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Urbanization is causing profound changes in ecosystem functions at local and regional scales./e net primary productivity (NPP)
is an important indicator of global change, rapid urbanization and climate change will have a significant impact on NPP, and
urban expansion and climate change in different regions have different impacts on NPP, especially in densely populated areas.
However, to date, efforts to quantify urban expansion and climate change have been limited, and the impact of long-term
continuous changes in NPP has not been well understood. Based on land use data, night light data, NPP data, climate data, and a
series of social and economic data, we performed a comprehensive analysis of land use change in terms of type and intensity and
explored the pattern of urban expansion and its relationship with NPP and climate change for the period of 2000–2015, taking
Zhengzhou, China, as an example. /e results show that the major form of land use change was cropland to built-up land during
the 2000–2015 period, with a total area of 367.51 km2 converted. /e NPP exhibited a generally increasing trend in the study area
except for built-up land and water area. /e average correlation coefficients between temperature and NPP and precipitation and
NPP were 0.267 and 0.020, respectively, indicating that an increase in temperature and precipitation can promote NPP despite
significant spatial differences. During the examined period, most expansion areas exhibited an increasing NPP trend, indicating
that the influence of urban expansion on NPP is mainly characterized by an evident influence of the expansion area./e study can
provide a reference for Zhengzhou and even the world's practical research to improve land use efficiency, increase agricultural
productivity and natural carbon sinks, and maintain low-carbon development.

1. Introduction

As an important part of the global carbon cycle, the ter-
restrial biosphere is affected by urban expansion and climate
change [1–3]. /e trend of global terrestrial net primary
productivity (NPP) is still uncertain [4]. In the context of
climate change, the threat of rapid global urbanization to
terrestrial ecosystem productivity, environment, livelihoods,

and food security has gradually become one of the most
critical issues in the world [5, 6]. /e net primary pro-
ductivity refers to the amount of organic matter accumu-
lated by green plants in unit time per unit area [7, 8]. It is an
important indicator in the determination of the carbon
source, carbon sink health, and sustainable development of
ecosystems and is the main factor regulating ecological
processes. It also helps in assessing the carrying capacity of
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ecosystems [9–11]. Terrestrial vegetation provides a great
deal of food, fuel, and building materials for human beings;
therefore, in the context of global change, more and more
researchers are beginning to pay attention to the trend of
NPP in terrestrial ecosystems [12].

With the rapid growth in the world economy, urbani-
zation is increasing. Urbanization is a complex process
involving population transfer, land use change, urban
function change, and urban form [13, 14]. Urbanization-
induced changes may have a significant impact on the
ground and thus affect the structure and function of eco-
systems, as well as regional climates [15–17]. /erefore,
studying the response of NPP to urban expansion and cli-
mate change can provide a better understanding of the
function of ecosystems, which is important for balancing the
relationship between development and environment and for
the rational use of natural resources [18–20]. /e NPP is an
important ecological indicator for judging sustainable de-
velopment and can help assess the carbon budget of ter-
restrial ecosystems [9, 21, 22]./e NPP has been widely used
to monitor the state of carbon cycles in regions of different
sizes [23–25]. Changes in NPP over a specific period can
help quantify vegetation growth, which is related to the
amount of vegetation and the environment in which it
grows. Different models have been used to enrich the re-
search results provided by NPP trends, primarily at a global
level [26, 27], at a national level [28], and in ecosensitive
areas [22, 29]. By comparing annual and seasonal NPP
estimates from 15 global models in latitude zones and bi-
omes, Cramer et al. [26] found that NPP estimates vary over
time and space. Most previous research studies have been
conducted at the global, national, or other macrolevels;
studies at the city level are limited. /e impact of urbani-
zation on terrestrial ecosystems has been assessed based on
the NPP indicator [30–32]. In addition, model estimation is
a convenient method for determining NPP, as field mea-
surements require significant human and material resources
and data on urban areas, which are difficult to obtain. With
the development of remote sensing technology, the surface
information of any region can be comprehensively and
continuously obtained [26, 33]. To analyze the impact of
urban expansion on NPP in the past few decades, a long-
term NPP time series with a high time resolution is required.
/e spatial distribution of NPP in urban areas can be de-
termined using data from the moderate resolution imaging
spectroradiometer (MODIS), with proven accuracy. /e
spatial changes in NPP in urban areas can thus be better
reflected.

/e response of NPP to urban expansion and the factors
influencing NPP have been widely studied [34, 35]. Most
studies have shown that urban landscape and land use
changes lead to carbon loss [36] and that land use changes
have a negative impact on urban NPP [37]. However, these
studies employed two time nodes when quantifying the
impact of land use change on NPP and only few studied the
spatialization of land expansion by urbanization and the
impact of land expansion on NPP from a time and space
perspective. Several scholars have relied on DMSP/OLS
night light data to carry out a wide range of spatial research,

such as those on population migration [38], anthropogenic
carbon emissions [39, 40], and night lighting data partic-
ularly for determining built-up land and other aspects for a
wide range of applications [41, 42], with good results.
However, these studies were limited to the time period from
1992 to 2013; only few scholars have connected MODIS and
NPP-VIIRS (Visible Infrared Imaging Radiometer Suite
(VIIRS) onboard the Suomi National Polar-Orbiting Part-
nership (Suomi NPP) spacecraft) to simulate urban ex-
pansion [43]. Appropriate time series updates are thus
required. /e factors influencing NPP include land use
change, vegetation, climate, and topography. Although the
factors influencing NPP have been widely studied, partic-
ularly the correlation between NPP and climate factors, the
studies have primarily focused on a single dynamic change
perspective. In other words, the correlation between climate
change and NPP change was analyzed by establishing a
relationship between them, with few comprehensive studies
on the impact of land expansion combined with climate
factors on NPP./erefore, quantifying the impact of human
activities and climate change on NPP is an important step in
formulating sustainable development of urban ecosystems in
the context of climate change and human activities.

Henan province is located in central China, has a
temperate continental climate, and is suitable for multicrop
growth./is province is known for its agriculture, grain, and
population. Zhengzhou is the capital of Henan province and
is China’s national center. In recent years, with the change in
national policies, urbanization and industrialization have
been taking place at a rapid rate, leading to an increase in the
number of urban areas and population explosion. /e urban
landscape in Zhengzhou has undergone rapid changes,
which has affected the local ecological environment. In this
study, we used relevant data to analyze the response of NPP
to urban expansion and climate change in Zhengzhou
during the period of 2000–2015. We provide a reference for
urban land use and ecological environment development in
the regional centers of developing and agricultural countries.
/is study can fill the gaps discussed above, including
broadening the time series of night lighting data, innova-
tively combining two kinds of night lighting data to simulate
the change of urban construction land, and comprehensive
studies on the impact of land expansion combined with
climate factors on NPP. Strong data and new method will
enhance the accuracy compare with previous studies. De-
tailed contents of this research include the following: (1)
analysis of land use type changes and NPP changes; (2)
analysis of the relationships between NPP and climate
factors; (3) analysis of changes in land use intensity and
urban built-up area; (4) exploration of the impact of urban
built-up land on NPP change.

2. Materials and Methods

2.1. StudyArea. Zhengzhou is the capital of Henan province,
bordering the Yellow River in the north (Figure 1). It is
located at 112°42′–114°14′E and 34°16′–34°58′N. /e region
has a warm temperate continental climate, with an annual
precipitation of approximately 639.2mm and an average
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annual temperature of 14.2°C. /e dominant striped vege-
tation is the temperate deciduous evergreen mixed broad-
leaved forest belt, and the distribution of the flora is in the
middle north temperate zone and east Asia. By 2018,
Zhengzhou had a total area of 7446 km2, a built-up land area
of 830.97 km2, a total population of 101.36 million, and a
total GDP of 101.433 billion yuan. In recent years, due to
policy guidance, urbanization in Zhengzhou has been ac-
celerating, and the urbanization rate in 2018 reached the top
of the national rate of growth, at 1.59%. /is rapid ur-
banization process is accompanied by several urban land
development projects; land use change is thus inevitable.

2.2. Data Sources. /e datasets used in this study and data
preprocessing conducted are as follows:

(1) /e land use data for 2000, 2005, 2010, and 2015 in
period of 2000–2015 were derived from the Resource
and Environment Data Center of the Chinese
Academy of Sciences (http://www.resdc.cn/). /e
socioeconomic data were derived from the statistical
yearbook of Henan Province and Zhengzhou City
(Henan statistics bureau Henan general team of

investigation under the NBS, 2001–2016; Zhengzhou
statistics bureau Zhengzhou general team of inves-
tigation under the NBS, 2001–2016)./e climate data
between 2000 and 2015 in Zhengzhou was extracted
from the whole 745 meteorological stations, which
were obtained from the China meteorological data
network (http://data.cma.gov.cn/).

(2) /e MODIS NPP data for the period of 2000–2015
were downloaded from the Numerical Terradynamic
Simulation Group (NTSG) of the University of
Montana (http://www.ntsg.umt.edu/). In general,
the accuracy of MODIS NPP estimates has been
proven to be consistent with the NPP observed on-
site [44]. /e dataset is in TIF format with a reso-
lution of 30 arcsec (approximately 1 km). We
extracted the Chinese NPP from the global map and
excluded nonvegetation areas.

(3) Night lighting data for the period of 2000–2015 and
DMSP-OLS night stable light (NSL) data for the
period of 2000–2013 were obtained from NASA’s
(http://ladsweb.nascom.nasa.gov) data archiving and
distribution system. /e stable light data include
lights from cities, towns, and other places with
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Figure 1: /e location of study area.

Complexity 3

http://www.resdc.cn/
http://data.cma.gov.cn/
http://www.ntsg.umt.edu/
http://ladsweb.nascom.nasa.gov


persistent light sources, with the background noise
eliminated. /e NPP-VIIRS NSL data for the period
of 2014–2015 were obtained from the National En-
vironmental Information Center website (https://
www.ngdc.noaa.gov). Prior to data processing, the
monthly average data of 2014 and 2015 from January
to December were combined into annual data
through ENVI 5.1. NPP-VIIRS NSL data processing
included noise cancellation and continuity correc-
tion of OLS night light data using DMSP-OLS.
First, the DMSP-OLS night light data of 2013 were
extracted as a dark background mask, and the mask
was then used to remove unexpected noise from the
NPP-VIIRS night lighting data for 2014 and 2015.
Second, according to Li et al. [45], the average light
value (DN) of the NPP-VIIRS night light data is
exponentially correlated with the DN value of
DMSP-OLS night light data. Accordingly, we can
obtain the corrected NPP-VIIRS night light data./e
formula is as follows:

Y � a∗Xb. (1)

After further processing, equation (1) can be converted
to the following:

X � e
((lnY−ln a)/b)

. (2)

Here, Y represents the DN value of DMSP-OLS night
light data, X represents the DN value of NPP-VIIRS
night light data, and a and b are coefficients.

(4) /e temperature and precipitation data in the 2000–2015
time series were derived from the Resource Environ-
mental Science Data Center of the Chinese Academy of
Sciences (http://www.resdc.cn/doi/doi.aspx?doiid�32).

2.3. Methods

2.3.1. NPP Trend Analysis. /e trend of change in NPP at
the cell level is analyzed and predicted using a one-way linear
regression analysis, and the formula is as follows:

Slope �
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Here, n represents the number of years (n� 16), NPPi is the
NPP for year i (i� 1, 2, 3, . . ., 16), and slope is the slope for theNPP
at the individual cell level of the slope. If the slope>0, an increasing
trend is indicated; the greater the value, the more evident the
increasing trend. If the slope<0, a decreasing trend is indicated; the
lower the value, the more evident the decreasing trend.

2.3.2. Correlation Analysis. /e trend of change in NPP and
the temperature and precipitation correlation coefficient on
the space-time scale can be calculated using the Pearson

correlation coefficient method. /e correlation coefficient
(Rxy) is calculated as follows:

Rxy �
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Here, n is the year serial number, xij is the value of the
NPP in the first year of the j cell, and xj is the average of the
NPP j cell over 16 years, i.e., from 2000 to 2015. Similarly, yij
is the value of the first j cell of temperature or precipitation,
and yj is the average of the first j cell of temperature or
precipitation over the 16 years of 2000–2015. To check the
validity of the model, a p-test was used, and the tendencies
were classified into 3 categories: highly significant, signifi-
cant, and no significant change.

2.3.3. Urban Built-Up Land Expansion Simulation. It is of
great significance to understand the spatial expansion trend
of urban built-up land for guiding the rational expansion of
urban land [46–51]. Night light data is a common kind of
remote sensing data analyzing the city scale [52–54]. /e
average night light data constitute a cloudless composite
map generated by the DN value for each time period, with a
spatial resolution of 1 km. /e night lighting data from
DMSP-OLS provides a tool for monitoring urban sprawl
from time and space perspectives [55, 56]. /e city area is
determined by the threshold of the DN. If the DN of the
region is greater than the threshold, the region is defined as a
city. Different scenarios for the total urban area are obtained
by changing the threshold of DN. When the simulated total
urban areas are close to each other, the threshold of DN is
noted in the urban land use census data and applied to the
process of measuring urban expansion. /e recorded night-
time light image data were used as an indicator of urban
expansion.

2.3.4. Land Use Intensity. In recent years, Zhengzhou has
experienced rapid urbanization, with a significant growth in
economic development, leading to an increase in population
and resource consumption. /e land use intensity has
changed dramatically. In this study, seven indicators were
selected to measure the change in land use intensity: urban
population, GDP, industrial output, agricultural output,
fixed asset input, quantity of shipments, and electricity
consumption.

3. Results

3.1. Changes in Land Use Types. To determine the land use
change in Zhengzhou during the period of 2000–2015, the
land use transfer matrix for the period was obtained (Ta-
ble 1). Table 1 shows that the transfer of cropland to built-up
land is the main form of land use transfer; the area is ap-
proximately 367.51 km2, accounting for approximately
51.08% of the total land use transfer area. Water area is the
second largest type of land occupied by cropland in addition
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to built-up land, with an area of approximately 103.77 km2;
the water area increases significantly. Cropland is not only
the main type of land transfer out but also the main land
receiver, with grassland and built-up land being transferred
to areas of 32.37 km2, 31.52 km2, and 43.28 km2,
respectively.

Figures 2(a) and 2(b) show the spatial distributions of the
type of unchanged land and the type of transferred land in
Zhengzhou City during the period of 2000–2015. Figure 2(a)
shows that cropland was the main land use type in
Zhengzhou and was spread throughout the region./e built-
up land was concentrated in the central and northern re-
gions in the form of small patches scattered in some parts.
Ecological land was mainly distributed in the western part of
the region in the form of large patches, and the water area
was mainly distributed at the borders of the city in the
northern area in the form of a ribbon. According to the land
transfer situation (Figure 2(b)), eight land use types were
selected in the order from highest to lowest use to show the
spatial distribution of land use transfer; the total area of the
eight land transfer types accounted for 92.07% of the total
area of the land transfer. Among them, the transfer from
cropland to built-up land was mainly distributed in the
central urban area, as a result of urban land expansion. /e
transfer from cropland to water area was mainly distributed
around the land along the waters.

3.2.Changes inNPPof 2000–2015. Figure 3(a) shows that the
NPP in general was distributed in areas other than the built-
up land and water area, showing a generally increasing trend.
Among them, the low value of NPP was mainly distributed
in the eastern, southwestern, and southern border areas of
Zhengzhou City in the form of small patches, and the areas
with a high NPP value were mainly distributed throughout
the city in the form of large patches. As shown in Figure 3(b),
the value of the NPP slope ranges from negative to positive;
the slope value represents the change in NPP itself in the
period of 2000–2015. /e positive values indicate an in-
creasing trend in NPP, whereas negative values indicate a
decreasing trend in NPP. /e NPP growth area was mainly
concentrated in the southern and northwestern regions of
Zhengzhou, wherein the growth trend was stronger in some
parts of central southern area. /e NPP with a downward
trend was mainly distributed in the areas surrounding the
development of built-up land, which were concentrated in

the northern and northeastern regions of Zhengzhou City.
/e average slope of the NPP trend of 2000–2015 was 0.55,
indicating that the NPP value in Zhengzhou showed an
overall increasing trend.

3.3. Relationships between NPP and Climate Factors.
Based on the relevant analysis, the correlation coefficient
map of precipitation, temperature, and NPP was obtained,
as shown in Figures 4(a) and 4(b). /e p-value tests in-
dicated that only a small percentage of the areas passed the
p> 0.05 significance test for both negative and positive
correlations of both precipitation and temperature
(Figures 3(c) and 3(d)). Overall, the average phase rela-
tionship values (R) of precipitation and temperature are
0.267 and 0.020, respectively. Figure 4(a) shows the dis-
tribution of the coefficient R between precipitation and
NPP for the period of 2000–2015, in which positive values
account for 96.38% and negative values account for 3.62%.
/e positive coefficient indicates that precipitation has a
positive correlation with NPP, that is, the increase in
precipitation can promote the growth of NPP to some
extent. /e positive values were observed in most parts of
the city in the form of large patches, wherein the high
values of the positive coefficient were mainly observed in
the central and northwest regions. /e negative values,
which represent a negative correlation between precipi-
tation and NPP values, were primarily observed
throughout the region in the form of small patches.
Figure 4(b) shows the distribution of the correlation co-
efficient between temperature and NPP for the period of
2000–2015, with positive values accounting for 56.57% and
negative values accounting for 43.43%. /e positive values
indicate a positive correlation between temperature and
NPP, that is, an increase in temperature promotes the
increase of NPP to a certain extent. /e positive values are
observed mainly in the form of small patches in most areas
of the whole region, with higher positive values concen-
trated in the eastern and central areas. /e negative values
indicate a negative correlation between temperature and
NPP, that is, an increase in temperature will inhibit the
growth of NPP to a certain extent. /ey are primarily
observed in the western and northwest areas in the form of
small patches and in the form of large plaques that are
densely distributed in the central and central northern
areas.

Table 1: Land transfer matrix between 2000 and 2015 (km2).

2000
2015

Cropland Forest Grassland Water area Built-up land Unused land Total
Cropland 4475.95 30.89 33.07 103.77 367.51 0.14 5011.32
Forest 32.37 709.01 9.20 1.89 11.27 0.16 763.89
Grassland 31.52 11.08 645.12 1.36 3.32 0.00 692.39
Water area 19.99 2.06 0.47 166.54 11.69 0.00 200.76
Built-up land 43.28 0.89 0.87 1.84 801.72 0.03 848.62
Unused land 0.09 0.15 0.05 0.10 0.43 2.61 3.42
Total 4603.19 754.06 688.77 275.50 1195.94 2.94 7520.41
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3.4. Change in Land Use Intensity and Urban Built-Up Area.
Land use intensity can reflect the rates of energy emissions
and socioeconomic development to a certain extent, and it
has been documented that socioeconomic development
indicators can be a good indicator of land use intensity
[57, 58]. We selected seven main indicators to reflect the
land use intensity of Zhengzhou City and calculated the ratio
between typical years to analyze the changing trends (Ta-
ble 2). According to Table 2, the total population increased
steadily from 2000 to 2015, but the growth amount was
greater, and the growth rate showed a steady downward
trend. /e increase in GDP was most pronounced, in-
creasing from 73.802 billion yuan to 731.152 billion yuan.
Both industrial output and agricultural output increased
significantly, particularly in ratios of 2.99% and 1.75%, re-
spectively, between 2005 and 2010. From 2000 to 2015, the
fixed asset investment increased from 25.839 billion yuan to
628.80 billion yuan, and the increase during the period of
2005–2010 was the highest compared with the changes
during different time periods. /e quantity shipped in-
creased significantly overall, from 15,781.00 million tons to
24,639.00 million tons, but decreased during the period of
2005–2010 by a ratio of 0.87.

Figure 5 show the distribution of urban built-up land in
the typical years ranging from 2000 to 2015 in Zhengzhou.
From a spatial point of view, the urban built-up land was
mainly distributed in the central and northern parts of the
city, which are the most developed parts of the urban
economy. Urban built-up land expanded around the
northern part of the city during the period of 2000–2015, and
the area of urban built-up land increased gradually, with the
fastest growth reported in the period of 2010–2015.

3.5. Impact of Urban Built-Up Land on NPP Change.
Figure 6 shows the relationship between NPP and urban
built-up land expansion. /e correlation between NPP and
urban built-up land expansion was relatively strong, with

more areas showing a positive correlation. /e areas with
negative NPP value were mainly distributed in the expansion
area of the central city, indicating that the expansion of
urban built-up land inhibits the NPP./e areas with positive
values were distributed in most parts of the region, indi-
cating that the impact of urban expansion on NPP is mainly
concentrated in the expansion areas.

4. Discussion

/e rapid expansion of urban areas has significantly affected
regional ecosystems, making it extremely important to
quantify the impact of urban expansion and climate change
on NPP. Using land use data, night light data, NPP data,
climate data, and a series of socioeconomic data, we explored
the expansion of urban built-up land in Zhengzhou City
during the period of 2000–2015 and the response of NPP to
urban expansion and climate change. /e study provides a
reference for land managers to formulate land policies to-
wards low carbon and sustainable development.

Built-up land expansion is the main form of land use
change in Zhengzhou and is quite common in China, as the
country is undergoing rapid urbanization. However, the
land use changes in China and those in Europe [59, 60], the
United States [61], Australia [62], and other developed
countries that have completed the process of urbanization
are different. As Zhengzhou is located in the region with a
general population and economic level, cropland and eco-
logical land are the main land use types, and land use
transformation is more characteristic, compared with the
northwest, inland areas, and other underdeveloped areas of
China. Cropland being occupied by built-up land is the main
change in land use types that occurs in Zhengzhou, which is
mainly due to the social and economic development. /is
result is consistent with previous studies on land use change
[63, 64]. From 2000 to 2015, the population increased to
9.569 million, and the urbanization rate in Zhengzhou in-
creased from 55.1% to 69.7%. To accommodate more urban
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Figure 4: Spatial distribution of the correlation coefficients between NPP and precipitation (a) and temperature (b).
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residents and under the influence of the growing real estate
market [65], urban areas expanded rapidly during the study
period. Although the population in rural areas has been
significantly reduced, idle rural settlements are widely dis-
tributed, and land consolidation can take a long time. As
cropland accounts for more than 80% of the area in
Zhengzhou and is distributed in various places, the

expansion of urban land requires the occupation of a large
area of cropland. /e spatial distribution of land transfor-
mation, shown in Figure 2, proves our conclusion that
socioeconomic development is the main driving force of
change in land use type. /e economic level of Zhengzhou
city shows a characteristic growth from center to periphery,
and the land use change shows the same trend. In other
words, the land circulation in the developed areas of the
urban economy is more intensive.

Zhengzhou has experienced rapid urbanization in recent
years, not only bringing about a growth in the economy and
mass population, capital, and technology but also leading to
a rapid increase in land use intensity. In this study, to
represent land use intensity, we selected seven indicators,
which showed a strong correlation between land use in-
tensity and economic development level. /e land use in-
tensity gradually enhanced with the growing economy,
which can be attributed to the regional differences in eco-
nomic and natural resources between different periods. /e
differences in the economy and resources are consistent with
the study conducted by Yang et al. [66], which showed that
urban land use intensity increases with the increase in the
level of urbanization. According to our research, the change
in land use intensity has a significant effect on NPP. /e areas
with high land use intensity usually exhibit high levels of
economic development and lower NPP values because such
areas always have a large proportion of artificial vegetation and
land, which can also explain the lower NPP values. In addition,
areas with more natural and seminatural land use tend to have
lower land use intensity [67], where cropland, forests, and
grasslands account for a large proportion.With ecological land
being increasingly occupied, policies andmeasures to promote
intensive land use should be implemented to adjust land use
intensity and to match the socioeconomic situation with the
local condition [68]. Besides socioeconomic conditions, cli-
mate change [69], ecological conditions, and crop structures
affect land use intensity to some extent.

Second, to correct and integrate the two types of night
light data from different sources, we performed an expo-
nential regression between MODIS-OLS night light data for
2013 and NPP-VIIRS night light data for 2014 and 2015 after
noise processing and then obtained the revised NPP-VIIRS
night light data. /e reliability of this method has been
verified [39, 70]. In spatial simulations of energy-related
carbon emissions, the night light data obtained from DMSP-
OLS and NPP-VIIRS are suitable for simulating urban land

Table 2: Change in land use intensity index in Zhengzhou during the period of 2000–2015.

Urban
population/10,000

GDP/hundred
million

Industrial
output/
hundred
million

Agricultural
output/hundred

million

Fixed
assets/hundred

million

Quantity
shipped/tons

Electricity
consumption/100
million kWh

2000 259.11 738.02 1080.24 73.18 258.39 15781.00 78.7
2005 424.13 1660.60 2489.33 126.22 820.00 23750.00 140.6
2010 551.00 4040.89 7452.60 221.43 2756.98 20636.00 356
2015 666.91 7311.52 15531.27 276.58 6288.00 24639.00 352
2000–2005 1.64 2.25 2.30 1.72 3.17 1.50 1.79
2005–2010 1.30 2.43 2.99 1.75 3.36 0.87 2.53
2010–2015 1.21 1.81 2.08 1.25 2.28 1.19 0.99

0 20 40
km

Year

N

2000
2000–2005

2005–2010
2010–2015

Figure 5: Urban built-up land sprawl during the period of
2000–2015, as detected using night-time light data.

0 20 40
km

Correlation coefficients

N

–0.57–0.00
0.01–0.32
0.33–0.55

0.56–0.71
0.72–0.88

Figure 6: Spatial distribution of the correlation coefficients be-
tween NPP and night-time light data.

8 Complexity



expansion, and there is an innovation in the integration of
the two types of data and the updating of time series. /e
urban expansion simulated by night light data effectively
reflected the land change distribution in Zhengzhou from
2000 to 2015, which also can be attributed to the economic
development and urban functional planning.

Compared with previous studies, the NPP simulation
performed in this study has several advantages. /e NPP es-
timates fromMODIS have been validated to be consistent with
the NPP values observed in the field [44, 71]. Exist studies show
that, for urban system, the MODIS NPP still has a good ap-
plication [72, 73]. As a result, the NPP simulations in previous
studies have been validated, although more field observations
are required for further research to improve the NPP simu-
lation models for China (particularly in the west, where the
density of field observations is low). /e effects of global
warmingwere widely demonstrated in China during the period
of 2000–2015, with regions experiencing a rise in temperature
accounting for 52.99% of that for the whole country. Although
an increase in temperature can promote NPP to a higher extent
than an increase in soil respiration, higher temperatures can
also contribute to steaming and drought, leading to low veg-
etation productivity [74], particularly in an environment with
insufficient water supply. In addition, a continuous increase in
temperature will lead to increased soil respiration [75, 76] and
decrease the NPP. Continued global warming will ultimately
damage carbon sequestration in terrestrial ecosystems.
/erefore, in China, reducing carbon emissions is urgently
required for green, low-carbon development. Zhengzhou,
which is an emerging and fast-growing city, should respond
positively to the country’s call for low-carbon green devel-
opment. Moderate precipitation conditions are essential for
vegetation growth; if the precipitation is too high or too low,
vegetation growth will be affected, thus reducing NPP. For
example, rainfall can increase cloud cover and thus reduce solar
radiation, which is critical for vegetation growth [77]. Further
water supply may create an aerobic environment in the root
area, reduce soil nutrients [78], and inhibit vegetation growth.
With the increase in temperature and a decrease in precipi-
tation, ecological pressure will increase under primitive fragile
environmental conditions [79, 80]. However, rising tempera-
turesmay also cause other ecological problems, such asmelting
glaciers, extreme climate, and disease, which require enhanced
ecological protection. Owing to extreme weather conditions,
the precipitation in Zhengzhou city has been insufficient in
recent years, and water resources are relatively scarce. Pre-
cipitation is a key factor for the growth of vegetation. /e
government should strengthen ecological protection.

For the effect of urban built-up land expansion on NPP,
the impact of urban built-up land expansion on NPP may be
positive or negative, depending on socioeconomic and
biophysical factors [81, 82]. /e results in this study show
there is negative relationship between urban built-up land
and NPP at edge of the urban expansion areas, which means
that the urban built-up expansion can damage the vegetation
productivity in some extent. /is is because with the con-
tinuous expansion of built-up land, the composition and
quantity of vegetation decreased, then the net primary
productivity of vegetation will decrease, which is consistent

with the existing study [83]. While on the other areas, the
relationships between urban built-up land and NPP are
positive on the whole. /e negative impact of urban ex-
pansion on NPP will disturb carbon balance to some extent.
In addition, in Zhengzhou, human activities, such as de-
sertification, loss of agricultural use, and deforestation,
hamper green development; most of these activities may also
disrupt the carbon balance. /erefore, government de-
partments should take effective environmental protection
measures to strictly prohibit such activities.

5. Conclusions

Unlike previous studies, this study first simulated urban ex-
pansion from night light data by integrating the night light data
obtained from DMSP-OLS and NPP-VIIRS and explored the
response of NPP to urban expansion and climate change. /is
study can serve as a reference for urban green development.

We found that cropland is the main land use type in
Zhengzhou City, and from 2000 to 2015, the land transfer of
cropland to built-up land was the main pattern of land use
change, with a total area of 367.51 km2 being converted; this
was common in most cities of China. Areas other than the
built-up land and water area exhibited a generally increasing
NPP trend; these areas were mainly distributed in the
southern and northwest regions of Zhengzhou. Areas around
the development of built-up land exhibited a downward
trending NPP. Both precipitation and temperature had ob-
vious effects on NPP. /e average correlation coefficients
between temperature and NPP and precipitation and NPP
were 0.267 and 0.020, respectively, indicating that an increase
in temperature and precipitation can promote NPP, despite
significant spatial differences. Land use intensity gradually
increased with economic growth. In terms of urban expan-
sion, Zhengzhou expanded into the central city, and urban
built-up expansion was mainly distributed in the central and
northern parts of the city. From 2000 to 2015, most expansion
areas exhibited an increasing NPP trend, indicating that the
influence of urban expansion on NPP is mainly characterized
by the evident influence of the expansion area.
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