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In this paper, we propose a family of heavy tailed distributions, by incorporating a trigonometric function called the arcsine
exponentiated-X family of distributions. Based on the proposed approach, a three-parameter extension of the Weibull
distribution called the arcsine exponentiated-Weibull (ASE-W) distribution is studied in detail. Maximum likelihood is used to
estimate the model parameters, and its performance is evaluated by two simulation studies. Actuarial measures including Value
at Risk and Tail Value at Risk are derived for the ASE-W distribution. Furthermore, a numerical study of these measures is
conducted proving that the proposed ASE-W distribution has a heavier tail than the baseline Weibull distribution. .ese
actuarial measures are also estimated from insurance claims real data for the ASE-W and other competing distributions. .e
usefulness and flexibility of the proposed model is proved by analyzing a real-life heavy tailed insurance claims data. We
construct a modified chi-squared goodness-of-fit test based on the Nikulin–Rao–Robson statistic to verify the validity of the
proposed ASE-W model. .e modified test shows that the ASE-W model can be used as a good candidate for analyzing heavy
tailed insurance claims data.

1. Introduction

Heavy tailed distributions play a significant role in modeling
data in applied sciences, particularly in risk management,
banking, economics, financial, and actuarial sciences.
However, the quality of the procedures primarily depends
upon the assumed probability model of the phenomenon
under consideration. Among the applied fields, the insur-
ance datasets are usually positive [1], right-skewed [2],
unimodal shaped [3], and with heavy tails [4]. Right-skewed
data may be adequately modeled by the skewed distributions
[5]. .erefore, a number of unimodal positively skewed
parametric distributions have been employed to model such
datasets [6, 7].

.e heavy tailed distributions are those whose right tail
probabilities are heavier than the exponential one, that is,

x⟶∞lim exp(− cx) − 1
1 − F(x)

� 0, c> 0, (1)

where F(x) is the cdf of a baseline distribution. More in-
formation can be explored in Resnick [8] and Beirlant et al.
[9].

Dutta and Perry [10] performed an empirical analysis of
loss distributions to estimate the risk via different ap-
proaches. .ey rejected the idea of using the exponential,
gamma, and Weibull models because of their poor results
and concluded that one would need to use a model that is
flexible enough in its structure. .ese results encouraged the
researchers to propose new flexible models providing greater
accuracy in data fitting. .erefore, a number of approaches
have been proposed to obtain new distributions with heavier
tails than the exponential distribution, such as (i) trans-
formation method [11, 12], (ii) composition of two or more
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distributions [13], (iii) compounding of distributions
[14, 15] , and (iv) finite mixture of distributions [16, 17].

.e abovementioned approaches are very useful in de-
riving new flexible distributions; however, they are still
subject to some sort of deficiencies, for example, (i) the
transformation approach is simple to apply, but its infer-
ences become difficult and many computational work is
required to derive the distributional characteristics [18]. (ii)
.e approach of composition of two or more distributions
using a fixed or a priori known mixing weights, and hence
they can be very restrictive [19]. To overcome this problem,
Scollnik [20] used unrestricted mixing weights. (iii) .e
density obtained by the compounding approach may not
always have a closed form expression which makes the
estimation more cumbersome [21]. (iv) Finite mixture
models represent a further approach to define very flexible
distributions which are also able to capture, for instance,
multimodality of the underlying distribution. .e price to
pay for this greater flexibility is a more complicated and
computationally challenging inference [22].

To overcome the problems associated with the above
former methods, many authors have proposed new families
of distributions, see, for example, Al-Mofleh [23], Jamal and
Nasir [24] and Nasir et al. [25], Ahmad et al. [26], Afify et al.
[27], Cordeiro et al. [28], Ahmad et al. [29], Afify and
Alizadeh [30], and among many others. .erefore, bringing
flexibility to the existing distributions by adding additional
parameter(s) is a desirable feature and an interesting re-
search topic.

In this regard, Mudholkar and Srivastava [31] intro-
duced the exponentiated family of distributions by adding a
shape parameter to obtain more flexible version of the
existing distributions. A random variable X is said to follow
the exponentiated family, if its cumulative distribution
function (cdf) is given by

G(x; a, ξ) � F(x; ξ)
a
, a> 0, ξ ∈ R, x ∈ R, (2)

where F(x; ξ) is the cdf of the baseline distribution
depending on the parameter vector ξ and a> 0 is an ad-
ditional shape parameter. Using equation (2), the expo-
nentiated versions of the existing distributions have been
proposed in the literature.

Furthermore, Cordeiro and de Castro [32] proposed
another approach known as the Kumaraswamy-generalized
(Ku-G) family by adding two additional shape parameters.
.e cdf of the Ku-G family is

G(x; a, b, ξ) � 1 − 1 − F(x; ξ)
a

􏼈 􏼉
b
, a, b, > 0, ξ ∈ R, x ∈ R.

(3)

From equation (3), it is clear that, for b� 1, the Ku-G
family reduces to the exponentiated family. For a contrib-
uted work based on equation (3), we refer to Ahmad et al.
[33], Mead and Afify [34], Afify et al. [35], andMansour et al.
[36].

In this paper, we enrich the branch of distribution theory
by introducing the heavy tailed arcsine exponentiated-X
(ASE-X) family of distributions. A random variable X be-
longs to the proposed ASE-X family if its cdf is

G(x; a, ξ) �
2
π
arcsine F(x; ξ)

a
( 􏼁, a> 0, ξ ∈ R, x ∈ R,

(4)

where F(x; ξ) is the baseline cdf with a parameter vector ξ
and an additional shape parameter a.

.e probability density function (pdf) corresponding to
equation (4) is given by

g(x; a, ξ) �
2
π

af(x; ξ)F(x; ξ)a− 1
�����������

1 − F(x; ξ)2a
􏽱 , a> 0, ξ ∈ R, x ∈ R.

(5)

.e new pdf is most tractable when F(x; ξ) and f(x; ξ)

have simple analytical expressions. Henceforth, a random
variable X with pdf equation (5) is denoted by
X ∼ ASE − X(x; a, ξ). Moreover, the key motivations for
using the ASE-X family in practice are the following:

(i) To improve the characteristics and flexibility of the
existing distributions, the special models of this
family can provide left-skewed, right-skewed, uni-
modal, reversed J-shaped and symmetric densities,
and decreasing and increasing, bathtub, upside
down bathtub, and reversed-J hazard rates (See
Figures 1 and 2)

(ii) A very simple and convenient method of adding an
additional parameter provide extended heavy tailed
distributions which are very useful in modeling data
form the insurance field (see Sections 6 and 7)

(iii) To introduce the extended version of a baseline
distribution with closed forms for the cdf and
hazard rate function (hrf), the special submodels of
this family can be used in analyzing censored
datasets

(iv) .e special cases of the ASE-X approach is capable
of modeling heavy tailed datasets in actuarial sci-
ence as compared with existing competing models
(see Sections 6 and 7).

Using the new cdf in equation (4), a number of new
flexible distributions can be obtained. Some new con-
tributed models based on the ASE-X approach are pre-
sented in Table 1.

.e survival function (sf) and hrf of the proposed family
are, respectively, given by

S(x; a, ξ) � 1 −
2
π
arcsine F(x; ξ)

a
( 􏼁, a> 0, ξ ∈ R, x ∈ R,

h(x; a, ξ) �
af(x; ξ)F(x; ξ)a− 1

(π/2) − arcsine F(x; ξ)a
( )

�����������

1 − F(x; ξ)2a
􏽱

􏼒 􏼓

,

a> 0, ξ ∈ R, x ∈ R.

(6)

.e paper is outlined as follows. In Section 2, we define
the ASE-W distribution and present some plots for its
density and hazard functions. We provide some
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mathematical properties of the ASE-X distribution in Sec-
tion 3. .e maximum likelihood estimators (MLEs) of the
model parameters are obtained in Section 4. Two Monte
Carlo simulation studies to assess the performance of the
MLEs are discussed in Section 5. In Section 6, we derive two
important risk measures called value at risk and tail value at
risk of the ASE-W distribution and perform a simulation
study to prove that the ASE-W distribution has a heavier tail

than the baselineWeibull distribution. In Section 7, the ASE-
W distribution is applied to a real heavy tailed insurance
claims data to illustrate its potentiality. Furthermore, the
value at risk and tail value at risk measures are estimated for
all competing models based on the insurance claims data. A
modified goodness-of-fit test using a Nikulin–Rao–Robson
statistic test is presented in Section 8. Finally, in Section 9, we
provide some concluding remarks.
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Figure 1: Different plots for the pdf of the ASE-W distribution for selected values of its parameters.
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Figure 2: Different plots for the hrf of the ASE-W distribution for selected values of its parameters.
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2. The ASE-W Distribution

In this section, we introduce the ASE-W distribution and
investigate the behavior of its density and hazard
functions, for selected values of the parameters. Consider the
cdf of the two-parameter Weibull distribution,
F(x; α, c) � 1 − e− cxα

, x≥ 0, α, c> 0. .en, a random vari-
able X is said to follow the ASE-W distribution if its cdf takes
the form

G(x; α, a, c) �
2
π
arcsine 1 − e

− cxα
􏼐 􏼑

a
􏼐 􏼑, x> 0, α, a, c> 0.

(7)

.e pdf associated of equation (7) has the form

g(x; α, a, c) �
2
π

aαcxα− 1e− cxα 1 − e− cxα
( 􏼁

a− 1

��������������

1 − 1 − e− cxα
( )

2a
􏽱 ,

x> 0, α, a, c> 0.

(8)

For α � 1, the ASE-W distribution reduces to the ASE-
exponential distribution with parameter c, and for α � 2, it
reduces to the ASE-Rayleigh distribution with parameter c.

For different values of the model parameters, plots of the
pdf and hrf of the ASE-W distribution are sketched in

Table 1: New contributed submodels based on the ASE-X family.

No. Baseline model Distribution function Generated model Range

1 Weibull (2/π)arcsine( 1 − e− cxα
􏼈 􏼉

a
) ASE-Weibull x ∈ R+, a, α, c> 0

2 Lomax (2/π)arcsine( 1 − (1 + cx)− α
􏼈 􏼉

a
) ASE-Lomax x ∈ R+, a, α, c> 0

3 Uniform (2/π)arcsine( x/θ{ }
a) ASE-Uniform 0<x< θ, a, θ> 0

4 Linear failure rate (2/π)arcsine( 1 − e− cxα − θx􏼈 􏼉
a
) ASE-Linear failure rate x ∈ R+, a, α, c, θ> 0

5 Exponential (2/π)arcsine( 1 − e− cx{ }a) ASE-Exponential x ∈ R+, a, c> 0

6 Rayleigh (2/π)arcsine( 1 − e− cx2
􏽮 􏽯

a
) ASE-Rayleigh x ∈ R+, a, c> 0

7 Pareto (2/π)arcsine( 1 − (xm/x)α􏼈 􏼉
a
) ASE-Pareto x ∈ [xm,∞), a, α, xm > 0

8 Burr (2/π)arcsine( 1 − (1 + xk)− c
􏼈 􏼉

a
) ASE-Burr x ∈ R+, a, c, k> 0

9 Topp Leone (2/π)arcsine( xα(2 − xα){ }
a) ASE-Topp Leone 0<x< 1, a, α> 0

10 Log logistics (2/π)arcsine( 1/1 + (x/c)− α
􏼈 􏼉

a
) ASE-Log logistics x ∈ R+, a, α, c> 0

11 Kumaraswamy (2/π)arcsine( 1 − (1 − xa)b
􏽮 􏽯

a
) ASE-Kumaraswamy 0<x< 1, a, b> 0

12 Frechet (2/π)arcsine( e− (x/c)− α
􏽮 􏽯

a
) ASE-Frechet x ∈ R+, a, α, c> 0

13 Gamma (2/π)arcsine( (1/Γα)c(α, βx)􏼈 􏼉
a
) ASE-Gamma x ∈ R+, a, α, β> 0

14 Lindely (2/π)arcsine( 1 − ((e− θx(1 + θ + θx))/(1 + θ))􏼈 􏼉
a
) ASE-Lindely x ∈ R+, a, θ> 0

15 Beta (2/π)arcsine( Ix(a, b)􏼈 􏼉
a
) ASE-Beta a<x< b, a, b> 0

16 Normal (2/π)arcsine( Φ(((x − μ)/σ))􏼈 􏼉
a
) ASE-Normal x, μ ∈ R, a, σ > 0

17 Gumbel (2/π)arcsine( e− e− (x− μ/σ)

􏽮 􏽯
a
) ASE-Gumbel x, μ ∈ R, a, σ > 0

18 Power function (2/π)arcsine( (x/c)α􏼈 􏼉
a
) ASE-Power function 0<x< c, a, α, c> 0

19 Half logistic (2/π)arcsine( (1 − e− x)/(1 + e− x){ }
a) ASE-Half logistic x ∈ R+, a> 0

20 Erlang (2/π)arcsine( (1/(k − 1)!)c(k, λx)􏼈 􏼉
a
) ASE-Erlang x ∈ R+, a, k, λ> 0

21 Lévy (2/π)arcsine( erfc(
���������
σ/2(x − μ)

􏽰
)􏼈 􏼉

a
) ASE-Lévy x ∈ [μ,∞), μ ∈ R, σ, a> 0

22 Rice (2/π)arcsine( 1 − Q1(v/σ, x/σ)􏼈 􏼉
a
) ASE-Rice x ∈ R+, a, v, σ > 0

23 Shifted Gompertz (2/π)arcsine( (1 − e− bx)e− ηe− bx

􏽮 􏽯
a
) ASE-shifted Gompertz x ∈ R+, a, b, η> 0

24 Dagum (2/π)arcsine( 1 + (x/β)− α
􏼈 􏼉

− p
􏼈 􏼉

a
) ASE-Dagum x ∈ R+, a, α, β, p> 0

25 Beta prime (2/π)arcsine( I(x/1+x)(α, β)􏽮 􏽯
a
) ASE-Beta prime x ∈ R+, a, α, β> 0

26 Logistic (2/π)arcsine( 1/1 + e− (x− μ/σ)􏼈 􏼉
a
) ASE-Logistic x, μ ∈ R, a, σ > 0

27 Reciprocal (2/π)arcsine( (loge(x) − loge(α))/(loge(β) − loge(α))􏼈 􏼉
a
) ASE-Reciprocal x ∈ [α, β], a, α, β> 0

28 Gompertz (2/π)arcsine( 1 − e− η(ebx − 1)􏽮 􏽯
a
) ASE-Gompertz x ∈ R+, a, η, b> 0

29 Hyperbolic secant (2/π)arcsine( (2/π)arctan e(xπ/2)􏼈 􏼉􏼈 􏼉
a
) ASE-Hyperbolic secant x ∈ R, a> 0
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Figures 1 and 2. .e two figures reveal that the ASE-W can
provide left-skewed, right-skewed, unimodal, reversed
J-shaped and symmetric densities, and decreasing and in-
creasing, bathtub, upside down bathtub, and reversed-J
hazard rate shapes.

3. Basic Mathematical Properties

In this section, some statistical properties of the ASE-X
family are derived.

3.1. Quantile Function. Let X be the ASE-X random variable
with pdf equation (5), the quantile function (qf) of X, say Q
(u), reduces to

xq � Q(u) � G
− 1

(u) � F
− 1 sin

π
2

u􏼒 􏼓􏼔 􏼕
(1/a)

􏼨 􏼩, (9)

where u has the uniform distribution on the interval (0, 1).
From the expression in equation (9), it is clear that the ASE-
X family has a closed form solution of its quantile function
which makes generating random numbers very simple.

.e qf of the ASE-W model follows as

QASE− W(u) �
− 1
c
log 1 − sin

π
2

u􏼒 􏼓􏼔 􏼕
(1/a)

􏼨 􏼩􏼠 􏼡

(1/α)

. (10)

3.2. Moments. Moments are very important and play an
essential role in statistical analysis. .ey help to capture
important features and characteristics of the distribution
(e.g., central tendency, dispersion, skewness, and kurtosis).
.e rth moment of the ASE-X family is

μr
′ � 􏽚

∞

− ∞
x

r
g(x; a, ξ)dx. (11)

Substituting equation (5) in equation (11), we obtain

μr
′ �

2a

π
􏽚
∞

− ∞
x

rf(x; ξ)(F(x; ξ))a− 1
������������

1 − F(x; ξ)a
( )

2
􏽱 dx. (12)

Using the binomial expansion, we have

1
�����
1 − x2

√ � 􏽘
∞

n�0

1 × 3 × 5 × · · · ×(2n − 1)

n!2n
x
2n

. (13)

By replacing x with F(x; ξ)a, in equation (13), we obtain

1
������������

1 − F(x; ξ)a
( )

2
􏽱 � 􏽘

∞

n�0

1 × 3 × 5 × · · · ×(2n − 1)

n!2n
F(x; ξ)

2an
.

(14)

By inserting equation (14) in equation (12), we obtain

μr
′ �

a

π
􏽘

∞

n�0

1 × 3 × 5 × · · · ×(2n − 1)

n!2n− 1 ηr,2an, (15)

where ηr,2an � 􏽒
∞
− ∞ xrf(x; ξ)F(x; ξ)a(2n+1)− 1dx.

.e moment generating function of the ASE-X class has
the form

MX(t) �
a

π
􏽘

∞

r,n�0

1 × 3 × 5 × · · · ×(2n − 1)

r!n!2n− 1 t
rηr,2an. (16)

.e effects of different values of the parameters α and a

on the mean, variance, skewness, and kurtosis of the ASE-W
distribution with c � 1 are illustrated in Figures 3 and 4.

4. Maximum Likelihood Estimation

In this section, we consider the estimation of the unknown
parameters of the ASE-X distribution from complete sam-
ples only via the maximum likelihood. Let X1, X2, . . . , Xn be
a random sample from the ASE-X family with observed
values x1, x2, . . . , xn. .e log-likelihood function is

log L(a, ξ) � n log
2
π

􏼒 􏼓 + n log(a) + 􏽘
n

i�1
logf xi; ξ( 􏼁

+ (a − 1) 􏽘
n

i�1
logF xi; ξ( 􏼁 −

1
2

􏽘

n

i�1
log 1 − F(x; ξ)

2a
􏽮 􏽯.

(17)

.e log-likelihood function can be maximized either
directly by using the R (AdequecyModel package), SAS
(PROC NLMIXED), or the Ox program (sub-routine
MaxBFGS) or by solving the nonlinear likelihood equations
which are obtained by differentiating equation (17) as
follows:

z

za
log L(a, ξ) �

n

a
+ 􏽘

n

i�1
logF xi; ξ( 􏼁

+ 􏽘
n

i�1

logF xi; ξ( 􏼁( 􏼁F(x; ξ)2a

1 − F(x; ξ)2a􏼨 􏼩,

z

zξ
log L(a, ξ) � 􏽘

n

i�1

zF xi; ξ( 􏼁/zξ( 􏼁

f xi; ξ( 􏼁
+(a − 1) 􏽘

n

i�1

zF xi; ξ( 􏼁/zξ( 􏼁

F xi; ξ( 􏼁

+ a 􏽘

n

i�1

F(x; ξ)a− 1 zF xi; ξ( 􏼁/zξ( 􏼁

1 − F(x; ξ)2a􏼨 􏼩.

(18)

.e log-likelihood function for the ASE-W model re-
duces to

ℓ � n log
2
π

􏼒 􏼓 + n log(α a c) +(α − 1) 􏽘
n

i�0
log xi( 􏼁 − c 􏽘

n

i�0
x
α
i

+(a − 1) 􏽘
n

i�0
log 1 − e

− cxα
i􏼐 􏼑 −

1
2

􏽘

n

i�0
log 1 − 1 − e

− cxα
i􏼐 􏼑

2a
􏼔 􏼕.

(19)

.e nonlinear likelihood equations can be obtained by
differentiating the last equation as follows:

Complexity 5
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Figure 3: .e mean and variance plots of the ASE-W model.
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Figure 4: .e skewness and kurtosis plots of the ASE-W model.
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zℓ
zα

�
n

α
+ 􏽘

n

i�0
log xi( 􏼁 − c 􏽘

n

i�0
x
α
i log xi( 􏼁 + c(a − 1) 􏽘

n

i�0

xα
i e− cxα

i log xi( 􏼁

1 − e− cxα
i

+ ca 􏽘
n

i�0

xα
i e− cxα

i 1 − e− cxα
i( 􏼁

2a− 1log xi( 􏼁

1 − 1 − e− cxα
i( 􏼁

2a
,

zℓ
za

�
n

a
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5. Simulation Results

5.1. Monte Carlo Simulation Study. In this section, we
perform a comprehensive simulation study to access the
behavior of MLEs of the ASE-W parameters. .e random
number generation is obtained via the inverse cdf. .e
inverse process and results of MLEs are obtained using
optim() R-function with the argument method “L-BFGS-
B.” We generate N� 1000 samples of size n� 25, 100, 300,
600, 900, 1000 from the ASE-W distribution with true pa-
rameter values. In this simulation study, we empirically
calculate the mean, bias, and mean square error (MSE) of the
MLEs for different parameters combinations and each
sample.

Coverage probabilities (CPs) are also calculated at the
95% confidence interval (C.I.). .e simulation results are
provided in Tables 2 and 3. Based on the generated data
listed in Tables 2 and 3, the MLEs seem to behave as we
expect, that is, the MSE values and the estimated biases
decrease as n increases. Furthermore, the mean values of
estimates tend to the true values as n increases, showing the
consistency property of the MLEs.

5.2. Simulations Using the Barzilai-Borwein Algorithm. In
this section, we provide the results of a simulation study
for the ASE-W distribution using the Barzilai-Borwein
(BB) algorithm [37]. Initial values for the parameters
(α�1.6, c � 0.6, and a � 1.9) are selected and random
sample of sizes n � 50, 100, 200, and 400 are obtained.
Repetitions are made 10,000 times and the averages of the
simulated values of the MLEs (􏽢α, 􏽢c, 􏽢a) along with their
MSEs are calculated. .e simulation results are provided
in Table 4.

From the simulation results provided in Table 4, we can
see that the maximum likelihood estimates of the ASE-W
parameters are convergent. .e graphical sketching of the
maximum likelihood estimates of the ASE-W parameters is
provided in Figure 5.

From Figure 5, it is clear that all the parameters estimates
of the ASE-W distribution converge faster than n− 0.5.
.erefore, we conclude that the MLEs of the ASE-W pa-
rameters are

�
n

√
consistent.

6. Actuarial Measures

One of the most important tasks of financial and actuarial
sciences institutions is to evaluate the exposure to market
risk in a portfolio of instruments, which arise from changes
in underlying variables such as prices of equity, interest
rates, or exchange rates. In this section, we derive some
important risk measures including value at risk (VaR) and
tail value at risk (TVaR) of the ASE-W distribution which
play a crucial role in portfolio optimization under
uncertainty.

6.1.Value at Risk. .eVaR is widely used by practitioners as
a standard financial market risk measure. It is also called the
quantile premium principle or quantile risk measure. .e
VaR is always specified with a given degree of confidence say
q (typically 90%, 95% or 99%), and it represents the per-
centage loss in portfolio value that will be equaled or
exceeded only X percent of the time. .e VaR of a random
variable X is the qth quantile of its cdf [38]. Hence, the VaR
of the ASE-W distribution is defined as

xq �
− 1
c
log 1 − sin

π
2

q􏼒 􏼓􏼔 􏼕
(1/a)

􏼨 􏼩􏼠 􏼡

(1/α)

. (21)

6.2. Tail Value at Risk. Another important measure is TVaR
which can be used to quantify the expected value of the loss
given that an event outside a given probability level has
occurred. IfX follows the ASE-Wdistribution, then its TVaR
can be defined as

TVaRq(X) �
1

1 − q
􏽚
∞

VaRq

x g(x; α, a, c)dx. (22)

Substituting equation (8) in equation (22), we obtain

TVaRq(X) �
1

1 − q
􏽚
∞

VaRq

2
π

aαcxα+1− 1e− cxα 1 − e− cxα
( 􏼁

a− 1

��������������

1 − 1 − e− cxα
( )

2a
􏽱 .

(23)

Finally, the TVaR of the ASE-W model takes the form
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Table 2: MLE, Bias, MSE, C.I., and CPs of the ASE-W parameters.

Set 1: α � 1.4, a � 0.9, c � 1.2
n Par MLE Bias MSE C.I. CPs

25
α 1.7754 0.2788 0.0975 (0.8441 2.1346) 0.8324
a 1.4123 0.3586 0.6653 (− 2.1895 3.3467) 0.8235
c 1.8143 0.4786 1.4876 (1.2242 3.6998) 0.8054

100
α 1.6234 0.2167 0.0763 (1.0546 1.8659) 0.8609
a 1.1899 0.3074 0.5678 (1.7834 3.2089) 0.8542
c 1.7758 0.3875 1.2788 (− 1.0437 3.4596) 0.8378

300
α 1.5865 0.1976 0.0598 (1.1547 1.7598) 0.8847
a 1.1079 0.2195 0.3178 (− 0.3045 2.2789) 0.8965
c 1.6734 0.2765 0.8977 (− 0.3546 2.5694) 0.8568

600
α 1.5189 0.1157 0.0376 (1.1654 1.6598) 0.9168
a 1.0857 0.1834 0.1287 (0.1267 1.6235) 0.9189
c 1.5967 0.1865 0.4978 (− 0.0956 2.2089) 0.8977

900
α 1.4856 0.1065 0.0254 (1.2908 1.5647) 0.9285
a 0.9578 0.1004 0.1087 (0.2263 1.3980) 0.9289
c 1.3087 0.1267 0.3856 (0.0633 2.1744) 0.9167

1000
α 1.4034 0.0659 0.0187 (1.2734 1.5980) 0.9385
a 0.9134 0.0288 0.0755 (0.3748 1.3850) 0.9376
c 1.2176 0.0775 0.1295 (0.1865 2.0734) 0.9289

Table 3: MLE, Bias, MSE, C.I., and CPs of the ASE-W parameters.

Set 2: α � 0.7, a � 0.5, c � 1.5
n Par MLE Bias MSE C.I. CPs

25
α 0.9958 0.1058 0.0478 (0.4998 1.3678) 0.8619
a 0.8532 0.2008 0.2979 (1.0536 2.6758) 0.8390
c 2.741 0.3589 2.976 (1.8797 5.6978) 0.7955

100
α 0.8624 0.0473 0.0342 (0.6053 1.0857) 0.8754
a 0.7953 0.1853 0.2865 (0.0198 1.7986) 0.8648
c 2.1455 0.2653 2.1387 (1.0197 3.5585) 0.8250

300
α 0.8108 0.0304 0.0287 (0.3657 0.9893) 0.8993
a 0.7275 0.0898 0.2064 (0.0456 1.2238) 0.8829
c 1.9753 0.1890 1.4879 (0.1608 2.3839) 0.8434

600
α 0.7958 0.0264 0.0187 (0.7056 0.9492) 0.9202
a 0.6552 0.0743 0.1876 (0.1489 1.0073) 0.9053
c 1.8209 0.1289 0.9562 (0.1535 1.8298) 0.8794

900
α 0.7624 0.0205 0.0137 (0.7056 0.9154) 0.9301
a 0.5953 0.0465 0.1067 (0.2063 0.8909) 0.9178
c 1.7578 0.1056 0.5634 (0.2682 1.8056) 0.8973

1000
α 0.7136 0.0135 0.0098 (0.6198 0.9276) 0.9390
a 0.5393 0.0289 0.0478 (0.2053 0.9254) 0.9325
c 1.5443 0.0189 0.1590 (0.2759 1.7450) 0.9289

Table 4: Maximum likelihood estimates of the parameters (α, c, a) and their MSEs.

N� 10000 n � 50 n � 100 n � 200 n � 400
􏽢α 1.64358 1.63408 1.61008 1.60447
MSE 0.04518 0.03371 0.02456 0.01048
􏽢c 0.64992 0.64001 0.62115 0.60487
MSE 0.04168 0.03336 0.023007 0.00917
􏽢a 1.94253 1.93394 1.91108 1.90462
MSE 0.04347 0.03754 0.02647 0.01024
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TVaRq(X) �
a

(1 − q)π
􏽘

∞

n,i�0
(− 1)

i1 × 3 × 5 × · · · ×(2n − 1)

n!2n− 1c(1/α)(i + 1)(1/α)+1

·

a(2n − 1) − 1

i

⎛⎝ ⎞⎠

× Γ
1
α

+ 1, c(i + 1) VaRq􏼐 􏼑
a

􏼒 􏼓.

(24)

6.3. Numerical Study of the Actuarial Measures. In this
section, we provide some numerical results for the VaR
and TVaR for the Weibull and ASE-W distributions for
different sets of parameters. .e process is described
below:

(i) Random sample of size n � 150 are generated from
the Weibull and ASE-W distributions and param-
eters have been estimated via the maximum likeli-
hood method.

(ii) 1000 repetitions are made to calculate the VaR and
TVaR of the two distributions.

.e simulation results of the VaR and TVaR for the
Weibull and ASE-W models are provided in Tables 5 and 6.
Furthermore, the results in these tables are depicted
graphically in Figures 6 and 7, respectively.

.e simulation is performed for theWeibull and ASE-W
distributions for selected values of their parameters. Amodel
with higher values of VaR and TVaR is said to have a heavier
tail. .e simulated results in Tables 5 and 6 and the plots in
Figures 6 and 7 show that the proposed ASE-W model has
higher values of these risk measures than theWeibull model.
Hence, the proposed ASE-W model has a heavier tail than
theWeibull distribution and can be used effectively to model
heavy tailed insurance data.

7. Modeling Heavy Tailed Insurance
Claims Data

In this section, we demonstrate the flexibility of the ASE-W
distribution by using heavy tailed insurance claims data.
Furthermore, we calculate the actuarial measures of the

Alpha
Gamma

a
n^(−0.5)

100 200 300 400 500 6000
Sample size

0.0

0.2

0.4

0.6

Figure 5: Simulated average absolute errors for MLEs (􏽢α, 􏽢c, 􏽢a).

Table 5: Simulation results of the actuarial measures at different levels of significance for α � 1.9, c � 0.4, and a � 0.9.

Distribution Parameters Level of significance VaR TVaR

Weibull α � 1.9, c � 0.4

0.700 1.7908 2.4109
0.750 1.9288 2.5214
0.800 2.0864 2.6503
0.850 2.2750 2.8080
0.900 2.5192 3.0166
0.950 2.8934 3.3446
0.975 3.2284 3.6448
0.999 4.4913 4.8138

ASE-W α � 1.9, a � 0.9, c � 0.4

0.700 2.3757 5.2320
0.750 2.6831 5.7737
0.800 3.0850 6.4986
0.850 3.6544 7.5479
0.900 4.5787 9.2856
0.950 6.5963 13.1515
0.975 9.3793 18.5495
0.999 45.9854 90.2646
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ASE-W and other competing distributions using this real
dataset.

7.1. Application of the ASE-W Distribution to Insurance
Claims Data. In this section, we consider a dataset from
insurance field. .is data set represents the unemployment
insurance initial claims per month from 1971 to 2018, and it
is available at https://data.worlddatany-govns8z-xewg. We
compare the goodness-of-fit results of the proposed distri-
bution with some other well-known competing distributions
including Weibull, exponentiated exponential (EE), expo-
nentiated Weibull (EW), exponentiated Lomax (EL),
Kumaraswamy Weibull (Ku-W), beta Weibull (BW), and
new Weibull Burr-XII (NWB-XII) distributions. .e

distribution functions of these competitive distributions are
given by

(1) Weibull distribution:

G(x; α, c) � 1 − e
− cxα

, x≥ 0, α, c> 0. (25)

(2) EE distribution:

G(x; a, c) � 1 − e
− cx

( 􏼁
a
, x≥ 0, a, c> 0. (26)

(3) EW distribution:

G(x, a, α, c) � 1 − e
− cxα

􏼐 􏼑
a
, x≥ 0, α, c, a> 0. (27)

Table 6: Simulation results of the actuarial measures at different levels of significance for α � 0.9, c � 0.4, and a � 1.5.

Distribution Parameters Level of significance VaR TVaR

Weibull α � 0.9, c � 0.4

0.700 3.3752 6.6801
0.750 3.9477 7.2857
0.800 4.6598 8.0348
0.850 5.5940 9.0120
0.900 6.9373 10.4090
0.950 9.2934 12.8434
0.975 11.7115 15.3275
0.999 23.5140 27.3507

ASE-W α � 0.9, a � 1.5, c � 0.4

0.700 7.8442 17.6596
0.750 8.8805 19.5232
0.800 10.2387 22.0226
0.850 12.1687 25.6504
0.900 15.3140 31.6808
0.950 22.2204 45.1725
0.975 31.8140 64.1411
0.999 160.9151 321.9320
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Figure 6: Graphical sketching of the VaR and TVaR using the results in Table 5.
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(4) EL distribution:

G(x; α, a, c) � 1 − 1 +
x

c
􏼠 􏼡

− α

􏼢 􏼣

a

, x≥ 0, α, a, c> 0.

(28)

(5) Ku-W distribution:

G(x; α, c, a, b) � 1 − 1 − 1 − e
− cxα

􏼐 􏼑
a

􏽨 􏽩
b
,

x≥ 0, α, c, a, b> 0.
(29)

(6) BW distribution:

G(x; α, c, a, b) � I 1− e− cxα( )(x; a, b),

x≥ 0, α, c, a, b> 0.
(30)

(7) NWB-XII distribution:

G(x; α, c, a, b) � 1 − exp − c b log 1 + x
a

( 􏼁􏼂 􏼃
α

􏼈 􏼉,

x≥ 0, α, c, a, b> 0.
(31)

.e competing models can be compared using some
discrimination measures called

(i) .e Akaike information criterion (AIC)
(ii) .e Bayesian information criterion (BIC)
(iii) .e Hannan–Quinn information criterion (HQIC)
(iv) .e consistent Akaike information Criterion (CAIC)

In addition to the discrimination measures, we further
considered other test statistics called

(i) Anderson Darling (AD)
(ii) Cramér–von Mises (CM)
(iii) .e Kolmogorov–Smirnov (KS) with its p value

.e formulae for these measures can be explored in Afify
et al. Table 7 gives the MLEs and their standard errors. .e
analytical measures are provided in Tables 8 and 9. .e
results in these tables indicate that the ASE-W distribution
provides better fits than other competing models and could
be chosen as an adequate model to analyze the heavy tailed
insurance claims data.

Figure 8 displays the fitted pdf and cdf of the proposed
distribution which shows that the ASE-W fits the right-
skewed heavy tailed distribution very well. .e probability-
probability (PP) plot and and Kaplan–Meier survival plots
are sketched in Figure 9.

7.2. Estimating of VaR and TVaR Measures Using the In-
surance ClaimsData. In this section, we compute the VaR
and TVaR measures of the ASE-W and other competing
distributions using the estimated values of the param-
eters using the insurance claims data. .e numerical
results for all fitted distributions are reported in Table 10.
.e results in Table 10 are displayed graphically in
Figure 10.

As we have mentioned earlier that a distribution with
higher values of the risk measures is said to has a heavier
tail. .e values in Table 10 and Figure 10 illustrate that
the ASE-W distribution has the highest values of VaR
and TVaR among all competing models, proving that it
has a heavier tail than other competitors for insurance
claims data.
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Figure 7: Graphical sketching of the VaR and TVaR using the results in Table 6.
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Table 7: Estimated parameters along with standard errors (in parenthesis) of the fitted models.

Distribution α c a b

ASE-W 1.270 (0.0214) 0.012 (0.0014) 32.780 (4.3526)
Weibull 1.486 (1.0966) 0.001 (0.0949)
EE 0.037 (0.0013) 31.713 (3.7912)
EW 0.941 (0.0500) 0.051 (0.0145) 37.938 (8.8729)
EL 9.492 (3.9734) 149.038 (105.1275) 94.873 (61.56213)
Ku-W 0.984 (0.0764) 0.052 (0.0172) 64.933 (0.0633) 0.657 (0.1668)
BW 1.090 (0.0589) 0.031 (0.0070) 40.704 (10.3927) 0.592 (0.1393)
NWB-XII 1.487 (0.1956) 0.238 (0.0276) 65.273 (12.5909) 2.675 (0.1067)

Table 8: Discrimination measures of the ASE-W model and other competing models.

Distribution AIC BIC CAIC HQIC
ASE-W 5598.818 5611.881 5598.860 5603.913
Weibull 6169.574 6178.290 6169.634 6172.975
EE 5603.732 5612.441 5603.753 5607.129
EW 5604.484 5617.547 5604.526 5609.579
EL 5603.581 5616.644 5603.623 5608.676
Ku-W 5601.734 5619.152 5601.805 5608.527
BW 5602.555 5602.625 5619.972 5609.348
NWB-XII 5743.756 5776.532 5746.452 5761.0897

Table 9: Goodness-of-fit measures of the ASE-W model and other competing models.

Distribution CM AD KS p value
ASE-W 0.160 0.840 0.030 0.657
Weibull 0.974 2.094 0.896 0.129
EE 0.311 1.576 0.047 0.154
EW 0.297 1.499 0.043 0.217
EL 0.220 1.217 0.046 0.174
Ku-W 0.200 1.037 0.037 0.383
BW 0.221 1.121 0.035 0.471
NWB-XII 1.409 2.498 0.985 0.116
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Figure 8: Estimated pdf and cdf of the ASE-W distribution.
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Figure 9: PP plot Kaplan–Meier survival plot of the ASE-W distribution.

Table 10: Numerical results of the VaR and TVaR for the competing models for insurance claims data.

Distribution Parameters Level of significance VaR TVaR

ASE-W α � 1.270, a � 32.780, c � 0.012

0.700 230.0434 254.0283
0.750 238.9876 287.5763
0.800 251.7543 313.8245
0.850 287.5642 370.4325
0.900 327.0358 397.5636
0.950 376.6542 440.4529
0.975 478.4263 490.3465
0.999 532.7983 620.9659

Weibull α � 1.9, c � 0.4

0.700 70.3462 89.7568
0.750 77.7643 101.8539
0.800 83.8743 115.7943
0.850 98.3245 135.8764
0.900 120.5643 156.9875
0.950 142.6750 179.9876
0.975 176.7656 201.9875
0.999 202.6752 230.9786

EE c � 0.03

0.700 86.9876 102.8654
0.750 92.0896 121.8479
0.800 102.8569 138.6497
0.850 115.5865 154.4970
0.900 131.9724 172.7590
0.950 152.8598 198.8653
0.975 198.8569 228.5860
0.999 252.0789 265.8748

EW α � 0.941, a � 37.938, c � 0.051

0.700 80.4364 98.7563
0.750 89.5747 115.0876
0.800 99.9786 131.5436
0.850 108.6430 142.0987
0.900 127.0876 165.4231
0.950 146.0875 188.4321
0.975 179.5476 219.3743
0.999 240.5667 244.9876

Complexity 13



Table 10: Continued.

Distribution Parameters Level of significance VaR TVaR

EL α � 9.492, a � 94.873, c � 149.038

0.700 91.8392 122.9786
0.750 99.3874 128.7459
0.800 109.5623 145.9350
0.850 123.0348 161.4230
0.900 139.1245 187.7618
0.950 161.2498 209.1230
0.975 210.7923 237.6790
0.999 269.4320 287.4234

Ku-W a � 64.933, b � 0.657, α � 0.984, c � 0.052

0.700 98.5432 118.6547
0.750 105.8653 139.8650
0.800 128.8764 159.8536
0.850 143.0987 171.9875
0.900 152.5860 189.8653
0.950 188.7389 218.0872
0.975 239.9876 249.2087
0.999 296.5432 308.3425

BW a � 40.704, b � 0.592, α � 1.090, c � 0.031

0.700 95.8479 112.5987
0.750 101.7539 132.8763
0.800 120.8648 148.8958
0.850 135.8975 163.2634
0.900 141.5987 178.4658
0.950 178.6529 209.9509
0.975 229.8769 238.2038
0.999 286.7356 289.0236

NWB-XII a � 65.273, b � 2.675, α � 1.487, c � 0.238

0.700 60.4328 68.5490
0.750 66.0324 79.9782
0.800 73.0897 95.9823
0.850 89.4235 109.1032
0.900 104.8765 124.7074
0.950 121.0323 138.2398
0.975 143.9832 149.9876
0.999 187.4378 189.7654
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Figure 10: Graphical sketching of the VaR and TVaR using the results in Table 10 for insurance claims data.
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8. Validation of the ASE-W Distribution

Goodness-of-fit tests indicate whether or not it is rea-
sonable to assume that a random sample comes from a
specific distribution. Statistical techniques often rely on
observations obtained from a population that has a
distribution of a specific form. Selection of a suitable
model in all types of statistical analysis is of a great
importance. For this purpose a lot of goodness-of-fit tests
are proposed by some researchers. Nikulin [39, 40]
proposed a modification in the standard chi-squared
Pearson’s test for a continuous distribution. Rao and
Robson [41] obtained the same result for the exponential
family, and later this statistic is well adapted by some
researchers with the name as Rao–Robson–Nikulin
(RRN) test.

In this section, we use another goodness-of-fit test to
show the validity of the ASE-W distribution for heavy tailed
insurance data. For this purpose, we use the NRR test
statistic to show the utility of the ASE-W distribution in
insurance and financial sciences.

8.1. Nikulin–Rao–Robson Test Statistic. So far in the liter-
ature, a number of methods have been proposed to verify
the adequacy and goodness-of-fit of the statistical models
to data. Since the seventies of the last century, researchers
have shown a deep interest to propose new modifications
of goodness-of-fit test. In this regard, Nikulin [42] and
Rao and Robson [41] separately proposed a modification
of the Pearson statistic for complete data known as
Nikulin–Rao–Robson (NRR) statistic. To test the hy-
pothesis H0,

H0: P Xi ≤x􏼈 􏼉 � F(x, ξ)
􏼌􏼌􏼌􏼌

x∈R,ξ� ξ1 ,ξ2 ,...,ξs( )
T( 􏼁

, (32)

where ξ represents the vector of unknown parameters, the
NRR statistic is denoted by Y2, and it is defined as follows.

Suppose observations X1, X2, . . . , Xn are grouped in r

subintervals I1, I2, . . . , Ir, mutually disjoint:

Ij � aj − 1; aj􏽩 􏽩, j � 1, 2, . . . , r. (33)

.e limits aj of the intervals Ij are obtained such that

pj(ξ)|(j�1,2,...,r) � 􏽚
aj

aj− 1

g(x, , ξ)dx, (34)

where
aj

􏼌􏼌􏼌􏼌􏼌(j�1,...,r− 1)
� G

− 1 j

r
􏼒 􏼓. (35)

If

]j � ]1, ]2, . . . , ]r( 􏼁
T
, (36)

is the vector of frequencies obtained by the grouping of data
in these Ij intervals,

]j � 􏽘
n

i�1
1

xi∈Ij􏼈 􏼉
|(j � 1, . . . , r). (37)

.e NRR statistic is given by

Y
2 􏽢ξn􏼐 􏼑 � X

2
n

􏽢ξn􏼐 􏼑 + n
− 1LT 􏽢ξn􏼐 􏼑 I 􏽢ξn􏼐 􏼑 − J 􏽢ξn􏼐 􏼑􏼐 􏼑

− 1
L 􏽢ξn􏼐 􏼑,

(38)

where

X
2
n(ξ) �

]1 − np1(ξ)
������
np1(ξ)

􏽰 ,
]2 − np2(ξ)

������
np2(ξ)

􏽰 , . . . ,
]r − npr(ξ)

������
npr(ξ)

􏽰􏼠 􏼡

T

,

(39)

and J(ξ) is the information matrix for the grouped data
defined by

J(ξ) � B(ξ)
T
B(ξ), (40)

with

B(ξ)|(i�1,2,...,r and k�1,...,s) �
1
��
p

√
i

zpi(ξ)
zμ

􏼢 􏼣
r×s

,

L(ξ) � L1(ξ), . . . , Ls(ξ)( 􏼁
T
,

Lk(ξ) � 􏽘
r

i�1

]i

pi

z

zξk

pi(ξ),

(41)

where In( 􏽢ξn) represents the estimated Fisher information
matrix and 􏽢ξn is the MLE of the parameter vector. .e Y2

statistic follows a chi square χ2 distribution with (r − 1)

degrees of freedom.

8.2. Modified Chi-Squared Test for the ASE-W Distribution.
A modified chi-squared goodness-of-fit test is con-
structed by fitting the Y2 statistic developed in the
previous section to verify if a sample
X � (X1, X2, . . . , Xn)T is distributed according to the
ASE-W model, P Xi ≤x􏼈 􏼉 � GASE− W(x, ξ), with unknown
parameters ξ � (α, c, a)T. .e MLEs 􏽢ξn of the unknown
parameters of the ASE-W distribution are computed
using the insurance claims data. .e statistic Y2 does not
depend on the parameters, we can, therefore, use the
estimated Fisher information matrix In( 􏽢ξn).

To test the null hypothesis H0 that the insurance claims
data came from the ASE-W distribution, we use the Y2

statistic. To conduct the analysis, we use the BB algorithm in
R software to compute the maximum likelihood estimates
given by 􏽢α � 1.24578, 􏽢c � 0.98534, and 􏽢a � 1.24861. For the
insurance claims data, the estimated Fisher information
matrix is

I(􏽢ξ) �

1.257884 0.945112 2.01445

0.94511 0.885471 3.006794

2.01445 3.006794 1.00578

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (42)

.e value of the NRR statistic is given by
Y2 � 26.524781, whereas the critical value is
χ20.05(23 − 1) � 33.92444.

We can see that the value of Y2 statistic is less than the
critical value. .erefore, we conclude that the insurance
claims data follow the ASE-W model.
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8.3. Simulation Study of the ASE-W Distribution Using Y2

Statistic. To test the null hypothesis H0 that the sample
comes from the ASE-W model, we calculate Y2 for 10, 000
simulated samples with sample sizes n� 50, n � 100,
n� 200, and n� 400, respectively. For different significance
levels (ε � 0.01, 0.02, 0.05, 0.1), we calculate the average of
the nonrejections of the null hypothesis, i.e., Y2 ≤ χ2ε(r − 1).
We present the results of the corresponding empirical and
theoretical levels in Table 11. As can be shown, the values of
the empirical levels calculated are very close to those of
their corresponding theoretical levels. .us, we conclude
that the proposed test provides a good fit to the ASE-W
distribution.

8.4. Simulated Distribution of the Y2 Statistic for the ASE-W
Model. .e Y2 statistic follows in the limit chi-squared
distribution with k � r − 1 degrees of freedom. For dem-
onstrating this fact, we compute N � 10, 000 times the
simulated distribution ofY2(􏽢ξ) under the null hypothesisH0
with different values of parameters and r � 10 intervals. We
sketch the plots of the chi-squared distribution with k �

r − 1 � 9 degree of freedom to see the visual representation.
.e histograms of the Y2 statistic versus the chi-squared
distribution with k � 9 degree of freedom are presented in
Figures 11 and 12.

From Figures 11 and 12, we observe that the distribution
of Y2 with different values of parameters and different

Table 11: Empirical levels and corresponding theoretical levels (ε � 0.01, 0.02, 0.05, 0.10).

N� 10000 ε � 0.01 ε � 0.02 ε � 0.05 ε � 0.10
n� 50 0 : 9926 0 : 9841 0 : 9535 0 : 9031
n� 100 0 : 9920 0 : 9830 0 : 9525 0 : 9024
n� 200 0 : 9909 0 : 9811 0 : 9510 0 : 9012
n� 400 0 : 9905 0 : 9805 0 : 9504 0 : 9006
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Figure 11: 􏽢α � 1.5, 􏽢c � 1.5, and 􏽢a � 0.9 (a) and 􏽢α � 1.5, 􏽢c � 0.5, and 􏽢a � 1.2 (b).
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Figure 12: 􏽢α � 0.5, 􏽢c � 1.5, and 􏽢a � 0.5 (a) and 􏽢α � 2.5, 􏽢c � 0.9, and 􏽢a � 2 (b).
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numbers k of grouping cells for different number of equi-
probable grouping intervals and different values of pa-
rameters in the limit follows a chi-squared distribution with
k degrees of freedom within the statistical errors of simu-
lation. .erefore, we can say that the limiting distribution of
the generalized chi-squared Y2 statistic for ASE-W model is
distribution free.

9. Concluding Remarks

In this paper, we used the trigonometric function to in-
troduce a new family of heavy tailed distributions called the
arcsine exponentiated-X (ASE-X) family of distributions.
.e ASE-X is very interesting and provides better fits to the
heavy tailed insurance data. We define a special submodel
called ASE-Weibull (ASE-W) distribution. .e maximum
likelihood is used to estimate the ASE-W parameters. .e
simulation results are obtained using the inversion and
Barzilai-Borwein algorithms, assessing the performance of
the maximum likelihood estimators. We derive two im-
portant riskmeasures called value at risk and tail value at risk
of the ASE-W distribution and perform a simulation study
to prove that the ASE-W distribution has a heavier tail than
the baseline Weibull distribution. A heavy tailed insurance
dataset is analyzed showing that the ASE-W distribution
provides better fits than some other competing models.
Furthermore, the value at risk and tail value at risk measures
are estimated for all competing models based on the in-
surance claims data, proving that the ASE-W distribution
performs well than other its competitors. Furthermore, we
construct a modified chi-squared goodness-of-fit test sta-
tistic for the ASE-W distribution, based on the NRR statistic,
to show its validity in modeling financial data. .e special
cases of Table 1 can be studied in future work. Furthermore,
different classical and Bayesian methods can be employed to
estimate the unknown parameters of these special
submodels.
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