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A long-standing problem in biology, economics, and social sciences is to understand the conditions required for the emergence
and maintenance of cooperation in evolving populations. *is paper investigates how to promote the evolution of cooperation in
the Prisoner’s Dilemma game (PDG). Differing from previous approaches, we not only propose a tag-based control (TBC)
mechanism but also look at how the evolution of cooperation by TBC can be successfully promoted. *e effect of TBC on the
evolutionary process of cooperation shows that it can both reduce the payoff of defectors and inhibit defection; although when the
cooperation rate is high, TBC will also reduce the payoff of cooperators unless the identified rate of the TBC is large enough. An
optimal timing control (OTC) of switched replicator dynamics is designed to consider the control costs, the cooperation rate at
terminal time, and the cooperator’s payoff. *e results show that the switching control (SC) between an optimal identified rate
control of the TBC and no TBC can properly not only maintain a high cooperation rate but also greatly enhance the payoff of the
cooperators. Our results provide valuable insights for some clusters, for example, logistics parks and government, to regard the
decision to promote cooperation.

1. Introduction

Animal Dispersion in Relation to Social Behavior was pub-
lished by Wynne-Edwards and looked specifically at the
“Evolution of cooperation” [1]. Why should an individual
help another person who is a potential competitor in the
struggle for survival? *is question is listed in “Science”
Magazine as one of the 25 core problems of the 125 scientific
challenges proposed by scientists from all over the world.

*e evolution of cooperation is an enduring conundrum
in biology, mathematics, and social sciences. Natural se-
lection opposes cooperation unless some mechanisms are at
work to promote the evolution of cooperation. *e Pris-
oner’s Dilemma game (PDG), which represents an extreme
case, has emerged as one of the most promising mathe-
matical areas in the study of cooperation.

In the PDG, two players simultaneously decide whether
to cooperate (C) or to defect (D). If one player cooperates,

the other player can choose between cooperation which
yields R (the reward for mutual cooperation) or defection
which yieldsT (the temptation to defect). On the other hand,
if one player defects, the other player can choose between
cooperation which yields S (the sucker’s payoff) or defection
which yieldsP (the punishment formutual defection), where
T>R and P> S. *e donor-recipient game (DRG) is a
special case of the PDG. In the DRG, a cooperator is
someone who pays a cost, c, for another individual to receive
a benefit, b. A defector has no cost and does not deal out
benefits. By comparing the PDG and DRG, we obtain
R � b − c,T � b, S � − c, and P � 0. If the game is only played
once, then each player gets a higher payoff from D than from
C, regardless of what the other player does. So, natural
selection implies competition and, therefore, opposes co-
operation unless a specific mechanism is at work.

Based on Hamilton’s rule [2], natural selection can favor
cooperation if the donor and the recipient of an altruistic act
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are genetic relatives [3–7]. *e donor may preferentially
donate a benefit to the recipient through “kin recognition”.
Explanations of cooperation between nonkin include “direct
reciprocity” [8–13], “indirect reciprocity” [14–16], “network
reciprocity” [17], “group selection” [18], “optional partici-
pation mechanism” [19, 20], and “punishment mechanism”
[21–23].

Direct reciprocity was proposed by Trivers [8] and
developed as a mechanism for the evolution of cooperation
[9, 24]. In the repeated Prisoner’s Dilemma, the same two
individuals repeatedly encounter each other for some
rounds. If one cooperates now, the other may cooperate
later. Hence, he or she might cooperate [10]. Axelrod and
Hamilton proposed a model of the evolution of coopera-
tion based on the iterated Prisoner’s Dilemma [11]. In two
computer tournaments, Axelrod discovered that the
“winning strategy” was the simplest of all, tit-for-tat (TFT).
TFT is a program where one player uses C on the first move
of the game and, then, plays whatever the other player
chose in the previous move. *is simple concept captured
the fascination of many enthusiasts of the repeated Pris-
oner’s Dilemma, and a number of empirical and theoretical
studies were inspired by Axelrod’s groundbreaking work
[12, 13, 25].*e presence of the decoy increased willingness
of volunteers to cooperate in the first step of each game,
leading to subsequent propagation of such willingness by
(noisy) tit-for-tat [25]. Reference [26] pointed that resilient
cooperators could sustain cooperation indefinitely in the
finitely repeated Prisoner’s Dilemma. *e Prisoner’s Di-
lemma experiment showed that the termination rules and
the (expected) length of the game significantly increased
cooperation in [27].

Indirect reciprocity does not rely on repeated encounters
between the same two individuals. An individual can es-
tablish a good reputation by helping someone which can
increase the chance of receiving help from others. Indirect
reciprocity has substantial cognitive demands. For example,
language is needed to gain the information and spread the
gossip associated with indirect reciprocity so that only
humans seem to engage in the full complexity of the game.
Differing from indirect reciprocity based on reputation, kin
can be recognized through familiarity based on environ-
mental or learned cues or through pattern matching based
on some inherited trait. If individuals display a heritable
marker or a tag, they preferentially cooperate with partners
who share their own marker. So, tag-based donation does
not have the substantial cognitive demands that a reputation
mechanism based on indirect reciprocity has. Cooperation
can also arise when individuals donate to others who are
sufficiently similar to themselves in some arbitrary char-
acteristic. Such a characteristic, or “tag,” for example, a green
beard [28, 29], can be observed by others. Hamilton illus-
trated how this mechanism worked even when individuals
were not genealogical kin [2]. *is is known as the green
beard effect. For tag-based donations, it is not necessarily
required to remember past encounters. In the recent years,
the green beard effect has become a favorite topic among
both evolutionary biologists and sociologists [30–36]. For
example, Tian et al. and Tian et al. [30, 31] proposed Vcash as

a reputation framework for identifying denial of traffic
service to resolve the trustworthiness problem, where the
result of verified traffic event notification acted as a “tag”.
Taylor and Nowak proposed nonuniform interaction rates
(interaction rates dependent on the strategies) that allowed
the coexistence of cooperators and defectors in the Pris-
oner’s Dilemma [37]. *e analytical models of evolution of
cooperation were given when nonuniform interaction rates
were introduced [38]. Both“kin recognition” and “tag-based
donation” lead to nonuniform interaction rates.

By combining evolutionary processes with differential
equations, the links between stability and optimization have
been researched and a mathematical framework has been
built [39, 40]. In multiagent systems, an individual is
regarded as an agent who autonomously regulates his be-
havior according to his benefit. Agents play games with their
neighbors through local interaction. *e evolution of co-
operation is an adaptive coordinated control process which
is a controllable, intelligent, and autonomous decision
process. From the perspective of evolutionary games, the
following objectives, inter alia, have been achieved through
the designing of the control law: optimizing individual cost
function [39], designing consensus control of stochastic
multiagent systems [41], and promoting the evolution of
cooperation in social dilemmas [23, 38].

Motivated by the abovementioned discussion, through
combining direct reciprocity, indirect reciprocity, tag-based
donation, and optimal control theory, a tag-based control
(TBC) is proposed. *e goal of this paper is to study the
feasibility of promoting cooperation by TBC and designing
an appropriate identified rate for operators. As part of this,
we discuss the different effectiveness and drawbacks between
by identifying cooperation and by identifying defection for
promoting the evolution of cooperation. Using the optimal
control theory, we examine whether an operator should
design TBC mechanisms for the evolution of cooperation or
give up TBC temporarily for increasing the group’s payoff.
We show that an operator can design an optimal timing
control (OTC) to optimize the control costs, the cooperation
rate, and the cooperator’s payoff.

*e main contributions of this paper are as follows. (1)
For the first time, a TBC that promotes the evolution of
cooperation in the Prisoner’s Dilemma is proposed. (2)
Advantages and disadvantages of identifying cooperation
and identifying defection in TBC are investigated. (3) An
OTC is designed to better promote cooperation rates and
greatly enhance the group’s payoff. (4) From a research
standpoint, this work contributes to evolutionary game
theory and optimal control theory.

*e paper is organized as follows. In Section 2, we obtain
the payoff matrix and the replicator dynamics of the Pris-
oner’s Dilemma with TBC. By applying the results of Section
2, we discuss the problem of evolution of cooperation in the
Prisoner’s Dilemma with TBC in Section 3. In the next two
sections, the optimal TBC is designed. We design the op-
timal identified rate of promoting cooperation in Section 4.
*e effectiveness of TBC is illustrated and an OTC is given in
Section 5. We provide some concluding remarks and dis-
cussion in the last section.
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2. The Replicator Dynamics of the Prisoner’s
Dilemma with TBC

In the Prisoner’s Dilemma game, two individuals can each
either cooperate (C) or defect (D). *e payoff matrix of the
Prisoner’s Dilemma is as follows:

(1)

where

T>R>P> S, (2)

2R>T + S. (3)

No matter what the other does, the selfish choice of
defection yields a higher payoff than cooperation, so a player
will choose defection no matter whether his opponent
chooses cooperation or defection. However, if both defect,
both get P rather than the larger value of R that they both
could have gotten if they had both cooperated. In other
words, if both defect, both do worse than if both had
cooperated. Hence, the game poses a dilemma. In repeated
Prisoner’s Dilemma games, if constraint (3) cannot be
satisfied, the social efficiency that all players always choose
cooperation is less than that they agree to choose cooper-
ation and defection in turn.

Let Ω � 1, 2, . . . , N{ } be a group of game participants,
where N is a sufficiently large natural number. Consider
the symmetric static games of complete information be-
tween two individuals. *e pure strategy set for each
individual in group Ω is denoted by Λ′ � C, D{ }. For
notational convenience, we will label every individual’s
pure strategies by positive integers. Hence, the pure-
strategy set of each individual is written as Λ � 1, 2{ }. A
vector of pure-strategy profile is denoted as s � s1, s2􏼈 􏼉,
where si is a pure strategy for individual i. *e pure
strategy space is Λ × Λ, where Λ × Λ is the Cartesian
product of the pure strategy set Λ. A probability distri-
bution (x, y) over the pure-strategy set Λ of an individual i

is defined as a hybrid strategy for the individual i, where x

and y are the probabilities assigned to the individual’s
pure strategy C and D, respectively. We denote z � (x, y).
*e hybrid strategy space of each individual is the simplex
Δ � z ∈ R2

+: x + y � 1􏼈 􏼉, where R2
+ is a subset of the two-

dimensional vectors with all elements being positive. At
any point of time t, let x(t) and y(t) be the rates at which
individuals choose strategy C and D in group Ω, re-
spectively. *en, the corresponding group state is
z(t) � (x(t), y(t)), where x(t), y(t) ∈ (0, 1) and x(t) +

y(t) � 1. *erefore, the group state is formally equivalent
to the hybrid strategy. Because the state z(t) is completely
determined by its component x(t) or y(t), this paper
discusses the variable x(t) only.

In the group Ω, the individuals who choose strategy D

have a higher average fitness than the others. *erefore,

selection acts to increase the relative abundance of strategy
D. After sometime, cooperation will vanish from the group.
So, strategy D is the only evolutionarily stable strategy (ESS)
unless a specific mechanism is at work.

2.1.2e Game under Labeling. *is paper studies the special
mechanisms for the evolution of cooperation in some
clusters in the economic society when faced with the Pris-
oner’s Dilemma, for example, in logistics parks. For such a
large number of individuals from different sources, it is
difficult to build mutual trust because of the high cost of fully
understanding and accurately knowing each other’s will-
ingness to cooperate. In this case, the mechanisms for
promoting the evolution of cooperation, such as direct
reciprocity, indirect reciprocity, punishment mechanism,
and nonuniform interaction, are difficult to meet. A third
party in the cluster, though, can play the role of collecting
information and rewarding or punishing enterprise behavior
to promote mutual recognition efficiently. Such examples
might be park managers, platform promoters, park man-
agement committees, industry associations, and so on.

In view of this, we assume that there exists a controller
(an operator) outside of group Ω who can identify defection
and cooperation. *e controller labels “cooperator” or
“defector” for everyone. *e tags labeled by the controller
affect the strategy choice of individuals in the following
games until the next identification.

Definition 1. A person or an organization is called a con-
troller if he/she can affect the choice of strategy of indi-
viduals through identifying the actions of individuals in past
games and reveal the results of identification in group Ω.

*e identification implemented by the controller can be
regarded as tagging individuals. Strategy choices of all in-
dividuals in group Ω are decided by their tags in the fol-
lowing games.

Definition 2. One round game is defined as a game set which
consists of a game identified by a controller and all games
tagged by this identification.

Assume the number of rounds is infinite. In one round,
every individual plays m + 1 period games, where m is a
positive integer. *e first period is identified by the con-
troller in one round. All individuals are tagged before the
second period game begins. In the following m periods, all
individuals know their tags and can distinguish tags of
others.

Assumption 1. *e individuals are bounded rationality and
any individual encounters other individuals randomly with
equal probability.

*is paper assumes that the individuals (enterprises or
persons) are in certain clusters (such as logistics parks) or
bilateral platforms in the economic society. *e indirect
reciprocity has substantial cognitive demands for players.
*e tag mechanism for the evolution of cooperation de-
mands that individuals own and display a heritable marker
or a tag. Due to the large number of individuals in the
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cluster, the interaction between them is random, and it is
difficult to form long-term repeated games. *erefore, it is
impossible to establish a direct reciprocity mechanism based
on repeated games. In the early stage of the formation of
clusters or bilateral platforms, due to the lack of mutual
understanding and trust relationship between individuals,
the cost of collecting information and displaying individual
reputation is very high, so indirect reciprocity and tag
mechanism cannot work unless a person or organization
helps the players. We define this person or organization as
the controller (Definition 1).*e identification implemented
by the controller can be regarded as tagging individuals. In
the first period of a round game, the controller identifies
individuals and displays the results.

Based on Assumption 1, for each individual, the prob-
ability of interacting with a cooperator or a defector is x(t)

or 1 − x(t), respectively.

Definition 3. Define an individual as a cooperator if he/she
chooses cooperation without control.

At time t, the rate of cooperators in the group Ω is x(t).
So, the state x(t) is defined as the group cooperation rate.
*e cooperator defined by Definition 3 can be equated with
the individual who always chooses cooperation without
control based on Assumption 1. Obviously, an individual is a
defector if he is not a cooperator under Definition 3.

Assumption 2. Assume that the identification service is not
perfect. *e probabilities that the cooperators and defectors
are correctly identified by the controller are β1 and β2, re-
spectively, where βi ∈ (0, 1), i � 1, 2.

Based on Assumption 2, β1 is called the cooperation
identified rate and β2 is called the defection identified rate.
We denote the tags of “cooperator” and “defector” as “C′”
and “D′“. In one round, Ω is divided into 4 parts noted by
Ωi(i � 1, 2, 3, 4). Ω1 and Ω2 are sets of cooperators and
defectors labeled C′, respectively. Analogously, Ω3 and Ω4
are sets of cooperators and defectors labeled as D′, re-
spectively. Furthermore, ∪ 4i�1Ωi � ΩΩi ∩Ωj � Φ, where Φ
is an empty set. By denoting individual i labeled j′ as j′ | i

(i, j � C, D), one can know that C′ | C ∈ Ω1, C′ | D ∈ Ω2,
D′ | D ∈ Ω3, and D′ | C ∈ Ω4. According to Assumption 2,
p(C′ | C) � β1, p(D′ | C) � 1 − β1, p(D′ | D) � β2, and
p(C′ | D) � 1 − β2, where p ·{ } indicates the probability of
event ·{ } happening.

Assumption 3. In every round game, cooperators choose C

and defectors choose D in the first period. In the following m

periods, the cooperators labeled D′ and all defectors always
choose D. Cooperators labeled C′ choose C if he/she en-
counters an individual labeled C′ and chooses D if he/she
encounters an individual labeled D′.

Definition 4. *e control of a controller dominating indi-
viduals’ strategy choice through tagging is called TBC. *e
individual identified as the cooperator is tabled as C′, and
the individual identified as the defector is tabled as D′ by the
controller. *e TBC rule is designed as follows: the coop-
erators labeled D′ and all defectors always choose D.

Cooperators labeled C′ choose C if he/she encounters an
individual labeled C′ and chooses D if he/she encounters an
individual labeled D′.

Based on Assumption 3, the controller can dominate an
individual’s strategy choice through tagging individuals. At
time t, the cooperation rate is x(t) in group Ω. In the first
period, the ratio of C to total strategies is equal to the coop-
eration rate x(t). In the following m periods, an individual’s
strategy is decided by tags according to Assumption 3.*e ratio
of C to total strategies is not the cooperation rate x(t) but
β1x[β1x + (1 − β2)(1 − x)]. One can know that β1x[β1x+

(1 − β2)(1 − x)] � β1x[1 − x(1 − β1)− β2(1 − x)]<x.
Assumption 3 is reasonable by Assumption 1 and Def-

inition 1. From the abovementioned discussion, we know that
C not only denotes cooperation but also denotes a cooperator
and D not only denotes defection but also denotes a defector.
Numbers of individuals in Ω1,Ω2,Ω3, and Ω4 are β1xN,
(1 − β2)(1 − x)N, β2(1 − x)N, and (1 − β1)xN, respectively.
Based on Assumption 2 and 3, in the first period, cooperators
choose C and defectors choose D. In the following m periods,
two individuals choose C, if and only if they are in Ω1. *e
strategy pair (C, C) is contributed. When one player fromΩ1
encounters a player from Ω2, a cooperator chooses C and a
defector chooses D. In addition to the abovementioned two
cases, the strategy pair (D, D) will be formed. According to
Taylor and Nowak [31] and Dong et al. [32], the probabilities
of (C, C), (D, D), and (C, D) are β21x2,
1 − β21x2 − 2β1(1 − β2)x(1 − x), and β1(1 − β2)x(1 − x)

with TBC. *e larger β1 and β2 means the higher probability
of (C, C) and the lower probability (C, D). So, the larger β1
and β2 are in accordance with the better effect of promoting
the evolution of cooperation. But, under uniform interaction
rates, the corresponding probabilities are x2 and (1 − x)2,
respectively, so an individual’s encounter constrained by TBC
no longer abides by uniform interaction rates.

Based on Assumptions 2 and 3 and Definition 4, co-
operation identified rate β1 and defection identified rate β2
reflect the accuracy of TBC. We denote β′ as the probability
of another encounter between the same two individuals in
the repeated Prisoner’s Dilemma and β″ as the probability of
knowing someone’s reputation in indirect reciprocity.
According to [31], the condition that direct reciprocity
(indirect reciprocity) can lead to the evolution of cooper-
ation depends on the parameters of payoff matrix (1) and
β′(β″). But, by Assumption 1, β′ is very small because the
group size, N, is large enough. On the other hand, the high
cost of fully understanding and accurately knowing each
other’s willingness to cooperate leads to that β″ is very small
also. So, direct reciprocity and indirect reciprocity cannot
promote cooperation in the setting that this paper considers.
In every round game, cooperation identified rate β1 and
defection identified rate β2 can act as β′ of direct reciprocity
or β″ of indirect reciprocity.

Assumption 4. *e evolution of group state x is carried out
according to the replicator. An individual replication occurs
after each round game ends and before the next round
begins. An individual’s payoff refers to the average total
payoff in this round game.
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Assumption 4means the offspring of cooperators are still
cooperators and the offspring of defectors are still defectors.
So, the offsprings of C or D are disconnected with their
parent’s tag. By Assumption 3, defectors always choose D,
but the cooperator does not always choose C.

“Tag” does a mapping σ between Ω and C′, D′􏼈 􏼉, i.e.,
σ: Ω⟶ C′, D′􏼈 􏼉. By Assumption 2, p σ(C) � C′􏼈 􏼉 � β1,
p σ(C) � D′􏼈 􏼉 � 1 − β1, p σ(D) � D′􏼈 􏼉 � β2, and p σ(D) �{

C′} � 1 − β2.
By calculation, the payoff of cooperator (defector) in the

pth period of the rth round game is independent of r but
determined by the cooperation rate x. Let vpth,C(x)

(vpth,D(x)) denote the payoff of a cooperator (defector) in
the pth period. Let wC(x) (wD(x)) denote total payoff of the
cooperator (defector) in one round game; we get

wC(x) � v1th,C(x) + 􏽘
m+1

p�2
vpth,C,

wD(x) � v1th,D(x) + 􏽘
m+1

p�2
vpth,D.

(4)

Let vpth,j′/C(x) (vpth,j′/D(x)) denote the payoffs of the
cooperator (defector) labeled j′(j′ � C, D) in the pth period
game; we get

vpth,C(x) � p σ(C) � C′( 􏼁vpth,C′ | C + p σ(C) � D′( 􏼁vpth,D′ | C,

vpth,D(x) � p σ(D) � C′( 􏼁vpth,C′ | D + p σ(D) � D′( 􏼁vpth,D′ | D,

p � 2, 3, . . . , m + 1.

(5)

By Assumptions 1 and 2, the probability of anyone
encountering a cooperator labeled C′ is β1x and the

probability of anyone encountering a cooperator labeled D′
is (1 − β1)x; the probability of anyone encountering a de-
fector labeled C′ or D′ is (1 − β2)(1 − x) or β2(1 − x). One
can get

v1th,C(x) � Rx + S(1 − x),

vpth,C′/C(x) � β1xR + 1 − β1( 􏼁x + β2(1 − x)􏼂 􏼃P

+ 1 − β2( 􏼁(1 − x)S,

vpth,D′/C(x) � P, p � 2, 3, . . . , m + 1,

(6)

v1th,D(x) � xT +(1 − x)P,

vpth,C′/D(x) � β1xT + 1 − β1x( 􏼁P,

vpth,D′/D(x) � P, p � 2, 3, . . . , m + 1.

(7)

Together, (4)–(7) determine wC(x) and wD(x) as
follows:

wC(x) � 1 + mβ21􏼐 􏼑xR

+ β1 1 − β1 − β2( 􏼁x + 1 − β1 1 − β2( 􏼁􏼂 􏼃mP

+
n!

r!(n − r)!
1 + mβ1 1 − β2( 􏼁􏼂 􏼃(1 − x)S,

wD(x) � v1,D(x)

+ m β2vpth,D′/D(x) + 1 − β2( 􏼁vpth,C′/D(x)􏽨 􏽩,

� 1 + mβ1 1 − β2( 􏼁􏼂 􏼃xT

+ 1 − x + m 1 − β1 1 − β2( 􏼁x􏼂 􏼃􏼈 􏼉P.

(8)

By Assumption 3, an individual’s average payoff in the
rth round game is xwC(x) + (1 − x)wD(x).

Summing up the abovementioned discussion, the total
payoff matrix (1) of a round game under TBC is

1 + mβ21􏼐 􏼑R + 1 − β21􏼐 􏼑mP 1 + mβ1 1 − β2( 􏼁􏼂 􏼃S + 1 − β1 1 − β2( 􏼁􏼂 􏼃mP
1 + mβ1 1 − β2( 􏼁􏼂 􏼃T + 1 + β1 1 − β2( 􏼁􏼂 􏼃mP mP

􏼢 􏼣. (9)

In fact, in the latter m periods, the hybrid strategy and
the group state are not equivalent because a cooperator
constrained by Assumption 3 does not always choose C. So,
the payoff aij in payoff matrix (9) does not indicate the
payoff of individual i encountering strategy j, where
i, j � C, D. However, we still use payoff matrix (9) for the
following two reasons: (1) the payoff wi(x) of individual Ω1
is still linear with the group state x(t); (2) a cooperator’s
average total payoff under TBC is (1 + mβ21)R + [1 − β21]mP
if he enters a group of cooperators or is [1 + mβ1(1 − β2)]S +

[1 − β1(1 − β2)]mP if he enters a group of defectors. Sim-
ilarly, a defector’s average total payoff under TBC is [1 +

mβ1(1 − β2)]T + [1 − β1 (1 − β2)]mP if he enters a group of
cooperators or is P if he enters a group of defectors.

If β1 � 1, β2 � 0, i.e., all individuals are identified as
cooperators, the game with payoff matrix (9) is equivalent to
a Prisoner’s Dilemma repeated m + 1 times with payoff
matrix (1). By Assumption 3, cooperators always choose C

and defectors always choose D.

2.2.2eReplicatorDynamicswithTBC. At time t, we suppose
the number of cooperators is M and the number of defectors is
N − M. In the next Δt, under Assumption 4, the cooperators
reproduce wCMΔt offspring and the defectors reproduce
wD(N − M)Δt offspring. *e total number of death is
[wCM + wD(N − M)]Δt. *e number of cooperators death is
[wCM + wD(N − M)]xΔt, and the number of defectors death
is [wCM + wD(N − M)](1 − x)Δt. *en, Δx � wCMΔt−􏼈

[wCM + wD(N − M)]xΔt}/N � (wC − wD)x(1 − x)Δt.
*en, the replicator dynamics under TBC is as follows:

_x(t) � wC(x) − wD(x)􏼂 􏼃(1 − x)x,

� [(R − S − T + P)x + S − P](1 − x)x

+ m β1R + 2 − β1 − 2β2( 􏼁P − 1 − β2( 􏼁(S + T)􏼂 􏼃x􏼈

− 1 − β2( 􏼁(P − S)􏼉β1(1 − x)x.

(10)

Assumption 5. *e Prisoner’s Dilemma tagged repeats
enough periods, i.e., m≫ 1.
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By Assumption 5, the total payoff matrix (9) in a round
game approximately equals the following matrix:

mβ21R + 1 − β21􏼐 􏼑mP 1 + β1 1 − β2( 􏼁􏼂 􏼃mp + mβ1 1 − β2( 􏼁S

1 + β1 1 − β2( 􏼁􏼂 􏼃mPβ1 1 − β2( 􏼁mT mP
⎡⎢⎣ ⎤⎥⎦. (11)

*e replicator dynamics (10) approximates the following
dynamics:

_x(t) � m β1R + 2 − β1 − 2β2( 􏼁P − 1 − β2( 􏼁(S + T)􏼂 􏼃x􏼈

− 1 − β2( 􏼁(P − S)􏼉β1(1 − x)x.

(12)

Definition 5 (See [42]). A state (􏽥x, 􏽥y) ∈ Δ is an ESS if for all
other states (x, y) ∈ Δ either (i) u[(x, y), (􏽥x, 􏽥y)]

< u[(􏽥x, 􏽥y), (􏽥x, 􏽥y)] or (ii) u[(x, y), (􏽥x, 􏽥y)] � u[(􏽥x, 􏽥y), (􏽥x, 􏽥y)]

and u[(x, y), (x, y)]< u[(􏽥x, 􏽥y), (x, y)], where u(·1, ·2) de-
notes the individual’s payoff with strategy ·1 under the
strategy pair (·1, ·2).

Definition 6 (See [43]). A fixed point (􏽥x, 􏽥y) ∈ Δ in replicator
dynamics is an evolutionary equilibrium (EE) if it is locally
asymptotically stable, i.e., every open neighborhood Κ ⊂ Δ
of the point (􏽥x, 􏽥y) has the property that every path starting
sufficiently close to (􏽥x, 􏽥y) remains in Κ and converges as-
ymptotically to (􏽥x, 􏽥y).

Definition 7 (See [43]). *e largest open set of points whose
evolutionary paths converge to a given EE is called its basin
of attraction.

In order to simplify the calculation, P � 0 is assumed in
the following discussion. Doing so would result in a simpler
model, without significant qualitative or directional changes
to our key results about evolution of cooperation. Obviously,
the parameters T, R, and S satisfy T>R> 0> S. Based on
(11), the payoff matrix for a period under TBC is trans-
formed as follows:

(13)

Regardless of time scale, m does not affect either ESS or
EE and does not even affect the evolutionary path of a
replicator’s dynamics, so we can rewrite the replicator dy-
namics (12) as follows:

_x(t) � β1R − 1 − β2( 􏼁(S + T)􏼂 􏼃x + 1 − β2( 􏼁S􏼈 􏼉β1(1 − x)x.

(14)

Two specific instances are given in the following.

Case1. Only the defectors are identifies, and let
p(D′/D) � β2. Ω is divided into two parts. One is the

set of defectors tagged D′. *e other is the set of in-
dividuals without tag. *e corresponding part of As-
sumption 3 is modified as follows: a cooperator chooses
C if he encounters an individual without tag but
chooses D if he encounters an individual tagged D′.
Defectors always choose defect. In this case, the payoff
matrix is as follows:

(15)

Case 2. Only the cooperators are identified, and let
p(C′/C) � β1. Ω is divided into two parts. One is
the set of cooperators tagged C′. *e other is the set
of individuals without a tag. *e corresponding part
of Assumption 3 is modified as follows: the coop-
erator chooses C if he encounters an individual
with tag C′ and chooses D if he encounters an in-
dividual without a tag. Defectors always choose
defect. In this case, we obtain the payoff matrix as
follows:

(16)

By comparing matrices (13) and (15), we see that Case 1
is equivalent to cooperation identified rate β1 � 1 in matrix
(13), i.e., the controller accurately identifies cooperators. It
follows that Case 1 is in accordance with control based on
identifying defection. Correspondingly, Case 2 means the
controller identifies defectors accurately.

From the operator’s perspective, the relevant decisions
are (1) whether to design TBC; (2) identifying which indi-
vidual is more effective, cooperator or defector; and (3) how
to design cooperation identified rate β1 and defection
identified rate β2.

3. Evolution of Cooperation for the Prisoner’s
Dilemma with TBC

3.1. Short-TermEffectsCausedbyTBC. Based on Assumption
3, an individual chooses a strategy according to a tag. Can a
tag improve the correctness of the choice?
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Proposition 1. Let i/j′ denote the individual i labeled j′,
where i, j � C, D. We denote p(C/C′) as the probability that
the individual tagged C′ is a cooperator and p(D/D′) as the
probability that the individual tagged D′ is a defector. 2en,
p(C/C′)>p(C) and p(D/D′)>p(D), if and only if
β1 + β2 > 1.

Proof. According to Assumption 2, p(C′/C) � β1 and
p(D′/D) � β2. Denote the probability of an individual la-
beled i′ as p(i′). Obviously, p(C′) � xβ1 + (1 − x)(1 − β2)
and p(D′) � x(1 − β1) + (1 − x)β2. So, one can obtain
posterior probability p(C/C′) and p(D/D′) as follows:

p
C

C′
􏼒 􏼓 �

xβ1
xβ1 +(1 − x) 1 − β2( 􏼁

,

p
D

D′
􏼒 􏼓 �

(1 − x)β2
x 1 − β1( 􏼁 +(1 − x)β2

.

(17)

*us, p(C/C′)>p(C) and p(D/D′)>p(D), if and only
if β1 + β2 > 1.

Now, we discuss an individual’s payoff with TBC. Let
fi(x, β1, β2) be the payoff of individual i with TBC and gi(x)

be the payoff of individual j without TBC, where
i, j � C, D. □

Proposition 2. If β1 + β2 > 1, then fC(x, β1, β2) − fD(x, β1,
β2)>gC(x) − gD(x).

Proof. From matrices (1) and (13), one can obtain

gC(x) � (R − S)x + S,

fC x, β1, β2( 􏼁 � β21R − β1 1 − β2( 􏼁S􏽨 􏽩x + β1 1 − β2( 􏼁S,
(18)

gD(x) � Tx,

fD x, β1, β2( 􏼁 � β1 1 − β2( 􏼁Tx.
(19)

It follows from (18) and (19) that fC(x, β1, β2) − gC(x)

and fD(x, β1, β2) − gD(x) are all linear to x. Since
fC(0, β1, β2) − gC(0) � − S[1 − β1(1 − β2)] and fD(0, β1,
β2) − gD(0) � 0, by − S> 0, it can be derived that

fC 0, β1, β2( 􏼁 − gC(0)>fD 0, β1, β2( 􏼁 − gD(0). (20)

By fC(1, β1, β2) − gC(1) � (β21 − 1)R and
fD(1, β1, β2) − gD(1) � [β1(1 − β2) − 1]T, if β1 + β2 > 1,
then β1(1 − β2) − 1< β21 − 1< 0. So, we get

fC 1, β1, β2( 􏼁 − gC(1)>fD 1, β1, β2( 􏼁 − gD(1). (21)

In summary, fC(x, β1, β2) − gC(x)>fD(x, β1, β2)−
gD(x) if β1 + β2 > 1.

Based on Proposition 1, TBC can help cooperators not
only identify cooperators but also reduce the risk of uni-
lateral fraud by defectors if β1 + β2 > 1. According to
Proposition 2, for any cooperation rate x ∈ (0, 1), TBC
satisfying β1 + β2 > 1 can inhibit defection. But, Propositions
1 and 2 do not mean TBC can promote a cooperator’s payoff
even when β1 + β2 > 1. *is judgment is confusing. Propo-
sitions 3 and 4 will demonstrate. □

Proposition 3. We denote ∗ix � z∗i/zx, where ∗ � f, g;
i � C, D. With increasing cooperation rate x, some properties
of the individual’s payoff are as follows:

(i) ∗ix > 0
(ii) fix(x, β1, β2) − gix(x)< 0

Proof. From (18) and (19), according to T>R> 0> S, we get
∗ ix and fCx(x, β1, β2) − gCx(x) � (β21− 1)R + [1 − β1(1−

β2)]S. Combining with R> 0, S< 0 and β1, β2 ∈ (0, 1), we
derive fCx(x, β1, β2) − gCx(x)< 0. Similarly, we can get
fDx(x, β1, β2) − gDx(x)< 0. So, with increases in coopera-
tion rate x, the payoff of all individuals with TBC increases
less than their payoff without TBC.

By Proposition 3, the fact that all individual’s payoff in-
creases in cooperation rate x has nothing to do with TBC or
not. But, the rate of increase of an individual’s payoff with TBC
is lower than its payoffwithout TBC. In this sense, TBC reduces
group efficiency when the rate of group cooperation rate in-
creases. Why do we design TBC in the Prisoner’s Dilemma? In
fact, without special mechanisms for promoting the evolution
of cooperation, the group cooperation rate will always grad-
ually decrease until cooperators are completely expelled from
the group. So, the effect of TBC on the payoff of individuals and
the evolution of cooperation is complex. *e effect of TBC on
the cooperator’s payoff and cooperation evolution involves
β1, β2, parameters R, T, S, and group cooperation rate x. We
denote x1(β1,β2)≜(([1 − β1(1 − β2)](− S))/((1 − β21)R + [1−

β1(1 − β2)](− S))), x2(β1,β2)≜(((1 − β2)(− S))/(2β1R + (1−

β2)(− S))). □

Proposition 4. 2e effects of TBC on group cooperation rate
x and an individual’s payoff are as follows:

(i) For any x ∈ (0, 1), the defector’s payoff with TBC is
always lower than its payoff without TBC.

(ii) A cooperator’s payoff with TBC is higher than its
payoff without TBC when the group cooperation rate
x is lower than x1(β1, β2) but is lower than its payoff
without TBC when x is higher than x1(β1, β2), i.e.,
sign[x − x1(β1, β2)][fC(x, β1, β2) − gC(x)]< 0,
where sign(·) is a sign function of ·.

(iii) For any x ∈ (0, 1), the cooperator’s payoff increases
in β2 and the defector’s payoff increases in β1 but
decreases in β2, i.e., fCβ2(x, β1, β2)> 0,
fDβ1(x, β1, β2)> 0, and fDβ2(x, β1, β2)< 0; where
fiβj

� zfi/zβj,i � C, D, j � 1, 2. However, the co-
operator’s payoff increases in β1 when the group
cooperation rate x is higher than x2(β1, β2) but
decreases when x is lower than x2(β1, β2), i.e.,
sign[x − x2(β1, β2)]fCβi

(x, β1, β2)> 0.
(iv) If β1 + β2 > 1, then x1(β1, β2)>x2(β1, β2).

Proof. From (18) and (19), for any β1, β2 ∈ [0, 1] and
x ∈ (0, 1), fD(β1, β2, x)<gD(x) and fC(x, β1, β2)−
gC(x) � − (1 − β21)R − [1 − β1(1 − β2)](− S)􏽮 􏽯x + [1 − β1(1
− β2)](− S). fC(x, β1, β2)<gC(x) when x>x1(β1, β2) and
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fC(x, β1, β2)>gC(x) when x<x1(β1, β2). Conclusions (I)
and (II) are proved.

Furthermore, one can obtain fCβ2(x, β1, β2) � (1 − x)

(− S)β1, fDβ1(x, β1, β2) � (1 − β2)Tx, and fDβ2(x, β1, β2) �

− β1 Tx. From fCβ1(x, β1, β2) � [2Rβ1 + (− S)(1− β2)]x+

S(1 − β2), fCβ1(x, β1, β2)> 0 when x> x2(β1, β2) and
fCβ1(x, β1, β2)< 0 when x<x2(β1, β2) Based on
T>R> 0> S, if β1 + β2 > 1, then x1(β1, β2)> x2(β1, β2).
Conclusions (III) and (IV) are proved.

By applying Proposition 4, for any β1, β2 ∈ (0, 1), the
TBC increases or decreases the cooperator’s payoff
depending on the group cooperation rate and x1(β1, β2).
Fortunately, the critical point x1(β1, β2) satisfies
zx1(β1, β2)/zβi > 0(i � 1, 2). Furthermore, we obtain

lim
β1⟶ 1

x1 β1, β2( 􏼁 � 1. (22)

So, the TBC can always improve the cooperator’s payoff
if cooperation identified rate β1 is large enough. Further-
more, for any x ∈ (0, 1), we can design an appropriate β1,
such that x1. Applying (I) and (II) of Proposition 4, an
appropriate TBC can raise the cooperator’s payoff and re-
duce the defector’s payoff, thus increasing the group co-
operation rate rapidly.

According to (III) of Proposition 4, for any x ∈ (0, 1),
with β2 increasing, the cooperator’s payoff increases and
defector’s payoff reduces. An interesting phenomenon is
fDβ1(x, β1, β2)> 0 for any x ∈ (0, 1), i.e., a defector’s payoff
will always increase in β1. Proposition 4 shows that the effect
of cooperation identified rate β1 on an individual’s payoff is
more complex than defection identified rate β2. *e coop-
erator’s payoff increases in β1 when the group cooperation
rate C is higher than the critical value x2(β1, β2) but decreases
in β1 when x<x2(β1, β2). Based on (II), TBC raises the
cooperator’s payoff only when x<x1(β1, β2). So, only when
x ∈ (x2(β1, β2), x1(β1, β2)), TBC promotes the cooperator’s
payoff, and larger β1 results in larger cooperator’s payoff.

According to (VI), if β1 + β2 > 1, x2(β1, β2)< x1(β1, β2).
Furthermore, limβ2⟶ 1x2(β1, β2) � 0, i.e., the cooperator’s
payoff increases in cooperation identified rate β1 if defection
identified rate β2 is large enough. At the same time, if
β1 > (− S/2R)((1/x) − 1), then the cooperator’s payoff in-
creases in β1 for any β2 ∈ (0, 1). On the other hand, in-
creasing β1 can also increase the defector’s payoff because
the probability of the strategy pair (D, C) is
β1(1 − β2)x(1 − x). *us, increasing β1 increases the
probability that a defector gains the payoff T!

According to (III) of Proposition 4, for a given defection
identified rate β2, if the group cooperation rate is very low,
for example, x< ((1 − β2)(− S))/(2R + (1 − β2)(− S)), then
increasing cooperation identified rate β1 will not only bring
harm to cooperators but also help defectors to get more
payoffs. A larger β1 will doubtlessly cause great damage to
the group if the defection identified rate β2 and the group
cooperation rate x are all little.

Denoting the group’s expected payoff without TBC as
H(x) and with TBC as H′(x, β1, β2), we get the following
proposition. □

Proposition 5. If S + T> 0, then, for any given x ∈ (0, 1)

and any β1β2 ∈ (0, 1), the group’s expected payoff without
TBC is higher than that with TBC, i.e.,

H′ x, β1, β2( 􏼁<H(x). (23)

Proof. Applying the payoff matrix (13), we get
H′(x, β1, β2) � xfC(x, β1, β2) + (1 − x)fD(x, β1, β2) and
H(x) � xgC(x) + (1 − x)gD(x). If S + T> 0, it yields

H′ x, β1, β2( 􏼁 − H(x) � − 1 − β21􏼐 􏼑Rx
2

− 1 − β1 1(􏼂

− β2􏼁􏼃(S + T) x − x
2

􏼐 􏼑< 0.
(24)

*is completes the proof.
Proposition 5 is simple but interesting. It shows that the

TBC reduces the group’s average payoff when the cooper-
ator’s loss − S, caused by defection, is less than the defector’s
gain T. Furthermore, this conclusion is not affected by x, R,
β1 and β2. Furthermore, we obtain

z H′ x, β1, β2( 􏼁 − H(x)􏼂 􏼃

zβ1
� 2β1R − 1 − β2( 􏼁(S + T)􏼂 􏼃x

2

− 1 − β2( 􏼁(S + T)x.

(25)

When β1 + β2 > 1, based on (3), 2β1R − (1 − β2)(S+

T)> 0. By letting x3(β1, β2)≜ (((1− β2)(S + T))/(2β1R+

(1 − β2)(S + T))), we can obtain sign [x − x3(β1, β2)][(zH′􏼈

(x, β1, β2) − H(x))/zβ1]}> 0. *is is consistent with the
result of Proposition 2. By the fact that limβ2⟶ 1x3(β1,
β2) � 0, when β2 is large enough, increasing β1 can improve
the group’s average payoff, but it is still lower than that
without TBC.

We assume that S + T< 0. Denoting x4(β1,β2)≜�����������������������������������������������

(− [1− β1(1− β2)](S+T))/((1− β21)R− [1− β1(1− β2)](S+T))

􏽱

,
we get sign[x− x4(β1,β2)](H′(x, β1,β2)− H(x))<0. In other
words, in the situation where two players’ total payoff with
strategy pair (C,D) is lower than the total payoff with (D,D),
the TBC can increase the group’s average payoff for a lower
cooperation rate. □

Remark 1. Propositions 2–5 are all based on the payoffmatrix
(13) that is obtained by m≫ 1 and P � 0. *e assumption
m≫ 1 is realistic. For example, confirmation by the supervi-
sory department of, amongst other things, an enterprise’s
creditor product quality, cannot be eliminated in short term.
*e values of xi(β1, β2) will be more complicated if
P≠ 0,j � 1, 2, 3, 4. But, the hypothesis that P � 0 does not
result in significant qualitative or directional changes to
conclusions of Propositions 2–5. Furthermore, the ESS and EE
of the game do not alter by the assumptions m≫ 1 and P � 0.

Remark 2. Propositions 2–5 are only static analysis of the
impact of TBC on an individual’s payoff.

Propositions 2–5 show that TBC will bring down a
group’s payoff unless the cooperation identified rate β1 and
the defection identified rate β2 are all large enough. From the
point of static analysis, it is hard to understand that TBC can
promote cooperation. However, from the evolutionary point
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of view, without TBC, cooperation will fail in evolution and
all benefits based on cooperation will disappear. Now,
we discuss the ESS and EE of the Prisoner’s Dilemma with
TBC.

3.2. Evolution of Cooperation for the Replicator Dynamics

Proposition 6. Defection is always ESS of the Prisoner’s
Dilemma for any β1, β2 ∈ (0, 1).

Proof. For any state (x, y) ∈ Δ and any β1, β2 ∈ (0, 1), by
payoff matrix (13), one can get
u[(x, y), (0, 1)] � β1(1 − β2)xS< 0 and u[(0, 1), (0, 1)] � 0.
So, defection is always ESS.

According to Friedman [43], the Prisoner’s Dilemma
was discussed as being a linear game; the point (x, y) �

(0, 1) is an EE of replicator dynamics (14). Based on
Proposition 6, a small group of cooperators cannot invade a
group of defectors, no matter how high identified rates β1
and β2 are. □

Proposition 7. Cooperation is an ESS of the Prisoner’s Di-
lemma with TBC, if and only if the following condition is
satisfied:

β1
1 − β2
>

T

R
. (26)

By [42], Proposition 7 can be obtained.
Based on Propositions 6 and 7, if and only if (26) is

satisfied, the Prisoner’s Dilemma with TBC is a symmetric
coordination game. *e pure strategies “cooperation” and
“defection” are all ESS. *e fixed points (1, 0) and (0, 1) are
all EE. Furthermore, the basin of attraction of the point (1, 0)

is (x5(β1, β2), 1), where x5(β1, β2)≜ (((1 − β2)(− S))/(β1R −

(1 − β2) (T + S))). As zx5(β1, β2)/zβi < 0, i � 1, 2, the basin
of attraction of cooperation can rise if we increase the co-
operation identified rate β1 or the defection identified rate
β2. For any β1 ∈ (0, 1), limβ2⟶ 1x5(β1, β2) � 0. *is shows
that a large-enough defection identified rate β2 can suc-
cessfully promote the evolution of cooperation for any β1.
Furthermore, the basin of attraction of cooperation can be
sufficiently large through the designing of an appropriate
defection identified rate.

If the defection identified rate satisfies β2 > (T − R)/T,
cooperation can evolve successfully. By denoting
limβ1⟶ 1x5(β1, β2) � ((1 − β2)(− S)/(R − (1 − β2)(T +

S)))≜ x6(β2), the largest basin of attraction of cooperation is
(x6(β2), 1) for given β2. Otherwise, if β2 < (T − R)/T, de-
fection is the only ESS. If we consider (T − R)/T as the cost-
to-benefit ratio of the cooperation, this conclusion is in good
agreement with the work of Nowak [44]. In [44], it is shown
that direct reciprocity can lead to the evolution of coop-
eration only if the probability of another encounter between
the same two individuals exceeds the cost-to-benefit ratio of
cooperation, i.e., β′ > (T − R)/T, and indirect reciprocity can
only promote cooperation if the probability of knowing

someone’s reputation exceeds the cost-to-benefit ratio of the
cooperation, i.e., β″ > (T − R)/T.

By Proposition 7, when condition (26) is satisfied, co-
operation is the ESS of the Prisoner’s Dilemma and the
average payoff of an individual in a group full of cooperators
is β21R. But, without TBC, defection is the only ESS and the
average payoff of an individual will be 0! To sum up the
abovementioned discussion, from a dynamic point of view,
TBC can promote a cooperator’s payoff. Further observation
shows that defection identified rate β2 plays a more im-
portant role in promoting the evolution of cooperation than
cooperation identified rate β1, but β1 determines an indi-
vidual’s payoff when the cooperation rate is high.

Now, we only discuss the cooperator’s payoff and evo-
lution of cooperation.

Proposition 8. Designing TBC with cooperation identified
rate β1 and the defection identified rate β2, we obtain the
following conclusions:

(i) When condition (26) is satisfied, but β1 + β2 − β1β2+
(1/2)β1β

2
2 < 1, this TBC can promote the evolution of

cooperation, but for given cooperation rate x in the
basin of attraction of cooperation, the cooperator’s
payoff with TBC is lower than its payoff without TBC

(ii) When R/T> (1 − β2)[1 − β1(1 − β2)]/(β1 + β2 − 1),
this TBC can not only expel defectors but also increase
the cooperator’s payoff for x ∈ (x5(β1, β2),
x1(β1, β2))

Proof. If condition (26) is satisfied, based on Proposition 7,
the TBC can promote the evolution of cooperation. From the
condition β1 + β2 − β1β2 + (1/2)β1β

2
2 < 1, we obtain that

(1 − β2)[1 − β1(1 − β2)]/(β1 + β2 − 1)> 1 and x5(β1, β2)>
x1(β1, β2). *e basin of attraction of cooperation is
(x5(β1, β2), 1), and the cooperator’s payoff with TBC is
higher than its payoff without TBC only when the group
cooperation rate fC(x, β1, β2) − gC(x) is lower than
x1(β1, β2). So, the TBC can expel defectors, but the coop-
erator’s payoff with TBC is lower than its payoff without
TBC when x ∈ (x5(β1, β2), 1).

If the condition R/T> (1 − β2)[1− β1(1 − β2)]/(β1+ β2 −

1) is satisfied, we get β1 + β2 − β1β2 + (1/2)β1β
2
2 > 1 and

x5(β1, β2)<x1(β1, β2). So, the TBC can not only expel de-
fectors but also increase the cooperator’s payoff for
x ∈ (x5(β1, β2), x1(β1, β2)).

*e condition of (II) of Proposition 8 is stricter than
(26). So, based on (II) of Proposition 8, the TBC can not only
expel defectors if x ∈ (x1(β1, β2), 1) but also increase the
cooperator’s payoff for x ∈ (0, x5(β1, β2)). But, only when
x ∈ (x5(β1, β2), x1(β1, β2)), the TBC can result in these two
advantages.

Cooperation identified rate β1 and defection identified
rate β2 are the input of TBC. *ey are feedback of co-
operation rate x. At any time t, cooperation rate is variable
x(t). So, β1 and β2 are functions of time t. We denote β1(t)

and β2(t) as the cooperation identified rate and the
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defection identified rate at time t in the next part of this
paper. □

4. TheOptimal IdentifiedRate ofPromoting the
Cooperation Rate

4.1. 2e Optimal Identified Rate Model. We define ui(t) as

ui(t) � ln
1

βi(t)
− 1􏼠 􏼡, i � 1, 2. (27)

Based on βi ∈ (0, 1), one can obtain ui ∈ (− ∞, +∞) and
βi(t) � (1/(1 + eui(t))), i � 1, 2. *e performance index is
introduced:

J � 1 − x tf􏼐 􏼑 + 􏽚
tf

0
q1β1(t) + q2β2(t)dt, (28)

where tf is the terminal time of the replicator dynamic (14),
x(tf) denotes the terminal cooperation rate, 1 − x(tf) is the
effective cost of promoting the cooperation rate, and
􏽒

tf

0 βi(t)dt is the control cost of the entire TBC process. *e
bigger x(tf) corresponds to the better effect of promoting
cooperation and the lower effective cost. *e parameter
qi > 0 is used to adjust the difference between the effective
cost and the control cost in the dimension and the weight.
Furthermore, qi > 0 reflects the controller’s balance of the
TBC for cooperation and for defection.

We rewrite replicator dynamic (14) and performance
index (28) under transformation (27) as the follows:

_x(t) �
1

1 + e
u1

R −
e

u2

1 + e
u2

(S + T)􏼢 􏼣x +
e

u2

1 + e
u2

S􏼨 􏼩
1

1 + e
u1

(1 − x)x,

(29)

J � 1 − x tf􏼐 􏼑 + 􏽚
tf

0

q1

1 + e
u1

+
q2

1 + e
u2
dt. (30)

We suppose the initial time of replicator dynamic (14) is
t � 0, and the initial value of system is

x(0) � x0, 0< x0 < 1. (31)

*e initial value (31) indicates that, at the beginning of
the evolution, the population is in a state in which coop-
eration and defection are mixed. We denote
u(t) � (u1(t), u2(t))T. We consider u(t) as a control vari-
able of the dynamic (29).

*e feedback control law of the state x(t) is designed so
that the total cost defined by the performance index (30) is
minimized. *e optimal identified rate problem can be
expressed as follows: under dynamic constraint (29) and
initial value constraint (31), the optimal control u∗(t) and
the optimal state trajectory x∗(t) are designed to minimize
(30).

4.2. 2e Optimal Identified Rate Designing Process. *ere is
no analytic solution for the optimal control problem
(29)–(31). Now, we give a numerical algorithm to design an
optimal identified rate.

Theorem 1. Consider the optimal identified rate design
described by replicator dynamic (14) with performance index
(30). Under (27) and (31), the optimal identified rate β∗i (t) is
existent and unique, and β∗i (t) is expressed in the following
form:

β∗1(t) � lim
h⟶∞

lim
k⟶∞

q2

λ(h,k)
(t) 1 − x

(h,k)
􏼐 􏼑x

(h,k)
h x

(h,k)
􏼐 􏼑

,

β∗2(t) � lim
h⟶∞

lim
k⟶∞

1 +
q1h x

(h,k)
􏼐 􏼑 − 2Rq2x

(h,k)

λ(h,k) 1 − x
(h,k)

􏼐 􏼑x
(h,k)

h
2

x
(h,k)

􏼐 􏼑

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(32)

where λ(h,k)(t) is the solution of the following adjoint variable
differential equation:

λ(h,0)
(t) ≡ 1,

_λ
(h,k)

(t) �
q
2
2R x

∗ h( )􏼔 􏼕
2
3h x

∗ h( )􏼒 􏼓 − 2T􏼔 􏼕 + q1q2h x
∗ h( )􏼒 􏼓 − 3x

∗ h( ) + 1􏼒 􏼓h x
∗ h( )􏼒 􏼓 + Tx

∗ h( )􏼔 􏼕

λ(h,k− 1)
x
∗ h( )􏼔 􏼕

2
1 − x

∗ h( )􏼒 􏼓
2
h
3

x
∗ h( )􏼒 􏼓

,

λ(h,k)
tf􏼐 􏼑 � 1, h, k � 1, 2, . . . ,

(33)

where x(∗ 0)(t) � x0, x(∗ h)(t) � limk⟶∞x(h,k)(t), and
x(h,k)(t) is the solution of the following state differential
equation:
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x
(h,0)

(t) ≡ x0,

λ ∗ 0( )(t) ≡ 1,

_x
(h,k)

(t) �
q1q2h x

(h,k− 1)
􏼐 􏼑 − Rq

2
2x

(h,k− 1)

λ ∗ h− 1( )􏼔 􏼕
2
x

(h,k− 1) 1 − x
(h,k− 1)

􏼐 􏼑h
2

x
(h,k− 1)

􏼐 􏼑

,

t ∈ 0, tf􏽨 􏽩,

x
(h,k)

(0) � x0, h, k � 1, 2, . . . ,

(34)

where λ(∗ h)(t) � limk⟶∞λ
(h,k)(t).

Proof. By introducing the adjoint variable λ(t) and letting
h(x) � (S + T)x − S, if the optimal control and the optimal
state are u∗(t) and x∗(t), then there exists the adjoint
variable λ∗(t) such that x∗(0) � x0, λ

∗(tf) � 1, and

q1 + λ(t)(1 − x)x −
2Rx

1 + eu1
+

eu2

1 + eu2
h(x)􏼢 􏼣 | λ�λ∗ ,x�x∗ ,u�u∗ � 0,

(35)

q2 − λ(t)(1 − x)xh(x)
1

1 + eu1
| λ�λ∗,x�x∗,u�u∗ � 0. (36)

From (36), we obtain x∗(t), λ∗(t), and u∗i (t) satisfying
the following equations:

1
1 + eu1

| λ�λ∗ ,x�x∗ ,u�u∗ �
q2

λ(t)(1 − x)xh(x)
| λ�λ∗,x�x∗ ,u�u∗, (37)

1
1 + eu2

| λ�λ∗,x�x∗,u�u∗ � 1 +
q1

λ(t)(1 − x)xh(x)
−

2Rq2x

λ(t)(1 − x)xh2(x)
􏼠 􏼡 | λ�λ∗,x�x∗,u�u∗. (38)

*e adjoint variable and its terminal condition with the
optimal control u∗(t) are as follows:

− _λ(t) � λ(t)
Rx(2 − 3x)

1 + e
u1( 􏼁

2 −
e

u2

1 + e
u2

1
1 + e

u1
[(S

⎧⎨

⎩

+ T)x(2 − 3x) − S(1 − 2x)]},

(39)

λ tf􏼐 􏼑 � 1. (40)

Substituting (37) and (38) into (29) and (39) yields the
following two-point boundary value (TPBV) problem:

_x(t) �
q1q2h(x) − Rq

2
2x

λ2x(1 − x)h
2
(x)

,

− _λ(t) �
q
2
2Rx

2
[3h(x) − 2T] + q1q2h(x)[(− 3x + 1)h(x) + Tx]

λx
2
(1 − x)

2
h
3
(x)

,

x(0) � x0,

λ tf􏼐 􏼑 � 1.

(41)

Note that the TPBV problem (41) is nonlinear; for a
nonlinear TPBV problem, there is no analytic solution.
From (37), (38), and (27), one can obtain

β∗1(t) �
q2

λ∗(t) 1 − x
∗

( 􏼁x
∗
h x
∗

( 􏼁
,

β∗2(t) � 1 +
q1

λ∗ 1 − x
∗

( 􏼁x
∗
h x
∗

( 􏼁

−
2Rq2x

∗

λ∗ 1 − x
∗

( 􏼁x
∗
h
2

x
∗

( 􏼁
,

(42)

where λ∗(t) and x∗(t) is the solution to the TPBV problem
(41). A sequence of state differential equations is
constructed:

x
(1,0)

(t) ≡ x0,

_x
(1,k)

(t) �
q1q2h x

(1,k− 1)
􏼐 􏼑 − Rq

2
2x

(1,k− 1)

x
(1,k− 1) 1 − x

(1,k− 1)
􏼐 􏼑h

2
x

(1,k− 1)
􏼐 􏼑

, t ∈ 0, tf􏽨 􏽩,

x
(1,k)

(0) � x0, k � 1, 2, . . . .

(43)

For certain k, x(1,k− 1)(t) is known, so equation (43) is a
sequence of differential equations. Furthermore, x(1,k)(t)

can be solved from (43). According to Tang and Dong [45],
the solution sequence defined by (43) is uniformly con-
vergent to the solution of the following equation:

_x(t) �
q1q2h(x) − Rq

2
2x

x(1 − x)h
2
(x)

, t ∈ 0, tf􏽨 􏽩,

x(0) � x0.

(44)

We define λ(∗1)(t) � limk⟶∞x(1,k)(t) and construct the
following sequence:
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λ(1,0)
(t) ≡ 1,

_λ
(1,k)

(t) �
q
2
2R x

∗ 1( )􏼔 􏼕
2
3h x

∗ 1( )􏼒 􏼓 − 2T􏼔 􏼕 + q1q2h x
∗ 1( )􏼒 􏼓 − 3x

∗ 1( ) + 1􏼒 􏼓h x
∗ 1( )􏼒 􏼓 + Tx

∗ 1( )􏼔 􏼕

λ(1,k− 1)
x
∗ 1( )􏼔 􏼕

2
1 − x

∗ 1( )􏼒 􏼓
2
h
3

x
∗ 1( )􏼒 􏼓

,

λ(1,0)
tf􏼐 􏼑 � 1, h, k � 1, 2, . . . .

(45)

In the kth iteration, λ(1,k− 1)(t) and fCx(x, β1, β2) − gCx

(x)< 0 are known, so (45) is also a sequence of differential
equations. Based on [45], sequence (45) is uniformly con-
vergent to the solution of the following equation:

_λ(t) �
q
2
2R x

∗ 1( )􏼔 􏼕
2
3h x

∗ 1( )􏼒 􏼓 − 2T􏼔 􏼕 + q1q2h x
∗ 1( )􏼒 􏼓 − 3x

∗ 1( ) + 1􏼒 􏼓h x
∗ 1( )􏼒 􏼓 + Tx

∗ 1( )􏼔 􏼕

λ x
∗ 1( )􏼔 􏼕

2
1 − x

∗ 1( )􏼒 􏼓
2
h
3

x
∗ 1( )􏼒 􏼓

,

λ tf􏼐 􏼑 � 1.

(46)

We denote λ(∗1)(t) � limk⟶∞λ
(1,k)(t). By constructing

sequences (33) and (34) and repeating the previous iteration
process, we can obtain the sequences x(h,k)(t)􏼈 􏼉 and
λ(h,k)(t)􏽮 􏽯. *e sequences x(h,k)(t)􏼈 􏼉 and λ(h,k)(t)􏽮 􏽯 are
uniformly convergent to the solution of TPBV (39), i.e.,

lim
h⟶∞

lim
k⟶∞

λ(h,k)
(t) � λ∗(t),

lim
h⟶∞

lim
k⟶∞

x
(h,k)

(t) � x
∗
(t).

(47)

*is completes the proof.
*e number of iterations X and Y can be determined by

the accuracy requirement for the performance index (30).
We give a practical algorithm calculating the (X, Y)th
suboptimal optimal identified rate as Algorithm 1 □

5. Simulation Examples

In the Prisoner’s Dilemma with payoff matrix (1), let tf � 5,
T � 5, R � 3, P � 0, S � − 4. *e replicator dynamic with
TBC is

_x(t) � 3β1(t) + β2(t) − 1( 􏼁x(t) − 4 1 − β2(t)( 􏼁􏼈 􏼉β1(t)(1

− x(t))x(t), t ∈ [0, 5].

(48)

*e replicator dynamic without TBC is

_x′(t) � 2 x′(t) − 2( 􏼁 1 − x′(t)( 􏼁x′(t), t ∈ [0, 5]. (49)

By simulation, we study the following three problems.

5.1. Effect Analysis of TBC. Let x0 � 0.4, β � β1(t) � β2(t) �

0.7 and 0.9, and t ∈ [0, 5], respectively. In the previous
discussion, we denote fC(x, β1, β2) as the payoff of the
cooperator with TBC, denote fD(x, β1, β2) as the payoff of

the defector with TBC, denote gC(x) as the payoff of the
cooperator without TBC, and denote gD(x) as the payoff of
the defector without TBC, denoting the group’s expected
payoff without TBC as H(x) and with TBC as H′(x, β1, β2).
In Figure 1, to simplify legends and discuss the effect of β on
promoting cooperation, we redefine the symbol as follows: at
t � t0, let H′(β) and fi(β) be the payoffs of group and
individual i with TBC β form t � 0 to t � t0, respectively,
H(β) and gi(β) be obtained after TBC has just been
withdrawn, i.e., TBC β is used from t � 0 to t � t0 − τ, where
τ is positive and small enough, x(β) is the cooperation rate
with TBC β, gi is the payoff function curve of individual i, H

is the payoff function curve of the group, and x is the co-
operation rate curve without TBC, respectively, where
i � C, D.

Based on Figures 1(a) and 1(b), from the curves of gC

and gD, we can know the payoffs of the cooperator and
defector are all decreasing and cooperation fails to evolve
without TBC. Comparing Figures 1(a) and 1(d), we can see
that cooperators obtain more payoff than without TBC, but
cooperation rate x(0.7) decreases and cooperators are ex-
pelled still because the identified rate is low when β � 0.7.
According to the parameters in this example, x0 � 0.4 is in
the basin of attraction of cooperation only when β> 11/14.
So, as a result, payoff of cooperator decreases and cooper-
ation fails to evolve. When β � 0.9, payoff of cooperators
increases and cooperation evolves successfully; payoff of
defectors increases but defection fails to evolve.

Here, we try to show what will happen if we withdraw
TBC for a short time. First of all, we emphasize the symbols
H′(0.9), H(0.9), and H of Figure 1(c). For a given time t0,
H(0.9) and H′(0.9) all correspond to the cooperation rate
x(t0) defined by the replicator dynamics (48) with TBC
β � 0.9, but H corresponds to the cooperation rate x′(t0)

defined by the replicator dynamics without TBC (49). As
shown in Figure 1(b), gD(β)<fD(β) for any identified rate
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Input: Given positive real numbers δ and ε.
Output: (X, Y)th suboptimal β(∗x)

i (t), i � 1, 2.
Step 1: Initialize h � 1, λ(∗0)(t) � 1.
Step 2: Initialize k � 1, x(h,0)(t) � x0.
Step 3: Calculate (h, k)th state variable x(h,k)(t) according to equation (34).
Step 4: If ‖x(h,k)(t) − x(h,k− 1)(t)‖< δ, let x(∗h)(t) � x(h,k)(t); otherwise, let k � k + 1 and jump to Step 3.
Step 5: Initialize k � 1, λ(h,0)(t) � 1.
Step 6: Calculate (h, k)th adjoint variable λ(h,k)(t) according to equation (33).
Step 7: If ‖λ(h,k)(t) − λ(h,k− 1)(t)‖< δ, let λ(∗h)(t) � λ(h,k)(t); Otherwise, let k � k + 1 and jump to Step 6.
Step 8: Letting X � h, calculate .. according to the following equation:
J(H) � 1 − x(tf) + 􏽒

tf

0 (q1β
(∗H)
1 + q2β

(∗H)
2 )dt

Step 9: If |(J(X) − J(X− 1))|/J(X) < ε stop the algorithm and calculate the suboptimal βi(t), i � 1, 2 according to equation (32);
otherwise, let h � h + 1 and jump to Step 2.

ALGORITHM 1: Finding a suboptimal optimal identified rate.
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Figure 1: (a). *e payoffs of the cooperator. (b). *e payoffs of the defector. (c). *e payoff of the group. (d). Evolution of the cooperation
under TBC.
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β. When β � 0.7, condition (26) is not satisfied and
x � 0.861, so the point x0 � 0.4 is not in the basin of at-
traction of cooperation and fC(0.7)>gC(0.7). But, by de-
signing a large identified rate β � 0.9, we obtain the basin of
attraction of cooperation is (0.154, 1) and x1 � 0.861. When
t> 2.213, one gets x> 0.861 and fC(0.9)>gC(0.9) so that
TBC inhibits the growth rate of the cooperator’s payoff. If we
withdraw TBC for a short time, cooperators will obtain more
payoffs.

Combined with the evolution of cooperation, we come
to the following conclusion: when the cooperation rate
x(t) is low, TBC results in the payoff for all individuals
being higher than the payoff without TBC; when the co-
operation rate x(t) is large enough, the payoff for all in-
dividuals will be lower than the payoff without TBC under
same x(t). On one hand, Figures 1(b) and 1(c) show that
TBC decreases not only the defector’s payoff but also the
group’s payoff. Furthermore, the higher the cooperation
rate is, the more obvious the inhibition is. On the other
hand, we observe the positive effects of TBC on promoting
both the cooperation rate and the group’s payoff. Only
under a bigger βi(t), i � 1, 2 does the cooperation rate x(t)

increases. For example, although the group payoff H′(0.9)

under TBC is always smaller than H(0.9), it is always
greater than H.

In summary, Figure 1 shows that when the group co-
operation rate x(t) defined by (48) reaches a satisfactory
value, temporary withdrawal of TBC can increase the payoff
of all individuals in the group for a short time. However, if
without TBC for a long time, the group cooperation rate
βi(t), i � 1, 2 defined by (49) will drop to a very low level and
all individual benefits will decrease.

5.2. Analysis of Rationality of the Optimal Identified Rate.
Letting x(0) � 0.4, q1 � q2 � q, we obtain the optimal
identified rate β∗i (t), i � 1, 2 under different q as Figure 2
and the optimal state path as Figure 3.

Given a sufficiently large constant Γ > 0 and a sufficiently
small constant c> 0, if ui(t)>Γ, we define βi(t) � 0, and if
0< ui(t)< c, we define βi(t) � 1, where i � 1, 2. Figure 2
shows that β∗i (t), i � 1, 2 approximates bang-bang control
with switching time tis. If t< tis, then β∗i (t) � 1; otherwise,
β∗i (t) � 0. *e smaller q corresponds to the bigger switching
time. If qi is large enough, then β∗i (t) � 0 and
x∗(t) � x0, t ∈ [0, tf].

Now, we explain β∗i (t) � 0. According to the definition
of TBC, β∗i (t) � 0 means all cooperators are labeled as
“defectors” and all defectors are labeled as “cooperators”.
*is is impossible and inefficient. Here, β∗i (t) � 0 can be
understood as no effective TBC; all individuals choose
“defection” strategy for self-protection. In this case, the
control cost is 0. Under βi(t) � 0, the cooperation rate x(t)

is a constant value. By designing the bang-bang control as
Figure 2, we can achieve the goal of successfully pro-
moting the evolution of cooperation. *is meets the re-
quirement of minimizing the performance index (30).
*is is, however, unreasonable for the group in terms of
revenue. Probably, the more reasonable approach would

be to withdraw TBC when the cooperation rate x(t) is
satisfactory. Now, let us discuss the TBC design from the
perspective of revenue.

Figure 3 shows that there is a suitable TBC to make the
cooperation evolve successfully. Furthermore, the smaller q

results in the better effect of promoting cooperation.
By designing β∗i (t) defined by *eorem 1, the corre-

sponding expressions of the total payoff of the cooperator,
defector, and group is 􏽒

5
0 [3β21(t) + 4β1(t)(1−􏽮 β2(t))]x(t) −

4β1(t)(1 − β2(t))}dt, 􏽒
5
0 5β1(t)(1 − β2(t))x(t) dt, and 􏽒

5
0

[β1(t)(3β1(t) + β2(t) − 1)x2(t) + β1(t)(1 − β2(t))x(t)]dt,
respectively. If we do not design the TBC, from t � 0 to t � 5,
the total payoffs of the cooperator, defector, and group can
be expressed as 􏽒

5
0(7x′(t) − 4)dt, 􏽒

5
0 5x′(t)dt, and 􏽒

5
0(2x′

2

(t) + x′(t))dt, respectively, where x′(t) is described by (49).
Let q1 � q2 � 0.1 and q1 � 0.1, q2 � 0.05, respectively. *e
calculation results are shown in Table 1.

Table 1 shows that β∗i (t) improves the cooperator’s
payoff. Furthermore, as qi decreases, the switching time tis
moves backwards and the cooperator’s payoff increases.

5.3. Optimal Timing Control (OTC) of Switched Replicator
Dynamics. System (48) and (49) is a switched nonlinear
system. In the past decades, switched systems have received
significant research attention, see, e.g., [46–48]. In this
paper, we design the switching control (SC) as follows: for a
given q1 and q2, let ts � t1s � t2s, and we design TBC with the
identified rate as

βi(t) � 1, t ∈ 0, ts􏼂 􏼃, i � 1, 2. (50)

However, when t> ts, we give up the TBC.*e replicator
dynamics with SC is as follows:

_x″(t) �
3 1 − x″(t)( 􏼁x′′

2
(t), t ∈ 0, ts􏼂 􏼃,

x″(t) − 2( 􏼁 1 − x″(t)( 􏼁x″(t), t ∈ ts, 5􏼂 􏼃,

⎧⎨

⎩

x″(0) � x0,

lim
t⟶t−

s

x″(t) � x″ ts( 􏼁.

(51)

Assuming x0 � 0.4, the switching time ts is decided by the
optimal identified rate problem (29)–(31) according to dif-
ferent weight coefficients qi. Based on a switched system (51),
the total payoffs of the cooperator, defector, and group can be
expressed as 􏽒

ts

0 3x″(t)dt + 􏽒
5
ts

(7x″(t) − 4)dt, 􏽒
5
ts
5x″(t)dt,

and 􏽒
ts

0 3x′′
2
(t)dt + 􏽒

5
ts

(2x′′
2
(t) + x″ (t))dt, respectively.

*e simulation results are shown in Table 2, and the state path
with SC is shown in Figure 4.

By comparing Tables 1 and 2, we find the impact of
control on the average payoff of a group is complex. Table 1
shows that the smaller coefficient qi corresponds to a large
group’s payoff under optimal TBC, but Table 2 shows the
opposite result. Combining with Figures 3 and 4, the group
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has a larger average payoff under SC, but the cooperation
rate is lower at t � tf � 5.

So, how to choose an appropriate control, TBC or SC,
and how to choose the switching time ts depend on what we
pay more attention to.

Now, we design the cost function JSC with OTC as
follows:

JSC � x″(5) − 2qts + q′ 􏽚
ts

0
3x″(t)dt + 􏽚

5

ts

7x″(t) − 4( 􏼁dt􏼢 􏼣,

(52)
where x(5) is the terminal cooperation rate, 2ts is the control
cost, 􏽒

ts

0 3x″(t)dt + 􏽒
5
ts

(7x″(t) − 4)dt is the cooperator’s
average payoff, and q> 0 is its weight coefficient. We search
the optimal switching time ts to maximize the function (52),
i.e., we design an OTC for promoting evolution of the
Prisoner’s Dilemma and increasing the cooperator’s average
payoff.

Theorem 2. Consider the OTC described by the switched
replicator dynamic (51) with performance index (52). φ1(ts)

and φ2(t, ts) are solutions to algebra equation (53) and
implicit function (54), respectively:

φ1 ts( 􏼁

1 − φ1 ts( 􏼁
e

− 1/φ1 ts( )( ) �
x0

1 − x0
e

− 1/x0( )e
3ts , (53)

1
2 − φ2 t, ts( 􏼁φ2 t, ts( 􏼁( 􏼁

� 1 +
1 − φ1 ts( 􏼁( 􏼁

2

2 − φ2 t, ts( 􏼁φ1 ts( 􏼁( 􏼁
e
2 t− ts( ), t ∈ ts, 5( 􏼃.

(54)

2e optimal switching time ts is decided by

dJSC

dts

�
dφ2 5, ts( 􏼁

dts

− 2q′ − 4qφ1 ts( 􏼁 + 7q 􏽚
5

ts

zφ2 t, ts( 􏼁

zts

dt � 0.

(55)
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Figure 2: *e optimal identified rate β∗(t) under differentq.
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Figure 3: Cooperation rate x∗(t) withβ∗(t).
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Proof. *e following two implicit functions can be obtained
from the switched replicator dynamics (51):

x2(t)

1 − x2(t)
e

− 1/x2(t)( ) �
x0

1 − x0
e

− 1/x0( )e
3t

, t ∈ 0, ts􏼂 􏼃, (56)

1
2 − x2(t)( 􏼁x2(t)

� 1 +
1 − x2 ts( 􏼁( 􏼁

2

2 − x2 ts( 􏼁x2 ts( 􏼁( 􏼁
e
2 t− ts( ), t ∈ ts, 5( 􏼃.

(57)

Based on existence theorem of an implicit function, we

get x2(t) �
φ1(t), t ∈ [0, ts)

φ2(t, ts), t ∈ [ts, 5]
􏼨 from (56) and (57). So,

φ1(t), t ∈ [0, ts) satisfies (53) and φ2(t, ts), t ∈ [ts, 5] sat-
isfies (54).*e cost function x(t) + y(t) � 1 can be rewritten
as follows:

JSC � φ2 5, ts( 􏼁 − 2qts + q′ 􏽚
ts

0
3φ1(t)dt + 􏽚

5

ts

7φ2 t, ts( 􏼁dt􏼢 􏼣.

(58)

Because d 􏽒
ts

0 φ1(t)dt/dts � φ1(ts), d 􏽒
5
ts
φ2(t, ts)dt/dts �

− φ2 (ts, ts) + 􏽒
5
ts

zφ2(t, ts)/ztsdt, and φ2(ts, ts) � φ1(ts), the
optimal switching time ts is decided by (55).

Letting q′ � 0.1, q1 � 0, 0.01, 0.1 and 1, respectively, we
get the cooperation rate curve as in Figure 5 and the payoffs
of the cooperator, defector, and group as in Table 3 by
applying *eorem 2.

Figure 5 shows that the cooperation rate x(t) is very high
whenever the weight coefficient of the cooperator’s payoff
q � 0, 0.01, 0.1 or q � 1 although the switching time ts

changes (ts varies from 2.472 to 2.967). It is because we
choose a large coefficient of cooperation rate at terminal
time x(5). In fact, the main goal of this paper is to promote
the evolution of cooperation by designing TBC. So, we
design the cost function JSC to promote the cooperation rate
and to reconcile control cost and the cooperator’s payoff.
Observing Table 3, we note that the switching time ts in-
creases as the cooperator’s payoff weight coefficient q gets
bigger.

*e OTC has the following advantages when Table 3 is
compared to Tables 1 and 2. Firstly, it has the same ad-
vantage as TBC: it restrains the payoffs of defectors. Sec-
ondly, it greatly enhances the payoffs of cooperators
compared to TBC. *irdly, it is the optimal way to promote
the payoffs not only for cooperators but also for groups.
Lastly, it can effectively promote the cooperation rate
x(t). □

Table 1: Payoffs of the cooperator, defector, and group under different.qi

Cooperator’s payoff Defector’s payoff Group’s payoff
β∗i (t) with q1 � q2 � 0.1 4.581 0 3.618
β∗i (t) with q1 � 0.1, q2 � 0.05 5.111 0 4.203
No TBC − 18.993 0.719 0.208

Table 2: *e payoff of the cooperator, defector, and group with SC.

Cooperator’s payoff Defector’s payoff Group’s payoff
SC with q1 � 0.1, q2 � 0.2 4.571 8.610 8.111
SC with q1 � 0.1, q2 � 0.05 7.916 4.858 7.067
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Figure 4: Cooperation rate x(t) with SC.
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Figure 5: Cooperation rate x(t) with OTC.
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6. Conclusions

*e analysis in this paper provides value insights into a
number of issues regarding some clusters in the economic
society when faced with the Prisoner’s Dilemma, which can
help operators of clusters decide to adopt TBC or not,
identify cooperators or identify defectors, and design the
value of the identified rate.

First, operators should judge the harm of defection in the
Prisoner’s Dilemma. We show that when the cooperation
rate is high, to further increase cooperation rate, a large
identified rate is needed. *us, it is difficult to design a TBC
to further promote cooperation and further improve the
cooperator’s payoff. Furthermore, the cluster must pay for
the TBC. So, it is not necessary to use TBC for a cluster when
the cooperation rate is high. If operator considers TBC is
necessary, we advice he/she depends more on the cooper-
ation identification.

By contrast, if the cooperation rate is too low, i.e., the
group is almost full of defectors, it is difficult to design a TBC
which can help cooperators invade the group of defectors
successfully. In this case, any TBC all can increase the co-
operator’s payoff. But, a large defection identified rate is
essential to promote the cooperation rate. It is very im-
portant to note that defection identification is more effective
than cooperation identification.

We show the switch between adopting TBC and with-
drawing TBC is necessary. TBC has an advantage in pro-
moting evolution of cooperation. However, when the
cooperation rate is high, TBC reduces the payoffs of the
cooperators unless the identified rate is high enough. *is
paper gives OTC as a way to design switching law. *e
simulation results confirm OTC not only maintains a high
cooperation rate but also increases the payoff of the
cooperators.

While this paper is a significant step in the economic
analysis of the Prisoner’s Dilemma and in the optimal
control of promoting cooperation, there are a number of
interesting directions for future work in this area.*ere are a
number of potential interesting extensions of our model
through relaxation of some of our assumptions. For ex-
ample, we assume the payoff of mutual defection is 0 in this
paper, i.e., P � 0. In fact, we can assume an individual is
exclusive [49] and every individual only accepts an en-
counter-tagged “cooperator”.

Last but not the least, this paper does not really design an
SC law for the switched replicator dynamics; the SC designed
in this paper is only an OTC with one switching time.
Further discussions for promoting cooperation and in-
creasing the cooperator’s average payoff will aim to design
an OTC with multiple switching times and general SC

unrestrained by bang-bang control. Furthermore, the op-
timal tag-based cooperation control proposed in this paper
can be applied in management practice, such as in
e-commerce platforms. Because of information asymmetry
about product quality in e-commerce platforms, there exists
the PDG in seller groups and consumer groups. Platform
manager can design tag-based cooperation control by of-
fering an authentication service. A valuable extension of this
research is to empirically examine the feasibility of TBC
proposed in this paper.

Data Availability

*e simulation model and data are given in the article.

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

*is paper was supported by the National Natural Science
Foundation of China (71871171, 61773156, 71871173, and
71801175). *is work was also partly supported by the Key
Scientific Research Project in Universities of Henan Prov-
ince (19A120006).

References

[1] V. C. Wynne-Edwards, Animal Dispersion in Relation to
Social Behavior, Hafner Publishing Company, New York, NY,
USA, 1962.

[2] W. D. Hamilton, “*e genetical evolution of social behaviour.
II,” Journal of 2eoretical Biology, vol. 7, no. 1, pp. 17–52,
1964.

[3] B. Allen andM. A. Nowak, “Games among relatives revisited,”
Journal of 2eoretical Biology, vol. 378, no. 8, pp. 103–116,
2015.

[4] J. W. Michael, “Reviewed work: the selfish gene by richard
dawkins,” Evolution, vol. 32, no. 1, pp. 220-221, 1978.

[5] K. Kobayashi, “Conditions for kin selection to bring coop-
eration and improve population growth: a response to Iri-
tani,” Journal of Ecology, vol. 108, no. 1, pp. 14–16, 2020.

[6] J. M. Smith and G. R. Price, “*e logic of animal conflict,”
Nature, vol. 246, no. 5427, pp. 15–18, 1973.

[7] E. Tornero, J. F. Sánchez-Romera, J. J. Morosoli, A. Vázquez,
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