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Bayesian learning is a rational and effective strategy in the opinion dynamic process. In this paper, we theoretically prove that
individual Bayesian learning can realize asymptotic learning and we test it by simulations on the Zachary network. )en, we
propose a Bayesian social learning model with signal update strategy and apply the model on the Zachary network to observe
opinion dynamics. Finally, we contrast the two learning strategies and find that Bayesian social learning can lead to asymptotic
learning more faster than individual Bayesian learning.

1. Introduction

We all have our own opinions on various topics of social issues.
)e opinions are formed by an evolutionary process in social
context [1–3]. Opinion dynamics is the study of the opinion
fusion process through interactions among a group of agents
[4]. Some interesting models have been proposed, such as the
DeGroot model [5], voter model [6, 7], bounded confidence
model [8–10], and many other models [11–14]. Among these
models, a key element is the opinion update strategy in the
dynamic process. All the opinion update strategies can be
classified into two categories by using Bayesian update rule or
not: one is Bayesian update strategy and the other is non-
Bayesian strategy. Non-Bayesian learning refers to individuals
updating their opinions by non-Bayesian strategy, such as
linear combination of opinions of the neighbors [5, 15, 16] and
various game theories in social network [17, 18]. Most of these
models try to explore how the society could achieve group
consensus. But the consensus opinion might not necessarily be
the truth; in other words, the true state might not be realized.
While Bayesian learning assumes that individual updates their
opinions according to Bayesian rule, individuals can learn the
truth in the long run according to the prior information
[19–21]. )erefore, Bayesian learning can integrate the prior
information and lead to realize the truth more rationally and
effectively than non-Bayesian learning.

)ough Bayesian learning can achieve the truth, there
is no systematical proof in the existing literature [22, 23].
)e proof of individual Bayesian learning lays a theo-
retical foundation for the learning process, so in this
paper, we will deduce the truthfulness of individual
Bayesian learning by theoretical derivation. Moreover,
considering people’s crowd psychology, we put forward a
signal update strategy which means that people adjust
their observations to meet with the most people. Com-
bined with this signal update strategy, we propose a
Bayesian social learning model to study the opinion
dynamics under social environment. Furthermore, we
conduct simulations on Zachary network to observe the
learning results.

)e rest of the paper is organized as follows. In Section 2,
we give a theoretical proof of individual Bayesian
learning. In Section 3, we propose a Bayesian social
learning model with signal update strategy and test it by
simulations on Zachary network. In Section 4, we draw
conclusions.

2. Individual Bayesian Learning

2.1. Individual Bayesian LearningModel. Let state space Θ �

θ1, θ2, . . . , θm􏼈 􏼉 and the underlying true state be θ∗(θ∗ ∈ Θ).
Individual i’s opinion on state θk at time t is denoted by
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probability distribution μi,t(θk) k � 1, 2, . . . , m, where m is a
finite integer. At each time period, the signal set
St � S1t , S2t , . . . , Sn

t􏼈 􏼉 ∈ S1 × · · · × Sn is generated by the like-
lihood function P(St | θk) conditional on state θk, where
Si

t ∈ Si denotes the signal privately observed by individual i at
time t and Si denotes the individual i’s signal space. )e ith
marginal of P(θk) is denoted by Pi(θk) which is known as
individual i’s signal structure conditional on state θk. We
assume that each individual’s private signal structure is
commonly known. At each time, individual i receives his
private signal Si

t and updates his prior opinion to the pos-
terior opinion by Bayesian law. Bayesian statistics com-
bining prior information can make the inference results
more accurate and effective [24]. As time goes by, the in-
dividual’s opinion will show some amazing dynamics during
the evolution process. Next, we will give the denotations of
asymptotic learning which is an important definition in
opinion dynamics.

Definition 1. Asymptotic learning: asymptotic learning re-
fers to that individual i who receives the signals generated by
true state θ∗ ∈ Θ and achieves asymptotic learning on a path
Si

t􏼈 􏼉
∞
t�1 if along that path μi,t(θ

∗)⟶ 1 with probability one
as t⟶∞.

2.2. 0eorem and Proof

Theorem 1. Assume that

(1) Individual i has positive prior belief on true state θ∗,
i.e., μi,0(θ

∗)> 0.
(2) At each time t, ∀Si

t ∈ St, P(Si
t | θ)> 0 holds for all i

and θ.
(3) 0ere is no observationally equivalent state to θ∗

for individual i, i.e., θ ∈ Θ | Pi(s | θ) � Pi(s | θ∗),􏼈

∀s ∈ Si} � ∅.

At each time step t, individual i has his prior opinion
μi,t(θ) on state θ; after receiving signal Si

t+1 which is gen-
erated by true state θ∗ ∈ Θ, his opinion μi,t+1(θ) at the next
time step t + 1 will be updated to his posterior probability by
Bayesian law:

μi,t+1(θ) � μi,t+1 θ | S
i
1, S

i
2, . . . , S

i
t, S

i
t+1􏼐 􏼑􏼐 􏼑

�
μi,t(θ)P Si

1, Si
2, . . . , Si

t, Si
t+1( 􏼁 | θ( 􏼁

P Si
1, Si

2, . . . , Si
t, Si

t+1( 􏼁
(θ ∈ Θ).

(1)

Then, μi,t(θ
∗)⟶ 1 will hold with probability one as

t⟶∞ and we call individual i realizes asymptotic
learning.

Proof. Let state space Θ � θ1, θ2, . . . , θm􏼈 􏼉 and the true state
θ∗ � θ1. Suppose that the signal sequences Si

t(t � 1, 2, . . .) are
independent and identically distributed given θk, then we have

P S
i
1, S

i
2, . . . , S

i
t􏼐 􏼑 θk

􏼌􏼌􏼌􏼌􏼐 􏼑 � 􏽙
t

r�1
P S

i
r θk

􏼌􏼌􏼌􏼌􏼐 􏼑. (2)

At time t + 1, individual i updates his opinion and
obtains his posterior opinion by Bayesian rule (1) after
receiving signal Si

t+1.

μi,t+1 θk( 􏼁 � μi,t+1 θk

􏼌􏼌􏼌􏼌 S
i
1, S

i
2, . . . , S

i
t, S

i
t+1􏼐 􏼑􏼐 􏼑

�
μi,t θk( 􏼁P Si

1, Si
2, . . . , Si

t, Si
t+1( 􏼁 θk

􏼌􏼌􏼌􏼌􏼐 􏼑

P Si
1, Si

2, . . . , Si
t, Si

t+1( 􏼁

� μi,t θk( 􏼁
􏽑

t+1
r�1 P Si

r θk

􏼌􏼌􏼌􏼌􏼐 􏼑

ΣθϵΘμi,t(θ)􏽑
t+1
r�1 P Si

r | θ( 􏼁.

(3)

Next, we compare the probability of two state of the
partition, say θ1 and θ2 in the light of Si

t+1 for individual i at
time t + 1,

μi,t+1 θ1( 􏼁

μi,t+1 θ2( 􏼁
�
μi,t θ1( 􏼁

μi,t θ2( 􏼁
􏽙

t+1

r�1

P Si
r θ1

􏼌􏼌􏼌􏼌􏼐 􏼑

P Si
r θ2

􏼌􏼌􏼌􏼌􏼐 􏼑

�
μi,t θ1( 􏼁

μi,t θ2( 􏼁
􏽙

t+1

r�1
δ S

i
r􏼐 􏼑

�
μi,t θ1( 􏼁

μi,t θ2( 􏼁
R S

i
t+1􏼐 􏼑,

(4)

where δ(Si
r) is the likelihood ration of θ1 to θ2 given Si

r and
R(Si

t+1) is the likelihood ration of θ1 to θ2 given
Si
1, Si

2, . . . , Si
t+1􏼈 􏼉.

Suppose P(δ(Si
r)<∞ | θ1) � ϕ, two cases are to be

distinguished.
In the first case, suppose ϕ< 1, then P(R(Si

t) �∞ | θ1) �

1 − ϕt which obviously approaches 1 with increasing t.
Another forms of expression can be

lim
t⟶∞

P R S
i
t􏼐 􏼑≥ ρ θ1

􏼌􏼌􏼌􏼌􏼐 􏼑 � 1 for 0≤ ρ<∞. (5)

Equation (5) shows that the probability that PR(Si
t)

given θ1 is greater than any preassigned number is almost 1.
)e second case is ϕ � 1. Since much is known about

sums of identically distributed independent random vari-
ables, it is natural to investigate

logR S
i
t+1􏼐 􏼑 � 􏽘

t+1

r�1
log δ S

i
r􏼐 􏼑, (6)

thereby replacing a product by a sum. It is easily seen from
the definition of δ(Si

r) that δ(Si
r > 0 | θ1) � 1, so for the case

now at hand, the function log(δ(Si
r)) is independent real

bounded random variable.
Letting I � E(log(δ(Si

r)) | θ1), the weak law of large
numbers implies that, for any ε> 0,

lim
t⟶∞

P
1

t + 1
􏽘

t+1

i�1
log R S

i
t+1􏼐 􏼑􏼐 􏼑􏽨

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎛⎝

− E log R S
i
t+1􏼐 􏼑􏼐 􏼑􏼐 􏼑]|≤ ε θ1

􏼌􏼌􏼌􏼌 ) � 1, (7)

and it can be transformed into
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lim
t⟶∞

P log R S
i
t+1􏼐 􏼑≥ (t + 1)(I − ε) θ1

􏼌􏼌􏼌􏼌􏼐 􏼑􏼐 􏼑 � 1. (8)

Equivalently,

lim
t⟶∞

P R S
i
t+1􏼐 􏼑≥ e

(t+1)(I− ε) θ1
􏼌􏼌􏼌􏼌􏼐 􏼑 � 1. (9)

According to expectation inequality [25], consider that

I � E log δ S
i
r􏼐 􏼑􏼐 􏼑 θ1

􏼌􏼌􏼌􏼌􏼐 􏼑

≥ logE
− 1 δ− 1

S
i
r􏼐 􏼑 θ1

􏼌􏼌􏼌􏼌􏼐 􏼑

� − logE
P Si

r θ2
􏼌􏼌􏼌􏼌􏼐 􏼑

P Si
r θ1

􏼌􏼌􏼌􏼌􏼐 􏼑
θ1

􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

� − log 􏽘

Si
r∈Si

t+1

P Si
r θ2

􏼌􏼌􏼌􏼌􏼐 􏼑

P Si
r θ1

􏼌􏼌􏼌􏼌􏼐 􏼑
· P S

i
r θ1

􏼌􏼌􏼌􏼌􏼐 􏼑

� − log 􏽘

Si
r∈Si

t+1

P S
i
r θ2

􏼌􏼌􏼌􏼌􏼐 􏼑

� − log 1 � 0,

(10)

the equality can hold in (10) if and only if δ− 1(Si
r) is constant

with probability 1, given θ1. Since the expected value of
δ− 1(Si

r) is equal to 1, the equality will hold if and only if
P(δ− 1(Si

r) | θ1) � 1. )is means state θ2 is observationally
equivalent state to θ1, which is contradictory with condition
(3) of the theorem. So, I> 0. )en, according to (9), we can
also infer that (5) holds.

)erefore, under the assumption conditions of the
theorem, we can demonstrate P(R(Si

t) �∞ | θ1) � 1 holds
with probability one; consequently, according to (10), the
ratio of individual i′s posterior probability of the real state
θ∗ � θ1 to the other state θ2 tends to infinity, i.e.,

μi,t+1 θ∗( )

μi,t+1 θ2( 􏼁
⟶∞. (11)

By the same method, it can be proved that the likelihood
ratio functions of real states θ∗ to the other states θk, k �

3, 4, . . . , m also tend to infinity, i.e.,

μi,t+1 θ∗( )

μi,t+1 θk( 􏼁
⟶∞. (12)

Since μi,t+1(θ
∗) + 􏽐

m
i�2 μi,t+1(θk) � 1 and 0≤ μi,t+1(θ)

≤ 1(∀θ ∈ Θ), we will have μi,t+1(θ
∗)⟶ 1 and

μi,t+1(θk)⟶ 0(∀θk ≠ θ
∗) when t⟶∞.

In summary, the individual can become highly con-
vinced of the truth by the Bayesian law and achieve as-
ymptotic learning after abundant observations. □

2.3. Simulation. We have theoretically proved that indi-
viduals can use Bayesian law to update their opinions and
achieve asymptotic learning. Next, we will verify the truth of
the above individual Bayesian learning model by simulations
on individuals in Zachary network.

2.3.1. Initial Values Setting. Before conducting the nu-
merical simulations, some assumptions are given as follows:

(1) Different signals are independent of each other
(2) )e connection between individuals is indirect
(3) In the initial state, all individuals have the same

opinion in different states
(4) Each individual observes only one signal at a time
(5) Different individuals have the same signal structure

)is simulation experiment mainly aims at social
learning on two states. Now, we suppose that Θ � θ1, θ2􏼈 􏼉

and the true state θ∗ � θ1, and the signal space
S � S1, S2, . . . , S5􏼈 􏼉. )e individual composition and their
relationship are shown in Figure 1, which is famously known
as Zachary network [26].

At time t � 0, individual i’s opinion on θ1 and θ2 is
μi,0(θ1) and μi,0(θ2), respectively. Under assumption (3), the
individuals’ initial opinions are set to be

μ1,0 θ1( 􏼁, μ2,0 θ1( 􏼁, . . . , μ34,0 θ1( 􏼁􏽮 􏽯 � 0.5, 0.5, . . . , 0.5{ },

μ1,0 θ2( 􏼁, μ2,0 θ2( 􏼁, . . . , μ34,0 θ2( 􏼁􏽮 􏽯 � 0.5, 0.5, . . . , 0.5{ }.

(13)

Under assumption (5), the signal structures are given for
all i as follows and they will remain unchanged during the
learning process:

Pi S1 θ1
􏼌􏼌􏼌􏼌􏼐 􏼑, Pi S2 θ1

􏼌􏼌􏼌􏼌􏼐 􏼑, . . . , Pi S5 θ1
􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯

� 0.35, 0.20, 0.15, 0.05, 0.25{ },

Pi S1 θ2
􏼌􏼌􏼌􏼌􏼐 􏼑, Pi S2 θ2

􏼌􏼌􏼌􏼌􏼐 􏼑, . . . , Pi S5 θ2
􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯

� 0.30, 0.15, 0.10, 0.25, 0.20{ }.

(14)

In the individual Bayesian learning model, it is assumed
that individual opinion evolution is affected by their prior
knowledge and signal characteristics. When the individual
i’s opinion on the underlying true state μi,t(θ

∗) is larger than
0.9999, we consider that he reaches asymptotic learning. If
each individual realizes asymptotic learning, the whole so-
ciety will form a social consensus and find the truth.
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Figure 1: Zachary network.
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2.3.2. Simulation Results. Under the above initial condi-
tions, we conduct simulations on Zachary network, and
results in Figure 2 show that μi,t(θ1)⟶ 1 and
μi,t(θ2)⟶ 0 when t⟶∞ for all i, which means all the
individuals can achieve asymptotic learning and realize the
true state.

3. Bayesian Social Learning Model

3.1. Bayesian Social Learning. In the individual Bayesian
learning process, individuals update their opinions by
Bayesian law to achieve asymptotic learning. But the whole
society is a complex social network, and individuals are
connected and have influences on each other. By commu-
nication with his neighbors, the individual can have
knowledge of his neighbors’ received signals and their
opinions. So, the individual will continuously adjust his
opinion according to the signals received not only by himself
but also by his neighbors. )erefore, we consider opinion
dynamics with Bayesian law in a social network background,
which is called Bayesian social learning.

Here, the social network is abstracted into a graph G �

(V, E) composed of individuals and their interactions. Let
V represent the set of all individuals and E represent the set
of relationship between every two individuals. At time
t + 1, each individual i receives a signal Si

t+1 whose dis-
tribution follows his signal structure Pi(· | θ∗). Because the
individuals have influence on each other and people have
herd mentality, then the individual i will adjust his signal
to the signal 􏽢St+1 which is received by the most people.
)erefore, individuals update their signals by the following
rule:

S
i
t+1 �

Si
t+1, if Si

t+1 � 􏽢St+1,

􏽢St+1, if Si
t+1 ≠ 􏽢St+1.

⎧⎨

⎩ (15)

After updating signals, individual i will update his own
opinion about state θ by Bayesian law as follows:

μi,t+1(θ) � μi,t+1 θ | S
i
1, S

i
2, . . . , S

i
t, S

i
t+1􏼐 􏼑􏼐 􏼑

�
μi,t(θ)P Si

1, Si
2, . . . , Si

t, Si
t+1( 􏼁 | θ( 􏼁

P Si
1, Si

2, . . . , Si
t, Si

t+1( 􏼁
(θ ∈ Θ).

(16)

Next, we will explore the social learning results in the
opinion dynamic process according to the signal update rule
(15) and opinion update rule (16) by simulations.

3.2. Simulation Results. We also take Zachary network as an
example society. )e state space Θ � θ1, θ1􏼈 􏼉, and signal
structure and initial opinions μi,0(θ) are set to be the same as
the previous simulations. )e Bayesian social learning re-
sults are shown in Figure 3.

It is obviously seen that individuals can realize asymp-
totic learning by Bayesian social learning with signal update
strategy. )e strong connectivity of the network helps the
group in the network to reach social consensus quickly with
little fluctuation. Furthermore, we compare the average
consensus time of Bayesian social learning and individual
Bayesian learning as shown in Table 1.

We can see that Bayesian social learning with the signal
update strategy model has a significantly faster learning
speed than the individual Bayesian learning model, and it
has less fluctuation. So, we can speculate that the interactions
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Figure 2: Individual Bayesian learning results.
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Figure 3: Bayesian social learning results.

Table 1: Comparison of average consensus time.

Model Consensus time
Individual Bayesian learning model 98
Bayesian social learning model 61

4 Complexity



among individuals in the society might accelerate infor-
mation congregation and achieve asymptotic learning faster.

4. Conclusion

In this paper, we research on two Bayesian learning models.
)e first model is the individual Bayesian learning model in
which we deduce the truthfulness of individual Bayesian
learning by theoretical derivation. Moreover, the numerical
simulations also show that individuals who update their
opinions by Bayesian law can realize asymptotic learning.

Furthermore, we propose the Bayesian social learning
model with signal update strategy and test it by simulations
on Zachary network. )e results show that individuals
adopting the signal update strategy proposed in this paper
can realize asymptotic learning similarly.

We compare the results of two models and find that
Bayesian social learning model can achieve asymptotic
learning more faster under the same conditions. In the
future study, we will explore the theoretical supports for the
Bayesian social learning model.
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