
through IT technology. Piotrowicz and Cuthbertson [10]
discussed the influence of information technology on the
development of channel integration from the technical level.
On inventory research of channel integration, considering
the randomness of demand, the inventory backlog cost, and
the number of BOPS. Chen et al. [11] constructed and
analyzed a stochastic equilibriummodel. In an omnichannel
supply chain, Du et al. [12] studied the impact of consumer
disappointment and inventory on retailers’ optimal pricing.
Based on Gao and Su [13], Kusuda [14] considered the
retailer’s replenishment of inventory in an omnichannel
strategy and found two types of equilibrium. Besides, in the
omnichannel retailing, the characteristics of omnichannel
retailers play an important role in consumers’ response to
cross-channel integration [15]. Jin et al. [16] analyzed the
influence of orders from integration channels and customer
arrival rate on the scale of offline service area.

-e above research on channel integration focuses on the
applicable conditions of information technology, channel
inventory management, and adaptation scenario of channel
integration and enriched the research of channel integration.
In the channel operation, we find that consumers are in-
creasingly demanding retail services during the shopping
process. -e relevant literature confirms that service factors
have affected customer choice and shopping experience [17].

In the past few years, most of the research focuses on the
impact of service factors on dual-channel and multichannel
supply chains [18, 19]. In terms of channel coordination, re-
tailers provide services to consumers in a dual-channel supply
chain, which can reduce channel conflicts and improve the
relationshipwith themanufacturer [20]. Channel competition is
the inevitable result when amanufacturer adds a direct channel.
Li and Li [21] discovered that retailers’ value-added services help
to alleviate this phenomenon, but when the retailer has fair
concerns, the entire supply chain will conflict with fixed
wholesale price. In supply chain decision making, Jena and
Sarmah [22] constructed four price and service competition
models consisting of two manufacturers and one retailer and
analyzed the equilibrium decision and profit of each model.
Considering service value, Zhang and Wang [23] studied the
dynamic pricing strategy of dual-channel supply chain under
centralized and decentralized conditions. It was found that, with
increase in service value, the system stability decreases first and
then increases. Considering price, service, and discount con-
tracts, Sadjadi et al. [24] built a Stackelberg game model to
analyze the equilibrium solution and found that service and
price discounts can improve the performance of the supply
chain. In addition, scholars have explored service competition
and service contract issues [25]. When the manufacturer’s
warranty service competes with the retailer’s value-added ser-
vice, Dan et al. [26] found that when themanufacturer improves
the level of warranty service, the competition of value-added
service would be weakened. Considering the service factor, Li
et al. [27] found that the stability of the low-carbon supply chain
is related to sales service and player’s behavior. Besides, Li et al.
[28] established a dual-channel value chain and found that the
channel service value and green innovation input would reduce
the stability of supply chain.

-e above research focuses on the research of the impact of
services on the dual-channel supply chain. Few literature
studies have been carried out on supply chain channel inte-
gration and service cooperation issues. In actual operation, the
online and offline integration requires not only the support of
information technology but also the close cooperation be-
tween members of the supply chain. In order to ensure that
consumers get the corresponding services when picking up
goods offline, manufacturers and retailers are required to
cooperate with the service. In channel integration, how do
manufacturer and retailer engage in service cooperation? How
is the profit of the channel integration distributed?

It is worth noting that some scholars have recently
employed nonlinear dynamics theory and numerical sim-
ulation to study supply chain problems and have obtained
very good results [29, 30]. Ma and Xie [31] analyzed the
dynamic behavior of dynamic game models under two
scenarios and found that the stability of system depends on
the channel type. Huang et al. [32] showed the smaller risk
aversion attitude and fair concern coefficient will delay the
occurrence of chaos in the system. In a closed-loop supply
chain, Li et al. [33] analyzed the complexity entropy of the
price game model with the recovery rate and service. Ma and
Xie [34] focused on bundling goods and compared the
dynamic price strategies under two different mechanisms.
-is paper also studies dynamic game models, which is a
new model, with relatively little literature on integration
channel service cooperation. Based on the nonlinear dy-
namic theory, this paper mainly focuses on the following
issues: What impact does the different service cooperation
model have on manufacturers and retailers? What impact
does service value and unit profit sharing have on the dy-
namic behavior of the system?

Based on abovementioned factors, considering the
channel integration and service factors, the main contri-
butions of this paper are as follows:

(1) Based on service cooperation, the paper proposes
two distribution modes of profit from channel in-
tegration, discusses the stability and complexity of
the two modes, and provides a reference for decision
makers of the integration channel

(2) -e paper reveals the impact of service value and
value of unit profit sharing on the dynamic evolution
of the gamemodel and the profits of decision-makers

(3) -e paper applies nonlinear dynamic theory to the
study of channel fusion and enriches the research in
this field

-e rest of this paper is organized as follows. In Section
2, we present the model description and assumptions. In
Section 3, we set up a decentralized model without unit
profit sharing (M) and give complexity analysis by nu-
merical simulation. Section 4 sets up a decentralized model
with unit profit sharing (Mε) and performs the same dy-
namic analysis as in Section 3. In Section 5, we control the
chaotic behavior of the system by employing the state
feedback control method. Section 6 concludes this paper and
proposes management insights.
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2. Problem Description and
Model Assumptions

2.1. Model Description. In this paper, we consider a supply
chain consisting of one manufacturer and one retailer as
shown in Figure 1, where three sales channels are described.
On the one hand, the manufacturer sells the product to
customers at p1 by online channel and also sells them to the
retailer at the wholesale price w. -en, the retailer, by tra-
ditional channel, resells productions to customers at p2. On
the other hand, in order to increase sales and improve
customer experience, the integrated channel is established
by the manufacturer and retailer where customers can
browse products and pay order at p1 online and pick up
products at the retailer offline. Meanwhile, the retailer
provides customer from traditional channel and integrated
channel with service value s. In terms of profit from the
integrated channel, there are two ways of distribution: one is
the retailer obtains all the profits without unit profit sharing
with the manufacturer and the other is the manufacturer
obtains all the profit and shares unit profit ε with the retailer.
Based on this, this paper builds two game models and carries
out the complexity analysis of models.

2.2. Model Assumptions. Based on the real situation, the
following hypothesizes are proposed in this paper:

(1) Online channel and integrated channel adopt the
same price strategy, and consumers have channel
preferences.

(2) -ere is a Stackelberg game with the manufacturer as
the leader deciding on w and p1 and retailer as the
follower deciding on p2.

(3) -e service cost function of traditional channel can be
described as Cs � ηs2, where η � η′/2. Due to the
difference in service cost between the traditional
channel and integrated channel, the service cost of the
integrated channel can be described as φCs, where
φ ∈ (0, 1) is the service cost consistency coefficient.

-e related variables and parameters are reported in
Table 1.

3. Model without Unit Profit Sharing (M)

3.1. StaticModel. In this static model, the retailer obtains all
the profits of the integration channel without unit profit
sharing with the manufacturer. -e manufacturer is the
leader of the market, and the retailer is the follower. -e
manufacturer firstly decides w andp1. Correspondingly, the
retailer makes decisions p2 based on w andp1.

Considering the service value and integration channel,
based on the previous studies [26, 35], the demand functions
for the three channels could be given as follows:

Online channel demand is

Do � θ1a − ρ1p1 + c1p2. (1)

Integration channel demand is

DB � θ2a − mB p1 − s( 􏼁 + c1p2. (2)

Traditional channel demand is

DT � θ3a − mT p2 − s( 􏼁 + c1p1, (3)

where θi, i � 1, 2, 3, meet 􏽐
3
i�0 θi � 1. mB > n1c1, mT > n2c1

and ρ1 > n3c1(ni > 2, i � 1, 2, 3) represent that the price
elasticity coefficients are much larger than the cross price
elasticity coefficients.

-erefore, the profit-maximizing functions of players
can be expressed as follows:

max
p1 ,w

􏽙
m

� (w − c) θ2 + θ3( 􏼁a − mB p1 − s( 􏼁􏼂

− mT p2 − s( 􏼁 + c1 p1 + p2( 􏼁􏼃

+ p1 − c( 􏼁 θ1a − ρ1p1 + c1p2( 􏼁

s.t. w + φηs
2 <p1, c<w,

(4)

max
p2

􏽙
r

� p2 − w − ηs
2

􏼐 􏼑 θ3a − mT p2 − s( 􏼁 + c1p1􏼂 􏼃

+ p1 − w − φηs
2

􏼐 􏼑 θ2a − mB p1 − s( 􏼁 + c1p2􏼂 􏼃

s.t. w + ηs
2 <p2.

(5)

Proposition 1. If the manufacturer and retailer pursue
the profit maximizing in the supply chain with the
integrated channel, their optimal decisions can be obtained as
follows:

w∗ �
A5A4 − A2A6

B2
2 − B3B5

,

p∗1 �
A3A6 − A2A4

A2
2 − A3A5

,

p∗2 �
c1 B3B6 − B2B4( 􏼁

mT B2
2 − B3B5( 􏼁

+
mT − c1( 􏼁 B5B4 − B2B6( 􏼁

2mT B2
2 − B3B5( 􏼁

+ B1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where
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A1 �
θ3a + mTs + mTηs2 − c1φηs2

2mT

,

A2 � − mB +
c1

2
+

c2
1

2mT

,

A3 � − mT + 2c1 −
c2
1

mT

,

A4 � mBs + mTs − B1 mT − c1( 􏼁 +
c

2
mT − 3c1 +

2c2
1

mT

􏼠 􏼡 + aθ2 + aθ3,

A5 �
2c2

1 − 2mTρ1
mT

,

A6 �
A1mTc1 + amTθ1 + c mBmT − 2c21 + mTρ1( 􏼁

mT

.

(7)

Table 1: Key notations.

Variables
DO Online channel demand
DB Integrated channel demand
DT Tradition channel demand
a -e potential market scale
θ1 -e customer’s loyalty to the online channel
θ2 -e customer’s loyalty to the integrated channel
θ3 -e customer’s loyalty to the tradition channel
ρ1 -e elasticity coefficient of the online channel demand for price
mB -e elasticity coefficient of the integrated channel demand for price
mT -e elasticity coefficient of the tradition channel demand for price
c1 Cross price elasticity coefficient
w -e wholesale price
p1 Retail price of products in the online channel and integrated channel
p2 Retail price of products in the tradition channel
s Service value
ε Value of unit profit sharing
φ -e service cost consistency coefficient
η -e service cost parameter of the traditional channel
α1 -e limited rational adjustment parameter in model M

α2 -e adaptive adjustment parameter in model M

β1 -e limited rational adjustment parameter in model Mε

β2 -e adaptive adjustment parameter in model Mε

Manufacturer CustomersIntegrated
channel

Online
channel

Traditional
channel

Retailer
w

p1

p1

p2

s

s

Figure 1: -e supply model with the integrated channel.
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Proof. See Appendix A. Integrating equations (A.5) and (A.6) with equations (4)
and (5), their estimated profit can be written as the following
equation:

􏽑
m

� w∗ − c( ) θ2 + θ3( 􏼁a − mB p∗1 − s( 􏼁 − mT p∗2 − s( 􏼁 + c1 p∗1 + p∗2( 􏼁􏼂 􏼃 + p∗1 − c( 􏼁 θ1a − ρ1p∗1 + c1p
∗
2( 􏼁,

􏽑
r

� p∗1 − w∗ − φηs2( 􏼁 θ2a − mB p∗1 − s( 􏼁 + c1p
∗
2􏼂 􏼃 + p∗2 − w∗ − ηs2( 􏼁 θ3a − mT p∗2 − s( 􏼁 + c1p

∗
1􏼂 􏼃.

⎧⎪⎪⎨

⎪⎪⎩
(8)

□
3.2.DynamicModel. -e price game between competitors is
a dynamic process. -e changing market environment and
product update will lead decision-makers to make new
decisions for the next cycle, and each decision is not simply a
repetition.

In reality, market participants are usually constrained by
capital and other factors and cannot grasp the complete
market information; therefore, their decisions are based on
the bounded rationality and adaptive expectations in the
current period. So, we build a dynamic price game model in
which players employ different price adjustment strategies.
-e manufacturer adopts the limit rational expectation to

make the wholesale price decision:
wt+1 � wt + α1wt(z􏽑m(wt, p1,t)/zwt). If the marginal profit
of the last period is negative, the manufacturer will reduce
the price of the next period by adjusting α1, otherwise,
increase it. -e manufacturer makes retail price decision
based on adaptive expectations: p1,t+1 � α2p1,t + (1 − α2)p∗1 .
-at is to say, the manufacturer adjusts the retail price of the
next period on the basis of our period and the best reply
function.

-erefore, the discrete dynamic system can be modeled
as

wt+1 � wt + α1wt − mB +
c1

2
+

c2
1

2mT

􏼠 􏼡p1,t + − mT + 2c1 −
c2
1

mT

􏼠 􏼡wt + A4􏼢 􏼣,

p1,t+1 � α2p1,t + 1 − α2( 􏼁
A3A6 − A2A4

A2
2 − A3A5

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

where α1(α1 > 0) is the limited rational adjustment pa-
rameter of the manufacturer and α2(0< α2 < 1) is the
adaptive adjustment parameter.

It is easy to get the decision of retailer with wt+1p1,t+1:

p2,t+1 �
c1

mT

p1,t+1 +
mT − c1

2mT

wt+1

+
θ3a + mTs + mTηs2 − c1φηs2

2mT

.

(10)

3.2.1. Equilibrium Points and Local Stability. -is part
discusses the stability of system (9) at equilibrium points. By
setting wt+1 � wt and p1,t+1 � p1,t, there are two equilibrium
points in the discrete system of equation (9):

e1 � 0,
A3A6 − A2A4

A2
2 − A3A5

􏼠 􏼡,

e2 �
A5A4 − A2A6

A2
2 − A3A5

,
A3A6 − A2A4

A2
2 − A3A5

􏼠 􏼡.

(11)

Correspondingly, the retailer’s decisions are expressed as

p
e1
2 �

c1 A3A6 − A2A4( 􏼁

mT A2
2 − A3A5( 􏼁

+ A1,

p
e2
2 �

c1 A3A6 − A2A4( 􏼁

mT A2
2 − A3A5( 􏼁

+
A4 A2

2 − A3A5( 􏼁 mT − c1( 􏼁

2mTA2A3 A2A4 − A3A6( 􏼁
+ A1.

(12)

In a discrete system, the stability of equilibrium points
will be determined by the eigenvalues of Jacobian matrix at
the corresponding equilibrium points. -e Jacobian matrix
of system (9) is defined as follows:

J ei( 􏼁 �
1 + α1 A2p1 + 2A3w + A4( 􏼁 A2α1w

0 α2
􏼢 􏼣, i � 1, 2.

(13)

Supposing that f(λ) � λ2 − ξ1λ + ξ2 is the characteristic
polynomial of J(ei), (i � 1, 2); besides, Δ � ξ21 − 4ξ2 is its
discriminant with ξ1 � tr(j) � 1 + α1(A2p1 + 2A3w + A4) +

α2 and ξ2 � det(j) � α2 + α1α2(A2p1 + 2A3w + A4).
When λ � 1, the characteristic polynomial of Jacobian

matrix is described as follows: F(1) � 1 − tr
(J) + det(J) � α1(A2p1 + 2A3w + A4)(α2 − 1).
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Lemma 1 (see [36]). Defining the two values of f(λ) � 0 as
λ1 and λ2, the eigenvalues of J(ei) can be judged as follows by
Lemma 1. 9en,

(f1) |λ1|< 1 and |λ2|< 1 if and only if f(− 1)> 0 and
det(J)< 1
(f2) |λ1|> 1 and |λ2|> 1 if and only if f(− 1)> 0 and
det(J)< 1
(f3) |λ1|< 1 and |λ2|> 1 or |λ1|> 1 and |λ2|< 1 if and
only if f(− 1)< 0
(f4) λ1 � − 1 and |λ2|≠ 1 if and only if f(− 1) � 0 and
det(J)≠ 0, 2
(f5) both roots are complex and |λ1| � |λ2| � 1 if and
only if Δ< 0 and det(J) � 1

If all eigenvalues are smaller than one in modulus, this
equilibrium point is asymptotically stable. Otherwise, bifur-
cation or chaos may occur in system (9).

Proposition 2. Obviously, e1 is an unstable equilibrium
point, while e2 is the Stackelberg equilibrium point.

Proof. See Appendix B.
According to Lemma 1, the jury stability criterion of

system (9) at e2 can be expressed as follows:
g1( 􏼁 � 1 + tr J e2( 􏼁( 􏼁 + Det J e2( 􏼁( 􏼁> 0,

g2( 􏼁 � 1 − tr J e2( 􏼁( 􏼁 + det J e2( 􏼁( 􏼁> 0,

g2( 􏼁 � 1 − det J e2( 􏼁( 􏼁> 0,

⎧⎪⎪⎨

⎪⎪⎩
(14)

where

tr J e2( 􏼁( 􏼁 � 1 + α1 A2
A3A6 − A2A4

A2
2 − A3A5

+
2A4 A2

2 − A3A5( 􏼁

A2 A2A4 − A3A6( 􏼁
+ A4􏼠 􏼡 + α2,

det J e2( 􏼁( 􏼁 � α2 + α2α1 A2
A3A6 − A2A4

A2
2 − A3A5

+
2A4 A2

2 − A3A5( 􏼁

A2 A2A4 − A3A6( 􏼁
+ A4􏼠 􏼡.

(15)

By analyzing the above judgment conditions of equation
(14), 0< α1 < (2/K) and 0< α2 < 1 can be obtained, where K �

A2(A3A6 − A2A4 / A2
2 − A3A5) + 2A4(A2

2 − A3A5)/A2(A2
A4 − A3A6) + A4. It can be known that adjustment parameters
(α1, α2) are not related to the optimal decision e2(w∗, p∗1 ) but
are themain factors that affect the stability of e2. Service value s
affects not only α1 and α2 but also e2(w∗, p∗1 ) and then affects
the stability of system (9). When the decision parameters are
not in this range ( 0< α1 < 2/K , 0< α2 < 1), system (9) will be
unstable at e2(w∗, p∗1 ) and show bifurcation or chaos. When
the decision-maker chooses the adjustment coefficients
(α1, α2) in the stable region ( 0< α1 < (2/K) , 0< α2 < 1), the
equilibrium point e2(w∗, p∗1 ) is stable. At this point, manu-
facturers and retailers in the supply chain can achieve max-
imum profits. From the point of view of management,
managers should not only pay attention to their price ad-
justment parameters but focus on service value. Based on
eigenvalues of the Jacobianmatrix, the stability and bifurcation
of system (9) will be studied in detail in the next section by
numerical simulation. □

3.3. Complexity Dynamics Analysis and Numerical
Simulation. Due to the existence of a large number of pa-
rameters, the complexity dynamics of system (9) will be
studied intuitively by numerical simulation. Numerical
values are assigned to the following letters: a � 180,θ1 � 0.3,
θ2 � 0.3, θ3 � 0.4, ρ1 � 2.6, mB � 3, mT � 6, c1 � 1, v � 2,
η � 5, φ � 0.2, and c � 4. -us, the Stackelberg equilibrium
point can be expressed as e2 � (7.342, 15.2).

3.3.1. Complexity Dynamics with respect to αi. In this sec-
tion, the bifurcation diagram is a powerful tool to analyze the

bifurcation phenomenon of system (9). Based on stability
conditions equation (13), Figure 2 shows the 2D parameter
bifurcation in the (α1, α2) plane, which shows the paths of
system (9) to chaos. Different periods are represented by
different colors: stable (green), period-2 (blue), period-3
(yellow), period-4 (Claret), period-5 (Cyan), period-6 (red),
chaos (gray), and divergence (white). -ere are two ways to
lead to chaos in system (9). -e system enters chaos through
periodic doubling bifurcation with α1; when 0< α2 < 1, the
system goes directly into chaos with α2. When 0< α1 < 0.065,
we can know that flip bifurcation will happen when α1
increases. In short, it can be judged that the stability of the
system is not independent of α1 and α2.

Figure 3 shows the bifurcation of prices (w, p1, p2) and
the largest Lyapunov exponent (LLE) as α1 increases with
α2 � 0.5. In Figure 3(a), when α1 < 0.065, w, p1, and p2 do
not fluctuate and system (9) is in a stable state. However,
α1 > 0.065, w andp2 show first the flip bifurcation. Due to
limit, rational expectation has no effect on adaptive price
expectation, and p1 does not show fluctuation.-e LLE with
respect to α1 shown in Figure 3(b) is a powerful tool to
identify the state of system (9). When α1 � 0.065, the LLE
reaches the first zero, and w andp2 show the bifurcation
phenomenon. After it, period doubling bifurcation con-
tinues to occur, and the system goes into chaos when LLE is
more than zero.

When α1 is set to 0.04, Figure 4 gives the bifurcation
diagram of prices (w, p1, p2) and LLE of system (9) for α2
varying from 0 to 1.1. We can see that as long as the pa-
rameter is in the stability region (α2 < 1), the game will be
stable at w � 7.342, p1 � 15.2, andp2 � 22.26. In this situ-
ation, manufacturers and retailers can obtain Stackelberg
game’s optimal profit. When α2 > 1, the system directly goes
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into the chaotic state without period doubling bifurcation; at
this moment, the LLE is zero in Figure 4(b). Obviously, the
influence of α2 on the system dynamic behavior is different
from that of α1 on the system dynamic behavior.

Figure 5 is the 3D diagram for the chaos of system (9)
corresponding to Figure 3(a). Red point represents the
attractor when α1 � 0.04 and α2 � 0.5, which indicates that
the trajectory of the system is fixed. In Figure 5(b), the blue
curve is the chaotic attractor of the system, when
α1 � 0.094 and α2 � 0.5, which vividly indicate the com-
plexity and uncertainty of the system in chaotic state. Fig-
ure 6 shows the attractor of system (9) with respect to
α1 � 0.04 and α2 � 1.05. In the chaotic state, w, p1, andp2
are in disorder.

Besides, when α1 � 0.094 and α2 � 0.5 or
α1 � 0.04 and α2 � 1.05, chaotic system (9) also exhibits
strong sensitivity to initial values. Here, fixing
p1 � 14 andp2 � 20, Figure 7(a) shows the sensitivity to
initial value in stable state, when w is changed from 7 to
7.001. We can find that, at the beginning of iterations, there
is a little difference, but after 5 iterations, the difference
gradually reduces to zero. Conversely, in chaos, Figure 7(b)
shows that small difference in initial values can cause a huge
deviation after 10 iterations, which warns decision-makers
to be cautious in choosing initial values when making
decisions.

3.3.2. Complexity Dynamics with respect to s. When making
price decisions, decision-makers should consider the impact
of service value on optimal decision-making, as well as the
impact of service value on the dynamic system. Figure 8
indicates the range of service values. It can be seen that w

decreases with increase in s, but w must be above zero, which
is in line with the actual situation of the market. Besides, p1
must be higher than w. -us, it can be known that
s ∈ (1.66, 2.42).

Based on stability judgment conditions in equation (14),
Figure 9 shows the 3D stable region with respect to s. When
the value of (α1, α2, s) is in this region, system (9) is stable;
otherwise, the system would not be stable. In Figure 9(b),
increase in s improves the range of α1. Figure 10 shows the
stability region composed of (α1, α2) with s fixed different
values. We can see that the stable region is least when s � 2.2
and becomes larger when s � 2.35 and 2.38. It is worth
noting that s has no effect on the region of α2. -e above
analysis shows that the larger the s is, the larger the stable
region of system (9) will be.

Next, the combined effects of s αi on system’s complexity
are discussed. A 2D bifurcation diagram with respect to s

and α1, when α2 � 0.5, is shown in Figure 11(a). Green
represents the stable region consisting of (s, α1). -e range
of α1 increases significantly and then decreases with s in-
creasing. For a given s belongs to (1.66, 2.20), the system will
experience a stable, series of period doubling bifurcations
and fall into chaos with α1 increasing. If s belongs to
(1.66, 2.20), the system will directly overflow. Figure 11(b)
shows the 2D bifurcation diagram with respect to s and
α2when α1 � 0.04. If given s belongs to (1.66, 1.694), the

system goes into the period doubling region and shows
period doubling bifurcation or chaos with α2 varying
in(0, 1). If the given s belongs to (1.694, 2.42) and
α1 ∈ (0, 1), the system is in a stable state.

By comparing Figure 11(a) with Figure 11(b), it is found
that service value s has little effect on α2. Besides, the retailer
should reasonably choose the service value when providing
services to customers; otherwise, the system will be in a
chaotic state, which is not conducive to the retailer to get
maximize profits.

3.3.3. Impact of αi and s on Profits. As the aim of enterprise
in the market is to earn profit, the manufacturer and retailer
have to pay attention to the result that whether they can get
more profits or reduce losses by adjusting α1, α2, and s. In
this section, the influence of α1, α2, and s on profits will be
researched.

-e bifurcation diagram of profits is shown in Figure 12
with α1 varying from 0 to 0.1 and α2 � 0.5. In a stable state
(α1 < 0.065), the manufacturer and retailer can get stable
returns and 􏽑m >􏽑r. If α1 > 0.065, profits show the bi-
furcation and chaos phenomenon with α1 increasing, which
is consistent with Figure 3(a). Figure 13 shows the evolution
diagram of the average profit with α1. It can be known that,
in the periodic doubling bifurcation, the average profit of the
manufacture and retailer decreases and shows a floating
trend in chaotic state.

Figure 14 shows wave-shape chaos diagrams with respect
to α2 when α1 � 0.04. As α2 increases (0< α2 < 1), system (9)
remains stable. Once α2 > 1, system (9) will go into a fluc-
tuant state, which causes a significant decline in profit.

Figure 15 shows the disordered evolution of system (9) as
α1 � 0.094 and α2 � 0.5. It can be found that the profit of
system (9) changes irregularly in chaotic state, which is
difficult for the manufacturer and retailer to predict future
profits. In actual operation, decision-makers should avoid
the appearance of this phenomenon.

Figure 16 shows the bifurcation diagram of 􏽑r and􏽑m

with respect to s as α1 � 0.04 and α2 � 0.5. Obviously, the
change of s has an impact on the dynamic evolution of
system (9) and the profits of the manufacturer and retailer. It
is shown in Figure 16 that when s is small (s< 1.8), system
(9) is in chaotic state. In this scenario, 􏽑r and 􏽑m are
difficult to be measured. Further increase in s will lead to the
appearance of period-4 state (1.8< s< 1.848), period-2 state
(1.848< s< 1.967), and stable state (1.967< s). We can see
that in stable state, increasing s is beneficial to the manu-
facturer and retailer. As s> 2.155, 􏽑r is greater than 􏽑m.
Table 2 shows the change of 􏽑m, 􏽑r, and 􏽑T with respect to
s, where 􏽑T is equivalent to 􏽑m plus 􏽑r. It can be found
that the total profit of supply chain increases with s

increasing.
Next, the combined effect of α1, α2, and s on the profits of

the manufacturer and retailer is to be explored in two
situations.

Situation 1. System (9) falls into chaos with respect to α1
and s.

8 Complexity
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Figures 17 and 18 show the variation of 􏽑m and 􏽑r with
α1 and s. We can know that the smaller the service value is,
the more easily the profit of the manufacturer and retailer
fluctuates with α1 increasing. On the contrary, the larger the
service value, the chaotic phenomenon of system (9) will be
delayed with α1 increasing. -e profits of the manufacturer
and retailer will not be easily fluctuated. Meanwhile, the
manufacturer and retailer can obtain stable profits. But too
large α1 will also cause the system to go into chaos.

Situation 2. System (9) falls into chaos with respect to α2
and s.

As shown in Figures 19 and 20, as long as α2 is less than 1,
no matter how α2 and s change, the profits of manufacturer
and retailer will not fluctuate dramatically and the profit of
manufacturer will slightly change with s increasing. How-
ever, the profit of retailer will increase with s increasing.
Once α2 is greater than 1, the profits of manufacturer and
retailer will decline sharply.

With the variation of α1, α2, and s, system (9) probably
loses stability and shows some complex behavior, mean-
while, which will lead to a decline in profits. -erefore, a
management opinion given that manufacturer need to
choose α1 and α2 carefully when making price decisions, in

0 0.5 1 1.5 2 2.5 3
–15

–10

–5

0

5

10

15

20

25

30

s

w,
 p

1, 
p 2

w
p1
p2

s = 1.66
p1/w = 12.14

s = 2.42
w = 0

s

Figure 8: Nash equilibrium (w, p1, p2) with respect to s.

∆w
, ∆

p 1, 
∆p

2

∆w
∆p1
∆p2

0 10 20 30 40 50 60 70 80 90 100
–10

–5

0

5

10

t

(b)

Figure 7: -e sensitivity to initial value when (w, p1, p2) � (w � 7 , p1 � 14 , p2 � 20) and (w � 7.001 , p1 � 14 , p2 � 20 ). (a)
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addition retailer need to cooperate with manufacturer to
choose reasonable service value to ensure that the system is
in a stable state and get maximize profits.

4. Model with Unit Profit Sharing (Mε)

4.1. Static Model. In this section, the manufacturer controls
the profit from the integration channel. -e retailer provides

service value s for consumers from the integration channel
and the traditional channel. Correspondingly, the manu-
facturer shares unit profit from the integration channel with
the retailer. -e manufacturer is the leader of the market,
and the retailer is the follower.

-erefore, according to equations (1)–(3), the profit
functions of the manufacturer and retailer can be described
as follows:
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Table 2: -e profits of system (9) for s (α1 � 0.06 and α2 � 0.5).

s � 1.967 s � 2.092 s � 2.155 s � 2.275 s � 2.36
􏽑m 420.4 420.1 424.8 444.5 468.1
􏽑r 291.2 383.4 424.8 496.0 536.7
􏽑T 711.6 803.5 849.6 940.5 1004.8
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Figure 17: 3D profit diagram for the manufacturer with α1 and s, as α2 � 0.5.
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max
p1 ,w

􏽙

ε

m

� p1 − c( 􏼁DO +(w − c)DT + p1 − c − ε( 􏼁DB

� p1 − c( 􏼁 θ1a − ρ1p1 + c1p2( 􏼁

+(w − c) θ3a − mT p2 − s( 􏼁 + c1p1􏼂 􏼃

+ p1 − c − ε( 􏼁 θ2a − mB p1 − s( 􏼁 + c1p2􏼂 􏼃

s.t. c + ε<p1, c<w,

(16)

max
p2

􏽙

ε

r

� p2 − w − cv( 􏼁DT + εDB − φcsDB

� p2 − w − ηs
2

􏼐 􏼑 θ3a − mT p2 − s( 􏼁 + c1p1􏼂 􏼃

+ ε θ2a − mB p1 − s( 􏼁 + c1p2􏼂 􏼃

− φηs
2 θ2a − mB p1 − s( 􏼁 + c1p2􏼂 􏼃

s.t. w + ηs
2 <p2.

(17)

To solve the Stackelberg equilibrium, we first find the
optimal decision of the retailer. Given w and p1, the retailer
chooses p2 to maximize. Setting (z 􏽑

ε
r /zp2) � 0,

p2 �
c1p1

2mT

+
w

2
+

s + ηs2

2
+
εc1 + aθ3 − φηc1s

2

2mT

. (18)

Submitting equation (18) into (16) and then taking the
first-order partial derivatives of 􏽑

ε
m with respect to p1 and w

can be shown as

z 􏽑
ε
m

zw
�
3
2
p1c1 − mTw +

aθ3 + mTs − ηmTs2 + φηc1s
2 + mTc − 2cc1 − 2c1ε

2

z 􏽑
ε
m

zp1
� − 2mB − 2ρ1 +

3c2
1

mT

􏼠 􏼡p1 +
3c1w

2
−

cc1

2
+

c2
1ε

2mT

+ mB(c + ε + s)

+ aθ1 + aθ2 − cρ1 +
c1 mTs + ηmTs2 + aθ3 − φηc1s

2( 􏼁

mT

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

Setting (z 􏽑
ε
m /zw) � 0 and (z 􏽑

ε
m /zp1) � 0, the solu-

tion of manufacturer can be obtained as

w∗ �
4B1B2 − 6B3c1

4B2mT + 9c3
1

,

p∗1 �
− 4B3mT − 6B1c

2
1

4B2mT + 9c31
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(20)
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where

B1 �
aθ3 + mTs − ηmTs2 + φηc1s

2 + mTc − 2cc1 − 2c1ε
2

,

B2 � − 2mB − 2ρ1 +
3c21
mT

,

B3 � −
cc1

2
+

c2
1ε

2mT

+ mB(c + ε + s) + aθ1 + aθ2 − cρ1

+
c1 mTs + ηmTs2 + aθ3 − φηc1s

2( 􏼁

mT

.

(21)

-e Hessian matrix is

H
ε

�

− mT

3
2
c1

3c1

2
− 2mB − 2ρ1 +

3c21
mT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

As − mT (3/2)c1
(3/2)c1 − 2mB − 2ρ1 + (3c2

1/mT)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 2mBmT + 2ρ1

mT − 3c21 − (9/4)c2
1 > 16c21 − (9/4)c2

1 > 0, the Hessian matrix

(w∗, p∗1 ) is the optimal solution of the manufacturer.
Substituting equation (20) into (18), we obtain

p
∗
2 �

− 4B3mTc1 − 6B1c
3
1

8B2m
2
T + 18mTc3

1
+
4B1B2 − 6B3c1

8B2mT + 18c3
1

+
s + ηs2

2

+
εc1 + aθ3 − φηc1s

2

2mT

.

(23)

Substituting equations (20) and (23) into (16) and (17),
the optimal profit functions of manufacturer and retailer can
be described as follows:

􏽑
ε∗
m � p∗1 − c( 􏼁 θ1a − ρ1p∗1 + c1p

∗
2( 􏼁 + w∗ − c( ) θ3a − mT p∗2 − s( 􏼁 + c1p

∗
1􏼂 􏼃

+ p∗1 − c − ε( 􏼁 θ2a − mB p∗1 − s( 􏼁 + c1p
∗
2􏼂 􏼃,

􏽑
ε∗
r � p∗2 − w∗ − ηs2( 􏼁 θ3a − mT p∗2 − v( 􏼁 + c1p

∗
1􏼂 􏼃

− φηs2 θ2a − mB p∗1 − s( 􏼁 + c1p
∗
2􏼂 􏼃 + ε θ2a − mB p∗1 − s( 􏼁 + c1p

∗
2􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(24)

4.2. Dynamic Model. In the changing market environment,
we discuss that the situation of participants’ dynamic de-
cision and the influence of relevant parameters on the dy-
namic system are more in line with the actual market. Based
on reality, this paper considers that the manufacturer em-
ploys different price adjustment strategies to make decisions
of period t + 1. In dynamic periodic decision, the

manufacturer adopts the bounded rationality expectation to
make the wholesale price decision:
wt+1 � wt[1 + β1(z 􏽑

ε
m(wt, p1,t)/zwt)] and make price de-

cisions of integration channel and direct channel based on
adaptive expectation: p1,t+1 � β2p1,t + (1 − β2)p∗1 .

-erefore, the dynamic process of the price game can be
described as

wt+1 � wt + β1wt

3
2
p1,tc1 − mTwt +

aθ3 + mTs − ηmTs2 + φηc1s
2 + mTc − 2cc1 − 2c1ε

2
􏼠 􏼡,

p1,t+1 � β2p1,t + 1 − β2( 􏼁
− 4B3mT − 6B1c

2
1

4B2mT + 9c31
.

(25)

Here, β1 is the limited rational adjustment parameter
and β2(0< β2 < 1) is the adaptive adjustment parameter.

In system (25), the manufacturer first makes the deci-
sions: wt and p1,t by β1 and β2, and the retailer are followers;
his decision p2,t+1 is directly related to wt+1 and p1,t+1 as

p2,t+1 �
c1

2mT

p1,t+1 +
1
2
wt+1 +

s + ηs2

2
+
εc1 + aθ3 − φηc1s

2

2mT

.

(26)

4.2.1. Equilibrium Points and Local Stability. According to
the theory of the fixed point, setting wt+1 � wt and
p1,t+1 � p1,t, there are two equilibrium points: eε1 and eε2:

e
ε
1 � 0,

− 4mTB3 − 6B1c
2
1

4mTB2 + 9c31
􏼠 􏼡,

e
ε
2 �

4B1B2 − 6B3c1

4B2mT + 9c3
1

,
− 4B3mT − 6B1c

2
1

4B2mT + 9c3
1

􏼠 􏼡.

(27)
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Correspondingly, the retailer’s decisions under two
equilibrium points are, respectively,

p
eε1
2 �

− 2mTB3c1 − 3B1c
3
1

4m2
TB2 + 9mTc3

1
+

s + ηs2

2

+
εc1 + aθ3 − φηc1s

2

2mT

,

p
eε2
2 �

− 2mTB3c1 − 3B1c
3
1

4m2
TB2 + 9mTc3

1
+
2B1B2 − 3B3c1

4B2mT + 9c31
+

s + ηs2

2

+
εc1 + aθ3 − φηc1s

2

2mT

.

(28)

Proposition 3. Obviously, eε1 is the boundary equilibrium
point, while eε2 is the Stackelberg equilibrium point.

Proof. See Appendix C.
According to the analysis of equilibrium points in model

M, we investigate the stability of eε2 by using Jury conditions:
g1( 􏼁 � 1 + Tr J eε2( 􏼁( 􏼁 + Det J eε2( 􏼁( 􏼁> 0,

g2( 􏼁 � 1 − tr J eε2( 􏼁( 􏼁 + det J eε2( 􏼁( 􏼁> 0,

g2( 􏼁 � 1 − det J eε2( 􏼁( 􏼁> 0,

⎧⎪⎪⎨

⎪⎪⎩
(29)

where

Tr J e
ε
2( 􏼁( 􏼁 � β2 + 1 + β1

− 6B3mTc1 − 9B1c
3
1

4B2mT + 9c3
1

−
8mTB1B2 − 12mTB3c1

4B2mT + 9c31
+ B1􏼠 􏼡,

Det J e
ε
2( 􏼁( 􏼁 � β2 1 + β1

− 6B3mTc1 − 9B1c
3
1

4B2mT + 9c3
1

−
8mTB1B2 − 12mTB3c1

4B2mT + 9c3
1

+ B1􏼠 􏼡􏼢 􏼣.

(30)

By above stability judgment conditions, we can know
0< β1 < ϑ, 0< β2 < 1, where ϑ � 4B2mT + 9c3

1/− 6B3mTc1
− 9B1c

3
1 − 8mTB1B2 + 12mTB3c1 + B1(4B2mT + 9c31). When

the decision parameters are in this range
( 0< β1 < ϑ, 0< β2 < 1), system (25) will be stable at equi-
librium point eε2(w∗, p∗1 ). Due to the existence of a large
number of parameters in system (25), the stability and bi-
furcation of the system will be studied intuitively in the next
part. □

4.3. Complexity Dynamics Analysis and Numerical
Simulation. In this section, the same parameters are chosen
as in Section 3.3 furthermore, given ε � 8. Correspondingly,
the Stackelberg equilibrium is eε2 � (6.1663, 15.9983).

4.3.1. Complexity Dynamics with respect to βi. First of all, we
analyze the paths of system (25) going into chaos. Figure 21
shows the 2D parameter bifurcation in the (β1, β2) plane,
where different colors represent different periods of system
(25): stable (red), period-2 (yellow), period-3 (green), pe-
riod-4 (blue), period-5 (cyan), period-6 (claret), chaos
(gray), and divergence (white). It can be seen that system
(25) can enter into chaos by two ways. In Path 1, we fix the
value of β2(0< β2 < 1). Beginning in stable state, system (25)
goes into chaos through a series of period doubling bifur-
cations. In Path 2, given β1 ∈ (0, 0.054), change the value of
β2. It can be seen that system (25) goes directly into chaos
from the stable period. We can know the paths of system
(25) into chaos is similar to system (9), but a difference is
that system (25) enters the bifurcation period and chaos
earlier than system (9).

Next, we investigate dynamic evolution of system (25).
Figure 22 shows the behavior of dynamic system (25) with

respect to β1 when β2 � 0.5. w, p1, and p2 do not fluctuate in
Figure 22(a) when β1 < 0.054. Compared with Figure 4(a),
w andp2 are less than that in system (9). As β1 � 0.054, the
first flip bifurcation appears; meanwhile, the LLE showed in
Figure 22(b) reaches the first zero. After it, with β1 in-
creasing, system (25) goes through period doubling bifur-
cation and goes into chaos with LLE> 0.

-e dynamic evolution of system (25) with respect to β2
is shown in Figure 23. As long as β2 < 1, system (25) is always
in the stable period. As β2 > 1 and the LLE is zero in
Figure 23(b), system (25) directly goes into wave chaos
without period doubling bifurcation, which is different from
the dynamic evolution of system (25) with β1. Obviously,
wave chaos of system (25) is weaker than that of system (9)
in Figure 4.

Figure 24 shows time series of w, p1, and p2 with t when
β1 � 0.08 and β2 � 0.4. We can see that w and p2 show vi-
olent and disorderly fluctuations once system (25) becomes
unstable. But, because retailer adopts adaptive expectation
when deciding retail price, p1 is not affected by bounded
rationality adjustment parameter β1. Figure 25 indicates the
sensitivity to initial value of system (25) when
β1 � 0.08 and β2 � 0.4. It reveals that, in a chaotic system,
small difference in initial values can cause a huge deviation
after 10 iterations, which is similar to Figure 7(b). In the
unstable system, it is very difficult for decision-maker to
make the next-stage decision. -erefore, managers should
rationally adjust price decisions and choose the initial values
reasonably to keep the system stable.

4.3.2. Influence of s and ε on the Stability of the System.
In the process of cooperation, the manufacturer and retailer
have to determine service value s and value of unit profit
sharing ε because service value and unit profit sharing will
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affect the stability of system (25). According to the actual
operation of the market, the ranges of s and ε are shown in
Figures 26 and 27, respectively. To ensure that p2 is greater
than p1, we can know s> 1.62. Meanwhile, in order to be
meaningful, w must be greater than zero. -us, s can be
chosen in the range (1.62, 3.12). Similarly, only when
􏽑

ε
r >􏽑r, where 􏽑r represents the profits of retailers

without cooperating with the manufacturer, the retailer be
willing to cooperate with the manufacturer. In addition, as
􏽑

ε
r > 􏽑

ε
m, the manufacturer will terminate its cooperation

with the retailer. -erefore, we can know that ε can be
chosen in (2, 15.38).

Figure 28(a) shows the 3D stable region of the param-
eters (β1, β2, s) when ε � 8. If β1, β2, and s are in this 3D
stable region, system (25) is stable. Combining Figure 28(b)
and Table 3, we can find that s changing in (1.62, 3.12) has a

significant effect on the stable region of the system. It can be
concluded that if s is in (1.62, 3.12), the larger the service
value s will be, the larger the stable region of system (25) will
be, and service value s only affects the scope of β1 but does
not affect the scope of β2. -e conclusion is similar to that of
system (9).

Observing Figure 29 and Table 3, we can see that the
effect of ε on the stable region is similar to that of s. But the
sensitivity of ε to the stable region is weaker than that of s.

Figure 30 shows 2D bifurcation diagrams for periodic
cycles. Different colors represent different periods of system
(25), which is the same as Figure 20. In Figure 30(a), the stable
range of α1increases significantly and then decreases with s

increasing. For a given s belongs to (1.62, 2.42), system (25)
will experience the stable period and a series of period
doubling bifurcations and fall into chaos with β1 increasing. If
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Figure 22: -e behavior of dynamic system (25) with respect to β1 when β2 � 0.5. (a) -e bifurcation diagram. (b) -e LLE diagram.
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s belongs to (2.42, 3.12), the system will directly overflow
with β1 increases. In Figure 30(b), if ε increases in (2, 15.38),
bifurcation and chaos will occur belatedly in system (25).
-us, improving ε is beneficial to the stability of system (25).
-emanufacturer can delay the occurrence of bifurcation and
chaos of system (25) by adjusting ε.

4.3.3. Impact of βi, s, and ε on Profits. Above all, we discuss
the influence of βi, s, and ε on the stability and complexity of
system (25). Due to system (25) stability affecting the profits
of manufacturer and retailer, next, the influence of βi, s, and
ε on profits will be investigated.

Figure 31(a) shows dynamic evolution of􏽑
ε
m and􏽑

ε
r with

β1; we can know that as β1 < 0.054, the manufacturer and
retailer can get stable returns. However, 􏽑ε

m and 􏽑
ε
r show the

bifurcation and chaos phenomenon with β1 increasing. In
Figure 31(b), in the bifurcation period, 􏽑

ε
m decreases while

􏽑
ε
r rises, which is different from system (9). As β1 increases,

the average profit shows a floating trend in chaotic state.
Figure 32 shows wave-shape chaos diagrams with respect

to β2 when β1 � 0.04. As β2 changes in (0, 1), 􏽑m and 􏽑r

remain stable. Once β2 > 1, 􏽑m and 􏽑r will go into a
fluctuant state, which causes a significant decline in profit. It
can be clearly seen that the impact of β1 on profits is sig-
nificantly different from that of β2 on profits. -at is to say,
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Figure 24: Time series of w, p1, and p2 with β1 � 0.08 and β2 � 0.4.
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different price adjustment expectations have different effects
on the profit of system (25).

Next, the combined effect of β1, s, and ε on the profits of
the manufacturer and retailer is to be explored in two
situations.

Situation 3. System (25) falls into chaos with respect to β1
and s.

Figure 33 shows the variation of 􏽑m and 􏽑r with β1 and
s. It indicates that, with s increasing, 􏽑m increases while 􏽑r

decreases. We can know that smaller s and bigger β1 can
easily lead system (25) into chaotic state, causing 􏽑m and 􏽑r

fluctuation. On the contrary, bigger s and smaller β1 are
helpful to keep system (25) stable and help the manufacturer
and retailer to obtain maximum profits.

Situation 4. System (25) falls into chaos with respect to β1
and ε.

As shown in Figure 34, 􏽑m decreases while 􏽑r increases
with ε increasing. Meanwhile, it can be found that the larger
ε is, the less likely the system (25) goes into bifurcation and
chaos. When β1is less than a certain value, the system is in a
stable state, and the profits of the manufacturer and retailer
are also stable. In order to ensure the stability of system (25)
and obtain stable profits, the manufacturer and retailer need
to cooperate to make price decisions and service decisions.

5. Control of Complexity Dynamics

From the above numerical simulation and analysis, it can be
seen that αi, βi, s, and ε affect the stability and complexity of
the system. Once the system goes into chaos, the whole
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market becomes disordered and unpredictable, and profits
of the supply chain fluctuate or even decline sharply. In this
state, it is difficult for the manufacturer and retailer to make
next price decisions based on current profit. -us, con-
trolling chaos is beneficial to the whole supply chain.

In chaos control, some scholars have studied the control
methods of the chaotic system [27, 32, 37]. According to the
characteristics of this paper, this paper takes system (25) as
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Figure 28: Stable region with respect to β1, β2, and s. (a) 3D stable
region. (b) 2D stable region in the (β1, β2) plane.
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Figure 29: Stable region with respect to β1, β2 , and ε. (a) 3D stable
region. (b) 2D stable region in the (β1, β2) plane.

Table 3: 2D stable region with respect to s and ε in the(β1, β2)
plane.

s/ε β1 β2
s � 2.0 (0, 0.0563) (0, 1)

s � 2.8 (0, 0.1706) (0, 1)

s � 3.0 (0, 0.4113) (0, 1)

ε � 2.0 (0, 0.0498) (0, 1)

ε � 10 (0, 0.0558) (0, 1)

ε � 15 (0, 0.0611) (0, 1)
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an example, and a chaos control method based on state
feedback is adopted. Supposing system (25) is described as
wt+1 � T1(wt, p1,t), p1,t+1 � T2(p1,t). -en, the control
system can be obtained as follows:

wt+1 � (1 − ξ)T1 wt, p1,t􏼐 􏼑 + ξwt,

p1,t+1 � T2 p1,t􏼐 􏼑.

⎧⎪⎨

⎪⎩
(31)

Namely,

wt+1 � (1 − ξ) wt + β1wt

3
2
p1c1 − mTwt +

aθ3 + mTv − ηmTv2 + φηc1v
2 + mTc − 2cc1 − 2c1ε

2
􏼠 􏼡􏼠 􏼡 + ξwt,

p1,t+1 � β2p1,t + 1 − β2( 􏼁
− 4F3mT − 6F1c

2
1

4F2mT + 9c31
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(32)
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where ξ is a feedback control parameter (0< ξ < 1). When
ξ � 0, system (32) is in chaotic state.

-e price evolution process of system (32) with respect
to ξ is shown in Figure 35. When ξ > 0.18, in Figure 35(a),
system (32) gets rid of chaos and four-period bifurcation and
enters into two-period bifurcation state. Continuing to
improve ξ to 0.325, system (32) goes into the stable state. In
Figure 35(b), when ξ > 0.325, the LLE (LLE< 0) confirms
that the chaos of system has been controlled effectively.

Figure 36 shows 2D bifurcation diagram with respect to
β2 and ξ. With ξ increasing, system (32) experiences chaos
and double period bifurcation and goes into stable state.
When β2 and ξ are in the red area, it is advantageous for the
manufacturer and retailer to achieve business goals. -e
sensitivity of the system compared with Figure 25 can also be
suppressed effectively in Figure 37.

6. Conclusions

In this paper, based on channel integration and service
cooperation, we build two dynamic game models: one
without unit profit allocation (M) and the other one with
unit profit allocation (Mε). In model M, first, we investigate
the influence of adjusting parameters on the evolution of
dynamic models and analyse the complex characteristics of
the dynamic model. Second, we analyzed the influence of
service value on the stability and complexity of the dynamic
system. Finally, the combined effect of adjusting parameters
and service value on the profit evolution of the dynamic
model is explored. In model Mε, we do similar research as
model M and analyze and compare model Mε with model
M. Based on adaptive feedback, the dynamic game model is
effectively controlled. -e results show the following:

(1) -e dynamic system shows bifurcation and chaos
with adjustment parameters (α1 and β1) increasing,
and the prices will fluctuate violently. Increase in
adjustment parameters (α2 and β2) will lead the
system directly into wave chaos without bifurcation.
-e manufacturer can avoid occurrence of chaos
phenomenon by reasonable price decisions.

(2) Increasing service value s and profit distribution law
ε will increase the stable region of the system. -e
larger distribution law will delay the system going
into chaos.

(3) In the two models, the effect of service value s on
profit is different. In model M, the profits of the
manufacturer and retailer increase with service value
s. In model Mε, the manufacturer’s profit increases
while the retailer’s profit decreases.

(4) When the system is in stable state, the manufacturer
and retailer can get steady and persistent profits;
once the system goes into chaos, their profits will
suffer losses. -us, keeping the relevant parameters
in a certain range is profitable for the manufacturer
and retailer to maintain the stability of the system.

However, this article does not take into account the
behavior factors of the decision-makers, such as fairness
concerns and altruistic preference. In the real market, these
factors often affect the evolution and complexity of the
dynamic system and profit of decision-makers. -ese
problems will be studied in our future research.

Appendix

A. Proof of Proposition 1

To solve the Stackelberg equilibrium, we first consider the
retailer’s optimal decision. Given w and p1, the retailer
chooses p2 to maximize

Max􏽙
r

p2( 􏼁 � p2 − w( 􏼁DT + p1 − w( 􏼁DB

− ηs
2

DT − φηs
2

DB

s.t. w + φηs
2 <p1, c<w.

(A.1)

-e solution can be solved by first-order equations
(z􏽑r(p2)/zp2) � 0:

p2 �
c1

mT

p1 +
mT − c1

2mT

w

+
θ3a + mTs + mTηs2 − c1φηs2

2mT

s.t. w + ηs
2 <p2.

(A.2)

Submitting equation (A.2) into equation (4) and then
taking the first-order partial derivatives of equation (4) with
respect to p1 and w can be shown as

z􏽑m w, p1( 􏼁

zw
� − mB +

c1

2
+

c2
1

2mT

􏼠 􏼡p1 + − mT + 2c1 −
c2
1

mT

􏼠 􏼡w + mBs + mTs

− A1 mT − c1( 􏼁 +
c

2
mT − 3c1 +

2c21
mT

􏼠 􏼡 + aθ2 + aθ3
z􏽑m w, p1( 􏼁

zp1

�
− 2mBmT + mTc1 + c2

1
2mT

w +
2c21 − 2mTρ1

mT

p1 +
A1mTc1 + amTθ1 + c mBmT − 2c21 + mTρ1( 􏼁

mT

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.3)
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Taking the second-order derivatives, we can calculate the
Hessian matrix as follows:

H
1

�

− mT + 2c1 −
c2
1

mT

− mB +
c1

2
+

c2
1

2mT

− mB +
c1

2
+

c2
1

2mT

2c2
1

mT

− 2ρ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.4)

Since mB > n1c1, mT > n2c1 , and ρ1 > n3c1 (ni > 2,

i � 1, 2, 3),
− mT + 2c1 − (c21/mT) − mB + (mTc1 + c2

1/2mT)

− mB + (mTc1 + c2
1/2mT) (2c2

1/mT) − 2ρ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
>

(3/2)c2
1 − (25/64)c2

1 > 0. Because the Hessian matrix H1 is
negative definite. Setting (z􏽑m(w, p1)/zw) � 0 and
(z􏽑m(w, p1)/zp1) � 0, the optimal solution of the manu-
facturer can be obtained as

w∗ �
A5A4 − A2A6

B2
2 − B3B5

,

p∗1 �
A3A6 − A2A4

A2
2 − A3A5

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(A.5)

Substituting equation (A.5) into (A.2), we obtain

p
∗
2 �

c1 A3A6 − A2A4( 􏼁

mT A2
2 − A3A5( 􏼁

+
mT − c1( 􏼁 A5A4 − A2A6( 􏼁

2mT A2
2 − A3A5( 􏼁

+ A1.

(A.6)

B. Proof of Proposition 2

-e Jacobian matrix at the equilibrium points e1 is

J e1( 􏼁 �

1 + α1
A2A3A6 − A2

2A4

A2
2 − A3A5

+ A4􏼠 􏼡 0

0 α2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (B.1)

Correspondingly, let us define the characteristic poly-
nomial of J(e1): f(λ) � λ2 − λtr(J(e1)) + det(J(e1)). Its
characteristic values satisfy

λ − 1 + α1
A2A3A6 − A2

2A4

A2
2 − A3A5

+ A4􏼠 􏼡􏼠 􏼡 0

0 λ − α2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0.

(B.2)
It can be deduced as λ1 � α2 and

λ2 � 1 + (A3α1(A2A6 − A4A5)/A2
2 − A3A5), since

0< α1, (A3α1(A2A6 − A4A5)/A2
2 − A3A5)> 0, and it is ob-

vious that λ2 > 1; hence, the equilibrium point e1is unstable.

C. Proof of Proposition 3

-e Jacobian matrix of system (25) can be expressed as
follows:

J e
ε
i( 􏼁 �

1 + β1
3
2
p1c1 − 2mTw + B1􏼒 􏼓 w +

3
2
β1wc1

0 β2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, i � 1, 2.

(C.1)

-e Jacobian matrix at eε1 is J(eε1) �
1 + β1((− 6mTB3c1 − 9B1c

3
1/4mTB2 + 9c3

1) + B1) 0
0 β2

􏼒 􏼓; corre-

spondingly, let us define the characteristic polynomial of
J(eε1) as

f(λ) � λ2 − λtr J e
ε
1( 􏼁( 􏼁 + det J e

ε
1( 􏼁( 􏼁. (C.2)

Its characteristic values satisfy

λ − 1 + β1
− 6mTB3c1 − 9B1c

3
1

4mTB2 + 9c31
+ B1􏼠 􏼡􏼠 􏼡 0

0 λ − β2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0.

(C.3)

It can be deduced that λ1 � β2 and
λ2 � 1 + β1((− 6mTB3c1 − 9B1c

3
1/4mTB2 + 9c3

1) + B1), since
0< β2 < 1, p∗1 � (− 4mTB3 − 6B1c

2
1/4mTB2 + 9c31)> 0, and

B1 > 0. So, it is obvious that λ2 > 1; hence, the equilibrium
point eε1 is unstable and regarded as boundary equilibrium
point.
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