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Filtering based state of charge (SOC) estimation with an equivalent circuit model is commonly extended to Lithium-ion (Li-ion) 
batteries for electric vehicle (EV) or similar energy storage applications. During the last several decades, di�erent implementations 
of online parameter identi�cation such as Kalman �lters have been presented in literature. However, if the system is a moving EV 
during rapid acceleration or regenerative braking or when using heating or air conditioning, most of the existing works su�er from 
poor prediction of state and state estimation error covariance, leading to the problem of accuracy degeneracy of the algorithm. On 
this account, this paper presents a particle �lter-based hybrid �ltering method particularly for SOC estimation of Li-ion cells in EVs. 
A sampling importance resampling particle �lter is used in combination with a standard Kalman �lter and an unscented Kalman 
�lter as a proposal distribution for the particle �lter to be made much faster and more accurate. Test results show that the error on 
the state estimate is less than 0.8% despite additive current measurement noise with 0.05 A deviation.

1. Introduction

Li-ion battery based energy storage technology has become a 
key enabler of power grids grid and electric transportation 
sector objectives due to their bene�cial properties [1]. 
Technical challenges that arise in ensuring safe, reliable, and 
durable operation of Li-ion batteries for both stationary and 
vehicular applications demanding large amounts of energy 
and power, have pushed the limit of battery technology and 
require development of sophisticated battery management 
system (BMS) [2–5].

Accurate SOC estimation plays an indispensable role in 
the design of control strategies and performance optimization 
for a BMS in a battery system. As a critical indicator of avail-
able energy in a Li-ion cell, SOC cannot be directly measured. 
Fortunately, it can be obtained by various estimation 
approaches based on coulomb counting, open circuit voltage 
(OCV), electrochemical impedance spectroscopy (EIS), or 
battery modelling approaches in combination with machine 
learning or modern control theory. During the last several 
decades, plenty of SOC estimation methods have been pre-
sented in literature [6–32]. In particular, latest comparative 
studies and reviews of most commonly used Li-ion cell SOC 
estimation approaches are presented in [33–40].

In [33], Lai et al. conduct a comparative analysis of eleven 
equivalent circuit models (ECMs) and SOC estimation errors 
and comparative study of the robustness of ECMs, in which 
the genetic algorithm was applied to carry out parameter iden-
ti�cation and optimization and the EKF algorithm was used 
to estimate the SOC for a LiNMC battery in the new European 
driving cycle (NEDC). It is worth noting that the results show 
that the �rst-order and second-order RC models are the best 
choice for LiNMC batteries due to their balance of accuracy 
and reliability. Furthermore, Lai et al. undertake a comparative 
study for nine ECMs using nine optimizers in the entire SOC 
area by implementing model parameter optimization, and 
mention further works that need to be addressed for the design 
of sophisticated BMS in respect of accurate online identi�ca-
tion of model parameters with less computational burden of 
a microcontroller [34]. In [35], Hannan et al. also conduct a 
comprehensive review of Li-ion battery SOC estimation and 
management system in EV applications in terms of challengers 
and recommendations.

So far, various approaches have been continuously being 
developed to increase the accuracy of SOC estimation and 
obtain a desirable stability and robustness at the same time. 
Equally important, the error sources of online SOC estimation 
methods need to be investigated. In [41], Zheng et al. use error 
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¥ow charts to analyze SOC error sources from signal meas-
urement to battery modelling and estimation algorithms.

Although Coulomb counting by itself o�ers better short-
term accuracy, over the longer term it su�ers from lack of an 
accurate reference point and unacceptable o�set dri¦ that 
severely degrades accuracy [7]. �erefore, Coulomb counting 
is usually used in combination with Kalman �lter or Li-ion 
cell voltage translation for the EV applications.

EIS is a very powerful way to analyze the state of Li-ion 
cells and detect degradation of Li-ion cells by measuring 
impedance which requires an additional signal generator for 
various frequencies of sinusoidal alternating current or square 
waveform as input signals and additional computation for 
signal transformation from time domain to frequency domain 
[12, 13]. However, considering the time-intensive measure-
ment and calculation as well as the remarkable impact of tem-
perature and state of health (SOH) on the impedance change, 
the impedance spectroscopy method is not a practical choice 
for accurate SOC estimation in EV applications.

Alternatively, using an ECM of the battery, the SOC can 
be extracted by estimating the open circuit voltage (OCV) and 
then by using look-up tables which are usually available from 
the battery manufacturer. Also, arti�cial intelligence methods 
such as neural networks or fuzzy logic can be used for SOC 
estimation [17–19]. Model-based methods that use both the 
measured current and voltage can be used together with online 
parameter identi�cation, such as Kalman �lters, which is the 
most commonly used so far. �e method introduced by Plett 
in [42–44] has resulted in various implementations of Kalman 
�lter based SOC estimation for EVs. Particle �lter based SOC 
estimation method is recently proposed for a better perfor-
mance in [21–25].

In the �eld of battery modelling, although physics based 
electrochemical models can predict the spatially distributed 
behavior of the essential states of the battery, the required 
online computation becomes a time-consuming task for 
microcontroller-based BMS. �erefore, it is still a challenge 
to design and build accurate online SOC estimation  algorithms 
for the BMS in terms of reduction of the full electrochemical 
model given by partial di�erential equations and algebraic 
equations, while getting desirable accuracy and computational 
speed. In [2], a detailed description and electrochemical 

model of a Li-ion battery is presented from a control 
perspective.

For simpli�cation of electrochemical models, the Li-ion 
battery model is reformulated to facilitate computation. In 
[45], Han et al. introduce an improved single particle model 
(SPM) with high precision and the same level of computations 
as the original SPM and develop a simpli�ed pseudo two- 
dimensional model. Bizeray et al. applied the EKF algorithm 
to the thermal-electrochemical P2D model solved using 
Chebyshev orthogonal collocation for battery state estimation 
in Bizeray et al. [46].

To reduce the voltage error and provide satisfactory esti-
mation accuracy in the low SOC area, an extended ECM based 
on the SPM using the knowledge of the surface SOC is pro-
posed in [47] and presents a better �tting result than the ECM 
at SOC lower than 20% by using the genetic algorithm for 
model parameter identi�cation. However, errors in the SPM 
occur for either large values of applied current or during relax-
ation a¦er applying a current pulse with a longer duration 
since the SPM does not model spatial variation of the states 
in the cell. �ese spatial variations become more prominent 
in the cell for either large currents or for long-duration pulses.

Based on the above literature review, to our knowledge, 
SOC estimation algorithms based on ECM and KF will still 
be preferred for a BMS in EV applications. In order to accu-
rately estimate the e�ect of linear and nonlinear parameters 
on the SOC estimation separately and further achieve unbi-
ased estimates based on the probability density evaluation of 
possible SOC true-value, a particle �lter-based hybrid �ltering 
approach is proposed in this paper. In the proposed algorithm, 
the Li-ion cell SOC is preliminary estimated by the coupled 
Kalman �lter combining standard Kalman �lter with 
unscented Kalman �lter (UKF) to account for the linear and 
nonlinear e�ect of model parameters. In addition, the particle 
�ltering algorithm is integrated into the proposed algorithm 
for correction of the SOC estimates based on the estimated 
probability density of possible SOC true-value. Finally, com-
prehensive tests including pulse charging test, Urban 
Dynamometer Driving Schedule (UDDS) test, and mixed 
charge and discharge test are conducted to validate the ration-
ality and e�ectiveness of the proposed algorithm.

2. Implementation of the Proposed Hybrid 
Filtering Algorithm

In this section, the particle �lter-based hybrid �ltering 
approach is explained in detail. �e schematic ¥owchart of the 
proposed algorithm is illustrated in Figure 1. Standard Kalman 
�lter is responsible for estimating the main circuit resistor of 
the ECM. On this basis, the preliminary SOC and the polari-
zation parameters are estimated simultaneously by the 
unscented Kalman �lter. Finally, ampere-hour based, OCV 
based and model based SOC estimation methods are com-
bined in the SIR particle �lter, and the unbiased correction is 
derived. Apart from improving the SOC estimation accuracy, 
the idea of fusing di�erent approaches o�ers a framework for 
the development of advanced and intelligent estimation 
algorithms.
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Figure 1: Framework of the proposed hybrid �ltering algorithm.
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2.1. Li-Ion Cell Equivalent Circuit Model. In this work, a 
dual-polarization equivalent model of lithium-ion batteries 
is utilized to assist with the estimation of the equivalent 
resistor and polarization parameters which is essential for 
the preliminary SOC estimation based on UKF. �e ECM 
of a Li-ion cell is shown in Figure 2. �e battery voltage is 
formulated by Equation (1), the di�erential equations for the 
two RC circuits are expressed by Equations (2)–(3), and ��
can be expressed by Equation (4).

wherein, � is the measured voltage, ���� is the open-circuit 
voltage,  �� is the voltage drop caused by the impedance on 
the main circuit, ��1 and ��2 are the voltage drops caused by 
the resistor-capacitor (RC) circuits, � is the measurement 
time-step.

Now, all items in (1) are given directly or by iteration 
except for ����. ���� will be given by SOC–OCV curve in 
the following subsection.

2.2. SOC–OCV Curve. Open circuit voltage (OCV) is the 
steady voltage a¦er the battery rests for a long time. �e 
relationship between SOC and OCV is distinct for di�erent 
Li-ion batteries, and the mapping between SOC and OCV for 
a speci�c kind of battery is unique. Moreover, such mapping 
remains unchanged during the battery service life, enabling 
a reliable SOC estimation. However, the de�nition of OCV 
prevents us from making use of OCV in online applications.

Here, pulse charging/discharging procedure is employed 
to obtain the expected SOC–OCV curve. �e pulse charging/
discharging result is obtained by using an industrial battery 
and cell test equipment in Figure 3.

�e upper curve represents the data of pulse charging test, 
while the lower one results from the pulse discharging exper-
iment. By �tting the data from the tests, the polarization e�ect 

(1)� = ���� + �� + ��1 + ��2 ,

(2)��1,�+1 = ��1,��
−Δ�/�1�1 + ���1(1 − �−Δ�/�1�1),

(3)��2,�+1 = ��2,��
−Δ�/�2�2 + ���2(1 − �−Δ�/�2�2),

(4)�� = ����,

of battery is minimized and the SOC–OCV curve can be 
derived, recorded as OCV = f(SOC). �erefore, Equation (1) 
can be rewritten as Equation (5), which is the complete 
description of the Li-ion cell ECM as shown in Figure 2.

However, it is worth noting that the di�erence between the 
upper and lower curve becomes more and more signi�cant 
when SOC reaches about 0.95, resulting in inaccurate f(SOC).

2.3. Coupled Kalman Filter. A¦er the measurement model as 
formulated in Equation (5) has been obtained, the coupled 
Kalman �lter is designed by combing a standard Kalman 
�lter and a UKF. �e standard Kalman �lter is supposed to 
estimate the value of the main circuit resistor �� iterated, while 
the UKF is utilized to estimate the value of SOC and RC circuit 
parameters.

It should be mentioned that, as standard Kalman �lter is 
based on linear Gaussian state-space model and it su�ers from 
the divergence phenomenon, only the main circuit resistor �
is estimated by it, while the polarization parameters, that is, 
RC parameter and SOC are estimated simultaneously by 
unscented Kalman �lter.

2.3.1. Standard Kalman Filter. �e standard KF can be 
constructed as follows:

System state

Observation

Parameters in transition equation of system state is

(5)�� = �(���) + ���� + ��1,� + ��2,� .

(6)�� = [��1 ,� ��2 ,� �� ]
�.

(7)�� = �������� − ����,�.

(8)

�� = [[
�−��/�1,��1,� 0 0
0 �−��/�2,��2,� 0
0 0 1

]
]
, �� = [[

�1,�(1 − �−��/�1,��1,�)
�2,�(1 − �−��/�2,��2,�)

0
]
]
.

(9){ �1 = �1,��1,� = 0.02,�2 = �2,��2,� = 1.

R1 R2

C1 C2R

V

Figure 2: Equivalent circuit model of the Li-ion cell.
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Figure 3: SOC–OCV curve of the Li-ion cell under test.
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Measurement function:

With Equations (14)–(18), the algorithm of UKF can be 
implemented.

2.4. Correction by SIR Particle Filter. For nonlinear state-
space models, where both system model and measurement 
model are nonlinear, there are basically two approaches to 
compute an approximate solution, local approximation and 
global approximation. Rather than approximating around 
localized estimates of the system state, global approximation 
formulates the solution in a Bayesian estimation framework. 
SIP particle �lter can be utilized to achieve global 
approximating, which is capable of estimating parameters 
of nonlinear models with nongaussian noise in real-time 
applications.

In the sampling procedure, a serial of particles and the 
corresponding weights are selected from the system state 
according to the importance distribution, a¦er which the res-
ampling can be conducted, using the corresponding weights 
to describe the discrete possibility distribution function.

�e employment of SIR particle function introduces the 
following advantages.

(1)  �e SOC estimation results from coupled Kalman 
�lters, and ampere-hour counter are regarded as 
possibility distributions. �e former is used to 
draw samples, and the latter is re¥ected in selecting 
weights.

(2) Using the SOC estimated by coupled Kalman �lters 
and the circuit model, the estimated battery voltage 
is descripted as a possibility distribution function. 
Together with the PDF from ampere-hour counter, 
the di�erence between the measured voltage and the 
PDF determines the weights of the samples.

(3) Model based, ampere-hour based and OCV based 
approaches are combined in the framework of SIR 
particle �lters, which can handle highly nonlinear 
systems.

Detailed implementation of the correction by SIR particle �lter 
is demonstrated below.

(1) Construct the importance distribution (19) using 
the ��̂�� and ��|� from previous section. Because 
the variance of SOC determines the dispersion of the 
particles, a greater variance will require larger num-
ber of particles to reach a steady estimation. For the 
consideration of computing e�ort, a coeµcient � is 
introduced to narrow the covariant in Equation (20). 
�e value of �, which we set it as 0.6, is a tradeo� of 
accuracy and computing speed.

(17)� = �, � = [ ���������� 0 0 ]
�
.

(18)�̂�|�−1 =
[[
[
�(��̂��)
��1 ,��

−Δ�/�1 + ��−1�1,�(1 − �−Δ�/�1)
��2 ,��

−Δ�/�2 + ��−1�2,�(1 − �−Δ�/�2)
]]
]
.

System control input:

Measurement matrix:

Predicted measurement:

With Equations (6)–(12), the algorithm of standard Kalman 
�lter can be implemented. In Equation (8), the time constants 
of the 2 RC circuits are �xed as Equation (9). �e two con-
stants consist of smaller and greater values in order to ensure 
that the short-term and long-term polarization e�ects can 
be simulated as closely as possible. On one hand, the current 
of the battery is supposed to be relatively small; then the 
smaller time constants may provide quick respond of polar-
ization voltage. On the other hand, long-range polarization 
voltage can be maintained if the current is relatively high. 
Besides, ��1,� and ��2,� should not be changed by the KF to 
ensure that voltage di�erential equations (2) and (3) are sat-
is�ed. �erefore,  system state update equation in the algo-
rithm of the standard Kalman �lter needs to be replaced by 
Equation (13).

2.3.2. Unscented Kalman Filter. In the previous section, the 
voltages of the capacitors are iterated and the main circuit 
impedance is estimated by standard Kalman Filter, which can 
merely deal with linear estimation. �e dynamics of remaining 
parameters in the ECM, including resistors in RC circuits 
and SOC, may be more diµcult and highly nonlinear, and 
the nonlinear estimation is required. By adopting deterministic 
sampling approach, UKF which can achieve higher order 
accuracy than EKF is preferable for the estimation of these 
parameters.

As the time-varying polarization e�ect is mainly charac-
terized by the resistors in RC circuits, UKF can be applied to 
estimate �1 and �2. �e standard KF can be constructed as 
follows:

System state:

Observation:

System control input:

Parameters in transition equation of system state are in (17), 
where Capacity is the rated capacity of the battery. �e capacity 
remains constant in the algorithm.

(10)��−1 = ��−1.

(11)� = [ 1 1 �� ].

(12)�̂� = ��−1�̂�|�−1 .

(13){ �̂�|� = �̂�|�−1 +����
�(�� − ��−1�̂�|�−1 ),

� = [ 0 0 1 ].

(14)�� = [ ��̂�� �1,� �2,� ]�.

(15)�� = [[
�������� − ��1 ,� − ��2 ,� − ��,���1 ,���2 ,�

]
]
.

(16)��−1 = ��−1.
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mixture of current sequence is attained by a high precision 
battery testing system. �e Gaussian noise is imported into 
the estimation algorithm together with the voltage sequence. 
�en, the performance of the algorithm is evaluated by com-
paring SOCa and the estimated SOC (SOCest). A quanti�ed 
approach to evaluate the accuracy of SOC estimation is RMSE 
(root-mean-square error) in Equation (28). Because the range 
of SOC is 0 to 1, thus the RMSE applied here has already been 
normalized.

�e initial estimated SOC in the algorithm is set as 0.6. It is 
worth noting that any initial between 0 and 1 is viable for the 
algorithm. �e battery used is 18650 Li-ion cell with the rated 
capacity of 1300 mAh. �e three types of experiments are as 
follows:

(1) 0.1 A pulse charging test for verifying the response 
performance of the algorithm, with relatively small 
current.

(2) UDDS test for simulating a driving test.
(3) Mixed charging/discharging test for evaluating the 

algorithm in extreme conditions.

3.2. Pulse Charging Test. At the beginning of pulse charging test, 
SOCa equals to 0. �e deviation of the white noise (�2�) added 
in the current sequence is 0.0001 A. �e testing procedure is 
as follows:

(1)  Discharge with constant current 0.65 A until the cell 
voltage reaches 2.5 V.

(2)  Discharge with constant voltage 2.5 V until the dis-
charging current drops below 0.1 A.

(3)  Rest for 10 hour
(4)  Charge with 0.1 A for 5 mins.
(5)  Rest for 10 mins.
(6)  Repeat 4 and 5 until voltage reach 4.2 V.
(7)  End.

At the end of step 3, the battery is fully discharged (SOCa = 0), 
while at step 7, the battery is fully charged (SOCa = 1). When 
the particle number � is 100, the overall result is shown in 
Figures 4 and 5.

With the same test data, the algorithm ran 100 times to 
validate the robustness of particle �lter. �e RMSE and the 
standard deviation are shown in Equation (29). Similarly, the 
RMSE mentioned in the rest of the paper is the result of 100 
tests. �e overall RMSE is lower than 1%, which is suµcient 
in most online applications. �e oscillation appears at around 
SOC = 1 is probably because of the error of SOC–OCV curve 
mentioned in Section 2.2, which can be eliminated with 
 precise SOC–OCV measurement. Another advantage of the 
 algorithm proposed in the paper exhibits extremely quick 
response, shown in Figure 5. It takes merely 2 seconds for the 
algorithm to reach the steady value (around 0), starting from 
the initial value 0.6.

(28)���� = √∑
�
�=1(�̂� − ��)2
� .

(2)  With ampere-hour method, another SOC estimate is 
acquired for each particle of time (n−1) in Equation 
(21). Hence a series of PDF is attained and the pos-
sibility of ��̂�� under each PDF is computed in 
Equation (22).

(3)  According to SOC–OCV curve and the circuit model, 
the estimated voltage is shown in (23) for each parti-
cles, which can be further extended in to a PDF. �e 
possibility of the real voltage �������� in di�erent 
PDFs is expressed in (24).

(4)  �e weights are given in (25), which is the combina-
tion of steps 2 and 3.

(5)  Conduct the resampling algorithm.
(6)   �e outputs of the �lter are (26) and (27).

3. Experiment and Discussion

3.1. Methodology. In the experiments, the SOC is de�ned as 0 
when the discharging current is less than 0.1 A under a 2.5 V 
constant voltage discharging process, and is de�ned as 1 when 
the charging current is lower than 0.1 A with a constant voltage 
of 3.65 V.

At the beginning of each experiment, the SOC is 0 or 1, 
which ensures the actual SOC (SOCa) can be obtained at any-
time during the test by applying the Coulomb counting. �e 

(19)��̂�(�)� ∼ �(��̂��, ��|� ),

(20)��̂�(�)� ∼ ��(��̂��, ���|� ), � = 0.6.

(21)

��̂�(�)�,� = ��̂�(�)�−1 +
��−1��
�������� , � = 1, 2, ⋅ ⋅ ⋅ , �,

(22)

�(��̂��) = 1
√2���,�|� �

−(��̂��−��̂�(�)�,�)2/2��,�|� , � = 1, 2, ⋅ ⋅ ⋅ , �.

(23)

�(�)���,� = �(��̂�(�)� ) + ��1 ,� + ��2 ,�, � = 1, 2, ⋅ ⋅ ⋅ , �.

(24)

�(��������) = 1
√2������,� �

−(��������−�(�)���,�)2/2�����,� , � = 1, 2, ⋅ ⋅ ⋅ , .

(25)

∼�(�)� = �(�)�−1√�(��̂��)�(��������), � = 1, 2, ⋅ ⋅ ⋅ , .

(26)���� =
�∑
�=1
��̂�(�)� �(�)� .

(27)�� =
�∑
�=1
�(�)� (��̂�(�)� − ����)(��̂�(�)� − ����)�.
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3.3. UDDS Test. As a dynamometer test, UDDS test 
represents city driving conditions, which is frequently used 
for light duty vehicle testing. �e original UDDS descripts 
a speed-time chart, which is translated into the relation of 
current and time in this experiment. �e current and voltage 
of the Li-ion cell under UDDS test is shown in Figures 7 
and 8, respectively. In this simulation, current and voltage 
vary sharply, which should be a challenge to SOC estimation. 
Besides, the deviation white noise (�2�) added into the current 
sequence is 0.05 A.

 Figures 9 and 10 are the details of the test result and RMSE 
of 100 particles are shown in Equation (31). Similar to pulse 
charging test, the algorithm expresses the ability of quick 
responding. Meanwhile, it is interesting that the performance 
of algorithm is even better than that in pulse charging test. A 
possible explanation is that the algorithm is sensitive to the 
scale of current. �e algorithm may rely more on voltage if the 

(30)
���� = 0.007364,
� = 0.002124.

(31)
���� = 0.004773,
� = 0.002712.

In particle �lter, the number of particles determines the 
accuracy and speed of the algorithm. Figure 6 demonstrates 
the RMSE of the same pulse charging test, at di�erent particle 
numbers. It is obvious that more particles result in higher 
accuracy. In an extreme case, Equation (30) is the result when 
particle number is set to 500, which represents the highest 
accuracy this algorithm can achieve. However, the computing 
e�ort increases dramatically as the number increases. To reach 
a balance at the tradeo�, number between 25 and 100 will be 
a good choice.

(29)
���� = 0.009567,
� = 0.003671.
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with current as high as 10 A, which is nearly the limitation 
of the battery. �e deviation white noise (�2�) added into the 
current sequence is 0.05 A. �e current and voltage of the 
Li-ion cell under mixed charging/discharging test are shown 
in Figures 12 and 13, while the results are shown in Figures 
14 and 15, and equation (32). �e algorithm remains steady 
and accurate in such extreme conditions. In Figure 14, the 

current is relatively small, which may possibly lead to larger 
error. In  Figure 11, the trend of larger number leading to 
smaller error is less signi�cant, comparing to that of pulse 
charging test.

3.4. Mixed Charging/Discharging Test. In the last two sections, 
the experiments are pure charging or discharging, while in this 
section, a mixed charging and discharging test is conducted, 
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