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SUPPLEMENTARY NOTE 1: STOCHASTIC MODEL OF YEAST STRESS RE-

SPONSE

The chemical master equation is the workhorse of stochastic systems biology. It describes

the time evolution of the probabilities of the system states p(x, t), where xi = [η1, η2, . . . , ηM ]

describes the integer counts of the number of molecules in the system [1]. The probability,

sometimes called propensity, to transition between these states in the infinitesimal time dt is

given by w(x, t,θ)dt. Biochemical systems are often described in terms of chemical reactions,

in which molecules like DNA, RNA, and proteins are created, destroyed, diluted, or modified.

From the theory of biochemical kinetics, these reaction rates can be taken as propensities

of a given reaction in the system occuring. Each propensity function is associated with a

corresponding stoichiometry vector ψν , which describes how the state x changes when a

given the νth reaction occurs. Thus, the chemical master equation is given by

dp(xi, t;θ)

dt
= −

R∑
ν=1

p(xi, t;θ)wν(xi, t;θ) +
R∑
ν=1

p(xi −ψν , t;θ)wν(xi −ψν , t;θ). (1)

Often, the probability vector is combined over all the states p = [p(xi)], and therefore

Eq. 1 is written in linear form as dp
dt

= Ap. However, this set of ODEs often has infinite

dimension, and therefore cannot be easily solved. The finite state projection approach to

solving the chemical master equation approximates the infinite state Markov chain in Eq. 1

by truncating it into a finite subset of linear ODEs [2]. This is achieved by first partitioning

the entire state space of the system X into two disjoint sets: a finite set of states XJ and

an infinite set of states XJ ′ . The FSP approach then combines all of XJ ′ into a single state

g(t), and does not allow any reactions to leave this space. The dynamics for the FSP system

are then given by the finite, linear set of ODEs,

d

dt

pJ (t;θ)

g(t;θ)

 AJJ 0

−1TAJJ 0

pJ (t;θ)

g(t;θ)

 , (2)

where AJJ is the finite submatrix taken from A according the the states of the CME which

were retained XJ . For more details on the FSP approach, we refer the reader to [2–5].

For STL1 and CTT1 gene expression in yeast, the FSP matrices can be written as a block
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diagonal matrix,

d

dt



p0

p1

p2

...

PNm

g(t)


=



S−T Γ 0 . . . 0

T S−T− Γ 2Γ
. . . 0

0 T S−T− 2Γ
. . . 0

...
. . . . . . NmΓ 0

0 . . . T S−T− NmΓ 0

0 . . . . . . 1TT 0





p0

p1

p2

...

PNm

g(t)


, (3)

where the block matrices S, T, and Γ are given by:

S(t) =


−k12 k21(t) 0 0

k12 −k21(t)− k23 k32 0

0 k23 −k32 − k34 k43

0 0 k34 −k43

 ;

T =


kr1 0 0 0

0 kr2 0 0

0 0 kr3 0

0 0 0 kr4

 ;

Γ =


γ 0 0 0

0 γ 0 0

0 0 γ 0

0 0 0 γ

 . (4)

.

Note that each submatrix S, T, Γ can be futher decomposed into sub-sub matrices of 1’s

and 0’s multiplied by a single model parameter. For example,

T = kr1


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

+ kr2


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

+ kr3


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

+ kr4


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 . (5)

All master equations which are linear in parameters can be decomposed like this, and there-

fore the generator the entire generator matrix can easily be constructed as the sum of each
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matrix,

A =

Nθ∑
i=1

θiAθi
. (6)

Furthermore, the sensitivity matrices ∂A
∂θi
≡ Aθi

required to compute the FSP-FIM can

easily be found from the decomposed matrices in Eq. 5, i.e.

Tkr1 =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


(7)

and

Akr1 =



−Tkr1 0 0 . . . 0

Tkr1 −Tkr1 0
. . . 0

0 Tkr1 −Tkr1
. . . 0

...
. . . . . . . . .

...

0 . . . . . . Tkr1 −Tkr1


(8)

In [5], we derive the sensitivity dynamics to parameter θi as

d

dt

 p

sθi

 =

 A 0

Aθi
A

 p

sθi

 , (9)

which are then used to compute the Fisher information matrices, as described in the main

text.

SUPPLEMENTARY NOTE 2: NUCLEAR LOCALIZATION OF HOG-MAPK

The nuclear localization of HOG-MAPK has been studied in significant detail [6–9].

In [10, 11], we modeled the nuclear enrichment of HOG-MAPK, f(t) with the empirical

equation,

f(t) = A

(
(1− e−r1t)e−r2(S)t

1 + (1−e−r1t)e−r2(S)t

m

)η

, (10)
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as shown in Fig. 1b in the main text, where S is the NaCl concentration and

r2(S) =
α

S −∆
. (11)

Model parameters are given in Table I. In [10], these parameters where fit to experimentally

measured localization levels at 0.2 M and 0.4 M NaCl concentrations. As noted in Eq.

1 of the main manuscript, these nuclear MAPK levels are then mapped to a thresholded

reactivation function,

k21(t) = max [0, α− βf(t)] . (12)

To illustrate how the osmotic shock reponse model can be used to reduce uncertainty in the

model, we connect the environmental salinity level to the reactivation time τ2, shown in Fig.

5 in the main manuscript. To find the reactivation times, we assumed that the salinities

are linearly related to the reactivation times, that is τ2 = cM , where c is the coefficient of

proportionality. We used reactivation times determined from the model in [11] for 0.2M and

0.4M experimental conditions to find c, and in turn could estimate reactivation times for

reasonable salinity levels. We then use these estimates of reactivation times in our reduced

piecewise constant model, Eq. 9 in the main text. We note that this choice of model for

reactivation times (i.e. a line) could be made more precise with more experimental data or

a secondary model for HOG-MAPK nuclear localization.

SUPPLEMENTARY NOTE 3: OPTIMIZATION OF CELL MEASUREMENTS

To calculate the optimal sampling schedule for the FIM, we want to find the vector c

which maximizes the FIM (see Eq. 8 in the main text), in terms of Ds optimality, which

corresponds to maximizing the product of the eigenvalues of the FIM. To optimize the num-

ber of measurements to be taken at a given time, we use a ‘greedy’ optimization approach,

described in Algorithm 1.
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Algorithm 1 Measurement allocation optimization algorithm.
Initialize c

Initialize f

i = 0

while ci(ci1)−1 6≈ ci−1(ci−11)−1 do

ĉ = c

for k ∈ (1, Nt) do

ĉk = ck + 1

qk = ĉTf

end for

j = argmax(q)

cij = cij + 1

i = i+ 1

end while

SUPPLEMENTARY TABLES

TABLE I. HOG-MAPK Model Parameters

gene k12 [s−1] α [s−1] β k23 [s−1] k32 [s−1] k34 [s−1] k43[s
−1] kr1 [s−1] kr2 [s−1] kr3 [s−1] kr4 [s−1] γ [s−1][mol−1]

STL1 3.4× 10−3 5.1 1100 6.4× 10−3 1.5 8.3 3.7× 10−2 9× 10−5 2× 10−2 110 4.1× 10−2 5.3× 10−3

CTT1 3.8× 10−3 0.23 3.5 5.0× 10−3 4× 10−3 9.4× 10−3 4.4× 10−3 1.1× 10−3 9.9× 10−2 6.1× 10−1 2.4× 10−2 2.1× 10−3

TABLE II. HOG-Signaling Model Parameters

A − α [s−1M−1] η − m − r1 [s−1] ∆

9.3× 109 1.45× 10−3 5.9 2.2× 10−2 6.1× 10−3 −5.31× 10−3
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SUPPLEMENTARY FIGURES
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FIG. 1. Verification of the FSP-FIM for the time-varying HOG-MAPK model.(a) Scatter plots

and density plots of the spread of MLE estimates for 50 simulated data sets for a subset of model

parameters. All parameters are shown in logarithmic scale. The ellipses show the 95% CI for the

inverse of the FIM (purple) and covariance of scatter plot (orange). The yellow dots indicate the

parameters at which the FIM and simulated data sets were generated. (b) Rank-paired eigenvalues

(vi) for the covariance of MLE estimates (orange) and inverse of the FIM (blue). The angles between

corresponding rank-paired eigenvectors (φi) are shown in degrees.
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