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In this paper, a fuzzy adaptive output feedback dynamic surface sliding-mode control scheme is presented for a class of quadrotor
unmanned aerial vehicles (UAVs). ,e framework of the controller design process is divided into two stages: the attitude control
process and the position control process. ,e main features of this work are (1) a nonlinear observer is employed to predict the
motion velocities of the quadrotor UAV; therefore, only the position signals are needed for the position tracking controller design;
(2) by using the minimum learning technology, there is only one parameter which needs to be updated online at each design step
and the computational burden can be greatly reduced; (3) a performance function is introduced to transform the tracking error
into a new variable which can make the tracking error of the system satisfy the prescribed performance indicators; (4) the sliding-
mode surface is introduced in the process of the controller design, and the robustness of the system is improved. Stability analysis
proved that all signals of the closed-loop system are uniformly ultimately bounded. ,e results of the hardware-in-the-loop
simulation validate the effectiveness of the proposed control scheme.

1. Introduction

Quadrotor unmanned aerial vehicles (UAVs), as a new
product in the field of small UAVs, have become a research
hotspot among research and scholars all over the word [1–5].
,e main advantages of quadrotor UAVs, such as flying in
any direction, take off and land vertically, and hover at an
ideal attitude, make the quadrotor UAVs widely used in
more important fields, such as providing medical assistance,
transporting special resources, disaster monitoring, and
agricultural mapping. However, quadrotor UAVs are a
complex physical system with the following characteristics,
such as multivariate, nonlinearity, underactuating, and
strong coupling, which make it very difficult to design an
effective adaptive robust flight controller.

In the recent years, various effective control tech-
niques have been developed for quadrotor UAVs to
achieve stabilized or automatic flight, such as adaptive
PID linear quadratic regulator (LQR) control [2, 6, 7],
LMI-based linear control [8, 9], and H∞ control [10, 11].

With the development of intelligence control theory,
different kinds of advanced nonlinear control methods,
which combine the linear control methods with intelli-
gence control theory, such as feedback linearization
control [12], model predictive control [13, 14], adaptive
backstepping control [15, 16], adaptive sliding-mode
control (SMC) [17–20], fault-tolerant control [21], dy-
namic surface control (DSC) [22–25], and adaptive fuzzy
control [26, 27], have been proposed to achieve attitude
and position trajectory tracking performance of quad-
rotor UAVs. In [28], a novel neural network-based output
feedback controller is developed for a group of quadrotor
UAVs. In [29], the prescribed performance backstepping
dynamic surface control (DSC) scheme is proposed to
solve the problem of trajectory tracking control for a
quadrotor UAV with control input saturation. In [5], a
fuzzy-based compound quantized control strategy is ap-
plied to the Quanser Qball-X4 quadrotor experimental
platform, which achieved precise position control and
tracking performance.
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Among the above control schemes, the backstepping
strategy has been widely used in the controller design for
nonlinear systems. For instance, in [30], the trajectory
tracking controller based on the backstepping approach was
developed for the quadrotor model, while the PD control
was used to attenuate the effects caused by system uncer-
tainties. In [16], a nonlinear disturbance observer-based
backstepping control method has been proposed to address
the problem of loss of actuators’ effectiveness. However, one
drawback of backstepping is the “explosion of complexity”
caused by the recurrent derivation of the virtual control law
in each design step. To deal with this problem, the DSC
control method has been proposed for a class of nonlinear
systems, by introducing a first-order low-pass filter in each
design step, and the shortcoming was overcome [22, 31–33].

An effective way to deal with the uncertainty of system
parameters and unmodeled dynamics is to design an
adaptive controller using the general approximation ability
of the fuzzy logic system (FLS) and neural networks (NNs)
[34–36]. ,e number of adaptive laws which depends on the
fuzzy rules or the NN weights will be significantly increased
as the number of fuzzy rules or the NN weights increase. To
overcome this problem, a new method by estimating the
norm rather than each item of the weight vector was pro-
posed in [37, 38]. ,us, the number of adaptive laws is
reduced significantly. Actually, the quadrotor UAVs are not
only time-varying coupled and nonlinear systems, but also
suffer from perturbations such as payload variations and
nonlinear friction. ,erefore, it is necessary to design a
controller with adaptive capability, fast convergence, and
robust performance for the quadrotor UAVs.

As a widely used nonlinear control algorithm, the
sliding-mode control (SMC) is known for its excellent
performance properties for complex high-order nonlinear
systems in the presence of uncertain conditions [39, 40]. In
[18], the SMC trajectory tracking controller was proposed
for quadrotor UAVs by considering the wind perturbations
and external disturbance components. In [19], a hierarchical
control strategy based on the double-loop integral sliding-
mode controller was designed for the position and attitude
tracking of quadrotor UAVs with sustained disturbances
and parameter uncertainties. Most of the existing literature
focuses on using the SMC method to solve the attitude
control of quadrotor UAVs instead of the position trajectory
tracking control design because the transformed dynamic
equation has a preferred form for the attitude control.

However, a major constraint in the controller design of
quadrotor UAVs is that all the state variables of the system
are required to be measurable. But in practical application,
under some unpredictable factors, it will cause the mea-
surement sensor to fail. [41–45]. In [41], an adaptive output
feedback control scheme has been proposed for a class of
uncertain SISO nonlinear systems under the constraint that
only the system output can be obtained. In [43], a fuzzy state
observer-based control method is designed for an uncertain
MIMOnonlinear system, and by using the state observer, the
problem of state immeasurability has been solved. Tradi-
tionally, the tracking performance in adaptive control
schemes has been confined to ensure that the tracking error

converges to a residual set, the size of which is determined by
the explicit design parameters and some unknown bounded
terms. ,e upper bounds of the tracking error are difficult to
calculate, so it is a very practical work to make the prior
selection of the tracking performance satisfy certain steady
state behavior. In [46, 47], a prescribed performance control
scheme has been proposed for a class of nonlinear systems,
and by constructing a prescribed performance function, the
tracking error of the system was transformed into a new
variable to ensure that the convergence rate was no less than
a prespecified value, and the steady-state error remains
within the prescribed range. However, limited attention has
been paid to this issue for the controller design of quadrotor
UAVs.

Inspired by the aforementioned discussions, an adaptive
output feedback dynamic surface sliding-mode control for a
class of quadrotor UAV system is presented where the fuzzy
approximators are used to approximate the unknown items
of the system. ,e main contributions of the proposed
control scheme are as follows:

Firstly, to our best knowledge, this is the first time to use
the dynamic surface control techniques with the sliding-
mode method to design and test the robust controller of
quadrotor UAVs in the platform of hardware-in-the-loop
simulation, leading to a greatly simplified structure of the
controller and improved robustness of the system.

Secondly, by introducing performance and error
transformed functions in the controller, the tracking error of
the quadrotor UAVs is transformed into a new error con-
straint variable which can ensure the prescribed transient
performance of the system.

,irdly, by estimating the norm of the FLS weights
instead of estimating each variables of the weight vector,
there is only one parameter needed to be updated at each
step. ,us, the computing time is reduced.

Finally, the nonlinear state observer is introduced to
predict the unmeasurable state of the quadrotor such as the
angular velocity state of the quadrotor. ,en, only the
measurable attitude and position information are required
in the implementation of the controller of the quadrotor.

,e rest of this paper is organized as follows. In Section
2, problem statement and preliminaries including the
mathematical model of the quadrotor, fuzzy logic systems
(FLSs), and performance function are introduced. ,e
process of the controller design and analysis of stability are
given in Sections 3 and 4, respectively. Section 5 shows the
results of the hardware-in-the-loop simulation to validate
the effectiveness of the proposed control scheme.

2. Problem Statement and Preliminaries

2.1. Dynamic Model of Quadrotor UAVs. ,e schematic
configuration of the quadrotor in this paper is shown in
Figure 1. ,e basic movements are vertical movement, front
and back movement, left and right movement, pitch rota-
tion, roll rotation, and yaw rotation. On changing the rotor
speed altogether with the same quantity, the lift forces will
change, in this case, affecting the attitude of the vehicle. ,e
complicated motions of a quadrotor can be divided into two
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typical parts, and each part represents a subsystem with
coupled terms. ,e first part is associated with the trans-
lational positions, and the second part is associated with the
rotational angles. And in this section, we will deduce the
mathematical model of a quadrotor UAV, including navi-
gation equations and moment equations.

DefineΛ � [ϕ, θ,ψ]T ∈ R3 and w � [p, q, r]T, where ϕ, θ,
and ψ represent the roll angle, pitch angle, and yaw angle
with respect to the inertia frame and p, q, and r denote the
angular velocity of the roll, pitch, and yaw with respect to the
body-fixed frame. Let RBG denote the transformation matrix
between the inertia frame and the body-fixed frame using
Euler–Lagrange formulation, which can be expressed as

RBG �

CψCθ CψSθSϕ − SψCϕ CψSθCϕ + SψSϕ

SψCθ SψSθSϕ + CψCϕ SψSθCϕ − CψSϕ

− Sθ SϕCθ CϕCθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

where S(·) and C(·) denote the sin(·) and cos(·), respectively.
Let P � [x, y, z]T ∈ R3 denote the position with respect

to the inertia frame. According to Newton’s second law, the
relationship between combined force FG and acceleration in
the ground coordinate is

FG �

Fx

Fy

Fz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

d
dt

(mV) � m
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€z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

and we can get the translational dynamic equations of the
quadrotor
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€z
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0
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3)

where Dx � dx _x, Dy � dy _y, andDz � dz _z, in which
dx, dy, anddz are the air drag coefficients;
Uz � k(Ω21 +Ω22 +Ω23 +Ω24) is the lift force generated by the
rotors with respect to the body coordinate system, in which
Ωi, i � 1, . . . , 4 denote the rotary speed of the front, right,
rear, and left rotors and k is the lift coefficient of the rotor.

According to the kinetic equation, the relationship be-
tween Λ and w can be described as

_Λ � Q(Λ)w �

1 TθSϕ TθCϕ

0 Cϕ − Sϕ

0
Sϕ

Cθ

Cϕ

Cθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

where T(·) denotes tan(·) and the transformation matrix
Q(Λ) is bounded according to ‖Q(Λ)‖F <Q(Λ)max for a
known constant Q(Λ)max provided − (π/2)< ϕ< (π/2) and
− (π/2)< θ< (π/2) [23]. MB0 is defined as the torque

provided by the rotors with respect to the body-fixed frame
and is described as follows:

MB0 �

MB0x

MB0y

MB0z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

l F4 − F2( 􏼁

l F3 − F1( 􏼁

τ2 + τ4 − τ1 − τ3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

where τi(i � 1, . . . , 4) � kψFi, kψ is a constant, l is the dis-
tance between a rotor and the center of mass of the
quadrotor, Fi(i � 1, . . . , 4) � kΩ2i denotes the lift provided
by the rotor, and we get τi � kψkΩ2i � τΩ2i , inwhich τ
represents the antitorque coefficient. Using the New-
ton–Euler equation, we can get the rotational dynamic
equation of the quadrotor:

MB0 � w × JBw( 􏼁 + JB _w + Mr + Md, (6)

where JB � diag(Jxx, Jyy, Jzz) is a symmetric positive defi-
nite constant matrix with Jxx, Jyy, and Jzz being the rotary
inertia with respect to the Obxb, Obyb, and Obzb axes, the
signal × represents the cross multiplication, and Mr and Md

are the resultant torques due to the gyroscopic effects and the
resultant of the aerodynamic frictions torque.,ey are given
as

Mr � 􏽘
4

i�1
w × JR 0, 0, (− 1)

i+1Ωi􏽨 􏽩
T
,

Md � dϕ
_ϕ, dθ

_θ, dψ _ψ􏽨 􏽩
T
,

(7)

where JR represents the moment of inertia of each rotor and
dϕ, dθ, and dψ are the corresponding aerodynamic drag
coefficients.

From (6), the following equation can be obtained:

_w �
1
JB

MB0 − Mr − Md − w × JBw( 􏼁􏼂 􏼃, (8)

where

w × JBw �

− r Jyyq􏼐 􏼑 + q Jzzr( 􏼁

r Jxxp( 􏼁 − p Jzzr( 􏼁

− q Jxxp( 􏼁 + p Jzzq( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

With the help of (4), the following equations can be
obtained:
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Figure 1: Schematic diagram of the quadrotor UAV.
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ϕ �
1

Jxx

MB0x + _θ _ψ Jyy − Jzz􏼐 􏼑 − JR
_θΩ − dϕ

_ϕ􏽨 􏽩,

θ �
1

Jyy

MB0y + _ϕ _ψ Jzz − Jxx( 􏼁 + JR
_ϕΩ − dθ

_θ􏽨 􏽩,

ψ �
1

Jzz

MB0z + _θ _ϕ Jxx − Jyy􏼐 􏼑 − dψ _ψ􏽨 􏽩,

(10)

where Ω � Ω1 +Ω3 − Ω2 − Ω4.

Remark 1. It is worth noting to point out that the roll, pitch,
and yaw angles are limited to (− π/2, π/2) which is physically
meaningful.

By combing (3) and (10), a nonlinear equation of the
quadrotor UAV is given as follows:

_X � f(X) + g(X)U, (11)

where
X � [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12]

T � [x, _x,

y, _y, z, _z, ϕ, _ϕ, θ, _θ,ψ, _ψ]T is the state vector and f(X) and
g(X) are the smooth functions. ,e dynamic of quadrotor
UAVs can be described as follows:

_x1 � x2,

_x2 � Cx7
Sx9

Cx11
+ Sx7

Sx11
􏼐 􏼑U1 − a1x2,

_x3 � x4,

_x4 � Cx7
Sx9

Sx11
− Sx7

Cx11
􏼐 􏼑U1 − a2x4,

_x5 � x6,

_x6 � Cx7
Cx9

􏼐 􏼑U1 − g − a3x6,

_x7 � x8,

_x8 � a4x10x12 + a5x10Ω − a6x8 + U2,

_x9 � x10,

_x10 � a7x8x12 + a8x8Ω − a9x10 + U3,

_x11 � x12,

_x12 � a10x8x10 − a11x12 + U4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where g is the gravity acceleration and Ui, i � 1, . . . , 4 are the
control inputs which can be expressed as

U1 �
k Ω21 +Ω22 +Ω23 +Ω24( 􏼁

m
,

U2 �
lk Ω24 − Ω22( 􏼁

Jxx

,

U3 �
lk Ω23 − Ω21( 􏼁

Jyy

,

U4 �
τ Ω24 +Ω22 − Ω21 − Ω23( 􏼁

Jzz

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Dividing the unknown parameters ai(i � 4, . . . , 11) into
two parts, known part aiN and unknown part Δai, it is
expressed as follows:

a1 �
dx

m
,

a2 �
dy

m
,

a3 �
dz

m
,

a4N �
Jyy − Jzz

Jxx

,

a5N �
JR

Jxx

,

a6N �
dϕ

Jxx

,

a7N �
Jzz − Jxx

Jyy

,

a8N �
JR

Jyy

,

a9N �
dθ

Jyy

,

a10N �
Jxx − Jyy

Jzz

,

a11N �
dψ

Jzz

.

(14)

2.2. Fuzzy Logic Systems (FLSs). ,e FLS is composed of
three main components: fuzzy rule base, fuzzification, and
defuzzification operators. ,e fuzzy rule base comprises a
collection of fuzzy “IF-THEN” rules of the following form:

Rl: if x1 is Fl
1 and x2 is Fl

2, . . . and xn is Fl
n, then y is Gl,

l � 1, 2, . . . , N,

where x � [x1, . . . , xn]T ∈ U and y are the FLS input and
output, respectively, N is the number of rules, and fuzzy sets
Fl

i and Gl are associated with the fuzzy membership func-
tions μFl

i
(xi) and μGl (y). ,rough the singleton function,

center average defuzzification, and product inference, the
FLS can be expressed as

y(x) �
􏽐

N
l�1 yl 􏽑

n
i�1 μFl

i
xi( 􏼁

􏽐
N
l�1 􏽑

n
i�1 μFl

i
xi( 􏼁􏼔 􏼕

, (15)

where yl � maxy∈RμGl (y). ,e fuzzy basis function is de-
fined as
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ξl �
􏽑

n
i�1 μFl

i
xi( 􏼁

􏽐
N
l�1 􏽑

n
i�1 μFl

i
xi( 􏼁􏼒 􏼓

. (16)

Denoting WT � [y1, y2, . . . , yN] � [W1, W2, . . . , WN]

and ξ(x) � [ξ1(x), ξ2(x), . . . , ξN(x)]T, FLS (15) can be re-
written as

y(x) � W
Tξ(x). (17)

Lemma 1. According to [34], FLSs can effectively ap-
proximate any continuous nonlinear function with any
small approximated error in a compact set. It can be
expressed as

sup
x∈Ω

F(x) − W
Tξ(x)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< ε, (18)

where the continuous nonlinear function F(x): Ω⟶ R

with Ω ∈ Rn is a compact set, WTξ(x) is an FLS (17), and
ε> 0 is the approximated error. ?erefore, F(x) can be de-
scribed as

F(x) � W
∗Tξ(x) + σ∗, ∀x ∈ Ω ⊂ Rn

, (19)

where the minimum approximated error |σ∗|≤ ε and W∗ is
an ideal weight vector and can be defined as

W
∗

� argmin
W⊂Rn

sup
x∈Ω

|F(x) − y(x)|< ε􏼨 􏼩. (20)

2.3. Performance and the Error Transformation Functions.
Similar to [46], the mathematical expression of the pre-
scribed tracking performance is given by

− κipi(t)< ei(t)< βipi(t), (21)

where ei(t) � yi − xid, i � 1, . . . , 6, are the tracking errors,
the performance function pi(t) is defined as a smooth and
decreasing positive function, and κi and βi are the given
positive constants. Moreover, κipi(0) and βipi(0) represent
the lower and upper bounds of the undershoot of ei(t) and
− κipi(∞) and βipi(∞) are the maximum allowable size of
ei(t).

,e error transformation function is chosen as

Υi Si( 􏼁 �
ei(t)

pi(t)
, (22)

where Si is the transformed error variable and Υi(Si) is a
smooth strictly increasing function with the following
properties:

lim
Si⟶ − ∞
Υi Si( 􏼁 � − κi,

lim
Si⟶+∞
Υi Si( 􏼁 � βi.

(23)

Note that if Si is kept bounded, we have − κi <Υi(Si)< βi,
and thus (21) holds.,e inverse transformation ofΥi(Si) can
be expressed as

Si � Υ− 1
i

ei(t)

pi(t)
􏼠 􏼡 ≔ Θi

ei(t)

pi(t)
􏼠 􏼡, (24)

where Si, ei(t), and pi(t), are the transformed errors, the
output tracking errors, and their corresponding perfor-
mance functions.

In this paper, we choose

Si � Θi

ei(t)

pi(t)
􏼠 􏼡 � ln

κi + ei(t)/pi(t)

βi − ei(t)/pi(t)
􏼠 􏼡, (25)

and differentiating (25) yields
_Si � ηi _yi − ηivi, (26)

where ηi � (zΘ/z(ei/pi))(1/pi)(i � 1, . . . , 6) and vi �

_xid + ei
_pi/pi, wherexid are the reference signals and ei(t) are

the output tracking errors. From the properties of the
transformation, it is clear that ηi and vi are bounded and
0< ηi0 ≤ ηi.

Remark 2. It can be seen that a new variable Si is introduced
through the above transformation process (21)–(25). If the
designed control system can guarantee that Si is bounded,
then the tracking error ei is bounded andmeets formula (21).
,is means that the tracking error is always kept within the
range [− κipi(t), pi(t)] or [− pi(t), βipi(t)]. ,e control
objective is to design an adaptive controller so that Si is
bounded.

2.4. Nonlinear Observer. For a class of nonlinear systems
with (A0, C) in the observer canonical form is given by

_x � A0x + 􏽘
n

i�1
bifi(x) + bnu,

y � CTx,

⎧⎪⎪⎨

⎪⎪⎩
(27)

with

A0 �

0 1 0 · · · 0

0 0 1 · · · 0

⋮

0 0 0 1 0

0 0 0 · · · 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C �

1

0

⋮

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

bi � 0, . . . , 0,􏽼√√√􏽻􏽺√√√􏽽
i− 1

1, 0, . . . , 0⎡⎢⎣ ⎤⎥⎦

T

,

(28)

with x ∈ Rn, y ∈ R, u ∈ R, bi ∈ Rn(i≥ 2), and f(x) is the
unknown smooth function. ,e vector b is general and not
in a restricted form. Only the output y is assumed to be
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measurable [48]. For the uncertain system (27), the non-
linear state observer is established as

_􏽢x � A􏽢x + 􏽘
n

i�1
bi

􏽢fi(􏽢x) + bnu + Ky,

􏽢y � CT􏽢x,

⎧⎪⎪⎨

⎪⎪⎩
(29)

with

A �

− k1 1 0 · · · 0

− k2 0 1 · · · 0

⋮

− kn− 1 0 0 1 0

− kn 0 0 · · · 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K �

− k1

− k2

⋮

− kn− 1

− kn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(30)

where 􏽢x is the estimation of the state x and K is the observer
gain vector; K is chosen so that the characteristic polynomial
of A − KCT is strictly Hurwitz. ,us, for a given a matrix
Q1 � QT

1 > 0, there exists a positive definitematrixP such that

A
T

P + PA � − Q1. (31)

,e function 􏽢f(􏽢x) is the estimation of f(x). In the next
section, we choose FLSs to approximate f(x). According to
(27) and (29), the observer error can be expressed as

_􏽥x � A􏽥x + 􏽘
n

i�1
bi

􏽥W
T

i ξ 􏽢xi( 􏼁 + 􏽘
n

i�1
biεi � A􏽥x + 􏽘

n

i�1
bi

􏽥W
T

i ξ 􏽢xi( 􏼁 + ε,

(32)

where 􏽥x � x − 􏽢x, 􏽥Wi � W∗i − 􏽢Wi, and ε � [ε1, . . . , εn]T.

3. The Process of the Controller Design

In this section, an adaptive FLS dynamic surface sliding-
mode control scheme is proposed for position and attitude
trajectory tracking control. ,e structure of the proposed
control scheme is shown in Figure 2. ,e recursive design
procedure contains two parts. Part 1 is the position tra-
jectory tracking control and part 2 is the attitude trajectory
tracking control. Each part contains three design steps,
which are shown in Tables 1 and 2. ,e details of the
controller design process are shown in Appendix A.

In Table 1, Si, (i � 1, . . . , 6) are the surface errors and
xj d, (j � 2, 4, 6) are the virtual control signals in Step 1, Step
3, and Step 5, respectively; (T1.3), (T1.9), and (T1.15) rep-
resent the virtual control signal pass through a first-order
filter to obtain a new variable xj d, (j � 2, 4, 6) with the time
constant τj, (j � 2, 4, 6); (T1.6), (T1.12), and (T1.18) are the
adaptive laws, and ci, (i � 1, . . . , 6), λj, μj, (j � 1, 2, 3) are
the design positive parameters. It should be noted that
χi, (i � 1, 2, 3) are the virtual control given by

χ1 � (Cx7
Sx9

Cx11
+ Sx7

Sx11
)U1, χ2 � (Cx7

Sx9
Sx11

− Sx7
Cx11

)U1,
and χ3 � (Cx7

Cx9
)U1.

In Table 2, Si, (i � 7, . . . , 12) are the surface errors and
xj d, (j � 8, 10, 12) are the virtual control signals in Step 7,
Step 9, and Step 11, respectively; (T2.4), (T2.11), and (T2.18)
represent the virtual control signal pass through a first-order
filter to obtain a new variable xj d, (j � 8, 10, 12) with the
time constant τj, (j � 8, 10, 12); (T2.7), (T2.14), and (T2.21)
are the adaptive laws, and
ci, (i � 7, . . . , 12), λj, μj, (j � 4, 5, 6) are the design positive
parameters; k1 and k2 are the observer gain.

It should be note that 􏽢θi, (i � 1, . . . , 6) are the estima-
tions of θi with θi � ‖W∗i ‖2, and ‖W∗i ‖2 and ξi(Xi) are the
ideal weight vector and fuzzy basis function vector of FLSs
which are used to approximate the unknown continuous
nonlinear function at each design step.

Remark 3. For the attitude trajectory tracking control
sysytem, χ1, χ2, and χ3 can be regarded as known and the
input U1 can be solved. ,e denominator of U1 will not
cause singularity since the yaw angle is limited to
(− π/2, π/2).

Remark 4. In the traditional sliding-mode control method,
the existence of the signum function will cause chattering in
the control system. In practical applications, the saturation
function sat(·) [49] or the hyperbolic tangent function
tanh(·) [50] are generally used to eliminate the chatting
phenomenon.

4. Stability and Prescribed Tracking
Performance Analysis

First of all, define the filter error

yi � xi d − xi d, i � 2, 4, 6, 7, 8, 9, 10, 12, (33)

from (A.3), (A.13), (A.23), and (A.37). We have

_xi d � −
yi

τi

, i � 2, 4, 6, 7, 8, 9, 10, 12. (34)

Differentiating the boundary errors yields

_y2 � _x2d − _x2 d � −
y2

τ2
+ k1 _x1 − _􏽢x1􏼐 􏼑 − _v1 +

_S1c1

η1
−

S1c1

η21
,

(35)

from which we have

_y2 � −
y2

τ2
+ B2 S1, S2, y2, €x1d( 􏼁. (36)

By the same token, one has

_yi � −
yi

τi

+ Bi(·), (37)

where Bi(·), i � 2, 4, 6, 7, 8, 9, 10, 12, are the continuous
functions. From (37), the following inequality holds:

yi _yi ≤ −
y2

i

τi

+ Bi yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (38)
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Consider the Lyapunov Function candidate as

Γ �
1
2

􏽥x
T
P􏽥x + 􏽘

6

i�1
Γi + 􏽘

6

i�1

1
2
y
2
2i +

1
2
y
2
7 +

1
2
y
2
9, (39)

where 􏽥x � [􏽥x1, 􏽥x2, . . . , 􏽥x12]
T and Γi are defined in

(A.6)–(A.45).

Theorem 1. For the quadrotor system (12) and the state
observer (29), the adaptive laws (T1.6), (T1.12), (T1.18),
(T2.7), (T2.14), and (T2.21) and the control input (T2.6),
(T2.13), and (T2.20) are given in Table 1 and Table 2; if Γ(0)

satisfies Γ(0)≤P, (P≥ 0), then, by properly selecting the
design parameters ci, (i � 1, . . . , 12), λj, μj, (j � 1, . . . , 6)

and the time constant of the low-pass filter

τ2, τ4, τ6, τ7, τ8, τ9, τ10, and τ12 appropriately, all the signals
in the closed-loop system are semiglobal uniformly bounded.
In addition, the tracking error of position and attitude angle
can converge to an arbitrarily residual set and is always kept
in the prespecified cures.

Proof. Please see Appendix B for details. □

5. Hardware in the Loop Simulation Results

In this paper, the hardware-in-loop testing platform is used
to verify the effectiveness of the proposed control scheme.
,e experiment environment and the experimental system
architecture are shown in Figures 3 and 4, where the fol-
lowing components are included:

Table 1: ,e proposed DSCSM design for position trajectory control.

Step 1
S1 � Θ1((e1(t))/(p1(t))), (T1.1)
_􏽢x1 � 􏽢x2 + k1(x1 − 􏽢x1),

_􏽢x2 � 􏽢f(􏽢x2) + χ1 + k2(x1 − 􏽢x1), (T1.2)
x2d � − k1(x1 − 􏽢x1) + v1 − S1c1/η1, τ2 _x2d + x2d � x2d, x2d(0) � x2d(0). (T1.3)
Step 2
S2 � 􏽢x2 − x2 d, (T1.4)
χ1 � − c2S2 − (1/2)S2

􏽢θ1ξ
T
1 (X1)ξ1(X1) − k2(x1 − 􏽢x1) + _x2d − μ1sgn(S2), (T1.5)

􏽢θ
.

1 � (1/2)S22ξ
T
1 (X1)ξ1(X1) − λ1􏽢θ1, 􏽢θ1(0)≥ 0. (T1.6)

Step 3
S3 � Θ3((e3(t))/(p1(t))), (T1.7)
_􏽢x3 � 􏽢x4 + k1(x3 − 􏽢x3),

_􏽢x4 � 􏽢f(􏽢x4) + χ2 + k2(x3 − 􏽢x3), (T1.8)
x4d � − k1(x3 − 􏽢x3) + v2 − S3c3/η2, τ4 _x4d + x4d � x4d, x4d(0) � x4d(0). (T1.9)
Step 4
S4 � 􏽢x4 − x4 d, (T1.10)
χ2 � − c4S4 − (1/2)S4

􏽢θ2ξ
T
2 (X2)ξ2(X2) − k2(x3 − 􏽢x3) + _x4d − μ2sgn(S4), (T1.11)

􏽢θ
.

2 � (1/2)S24ξ
T
2 (X2)ξ2(X2) − λ2􏽢θ2, 􏽢θ2(0)≥ 0. (T1.12)

Step 5
S5 � Θ5((e5(t))/(p1(t))), (T1.13)
_􏽢x5 � 􏽢x6 + k1(x5 − 􏽢x5),

_􏽢x6 � 􏽢f(􏽢x6) + χ3 + k2(x5 − 􏽢x5), (T1.14)
x6d � − k1(x5 − 􏽢x5) + v3 − S5c5/η3, τ6 _x6d + x6d � x6d, x6d(0) � x6d(0). (T1.15)
Step 6
S6 � 􏽢x6 − x6 d, (T1.16)
χ3 � − c6S6 − (1/2)S6

􏽢θ3ξ
T
3 (X3)ξ3(X3) − k2(x5 − 􏽢x5) + _x6d − μ3sgn(S6), (T1.17)

􏽢θ
.

3 � (1/2)S26ξ
T
3 (X3)ξ3(X3) − λ3􏽢θ3, 􏽢θ3(0)≥ 0. (T1.18)

Adaptive fuzzy 
dynamic surface 

sliding-mode 
controller

Error 
transformed 

functions 
Quadrotor 

UAV

State 
observer

Inverse 
transformation

Low-pass 
filter

xd, yd, zd, ψd

(ϕd, θd)

(ϕ, θ)

(x, y, z, ψ)

(x, y, z, ϕ, θ, ψ)

(x, y, z, ϕ, θ, ψ)
(S1, S3, …, S9, S11)

e1, e3, e5, e11 (U2, U3, U4)

(χ1, χ2, χ3)

U1e7, e9

(ϕd, θd)

(x1, x2, …, x11, x12)

Figure 2: Structure of the proposed control scheme.
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(i) NI PXIe-1082, the MT real-time simulator (RTS)
with Kintex-7 325T FPGA chip and 16bits syn-
chronized analog I/O with a data transfer rate of
1MS/s. ,e simulator supports FPGA simulation
for the quadrotor UAV system. ,e device accepts
the control signal and calculates the response of the
system in real time and outputs to the controller
box.

(ii) NI PXIe-1071, the MT Rapid Control Prototype
(RCP), with Kintex-7 325T FPGA @Xilinx and 16
analog I/O channels with a transmission rate of
1MS/s. ,is device is used to realize the real-time
running of the control code and send the control
signals to the quadrotor UAV simulation model
which is running on the MT real-time simulator.

(iii) Adapter plate: it is used to realize the signal con-
nection between the RTS and RCP. ,e RTS, RCP,
and the signal adapter board comprise a closed loop
experimental system.

(iv) Host computer: uses the StarSim RCP software to
download the Matlab/simulink quadrotor UAV
system model and the control algorithm into the
RTS and RCP, respectively.

In this section, the effectiveness and the performance of
the proposed adaptive dynamic surface sliding-mode output
feedback control method are showed by the following ex-
periments. Different scenarios are considered, including
normal case and model uncertainty cases to demonstrate the

robustness of the proposed controller\enleadertwodots ,e
parameters of the quadrotor UAV adopted in this study are
described in Table 3 [17]. In the experiment, the desired
trajectory of the position and yaw angle desired trajectory
xd(t), yd(t), zd(t),ψd(t)􏼈 􏼉 is chosen as
cos(t), sin(t), 0.5(t), sin(0.5t){ }. ,e performance func-
tions are selected as p1(t) � (p10 − p1∞)e− lt + p1∞, with the
parameters p10 � 1.5, p1∞ � 0.055, l � 1, and κ1 � β1 � 1.
pψ(t) � 0.6∗ e− t + 0.04. ,e controller parameters chosen
for simulation are c1 � c2 � c3 � c4 � 0.6, c5 � c6 � 0.55,

c7 � c8 � c9 � c10 � 0.6,c11 � c12 � 0.6, λ1 � λ2 � λ3 � λ4 �

λ5 � λ6 � 0.02, and τi � 0.005, (i � 2, 4, 6, 7, 8, 9, 10, 12). To
demonstrate the effectiveness of the proposed controller, the
following different cases are considered and comparisons are
conducted:

Table 2: ,e proposed DSCSM design for attitude trajectory control.

Step 7
S7 � Θ7((e7(t))/(pψ(t))), (T2.1)
_􏽢x7 � 􏽢x8 + k1(x7 − 􏽢x7), (T2.2)
_􏽢x8 � a4N􏽢x10􏽢x12 + a5N􏽢x10Ω − a6N􏽢x8 + 􏽢f(􏽢x8, 􏽢x10, 􏽢x12) + U2 + k2(x7 − 􏽢x7), (T2.3)
x8 d � − k1(x7 − 􏽢x7) + v4 − S7c7/η4, τ8 _x8d + x8d � x8 d, x8 d(0) � x8 d(0). (T2.4)
Step 8
S8 � 􏽢x8 − x8 d, (T2.5)
U2 � − c8S8 − (1/2)S8

􏽢θ4ξ
T
4 (X4)ξ4(X4) − k2(x7 − 􏽢x7) − a4N􏽢x10􏽢x12 − a5N􏽢x10Ω + a6N􏽢x8 + _x8d − μ4sgn(S8), (T2.6)

􏽢θ
.

4 � (1/2)S28ξ
T
4 (X4)ξ4(X4) − λ4􏽢θ4, 􏽢θ4(0)≥ 0. (T2.7)

Step 9
S9 � Θ9((e9(t))/(pψ(t))), (T2.8)
_􏽢x9 � 􏽢x10 + k1(x9 − 􏽢x9), (T2.9)
_􏽢x10 � a7N􏽢x8􏽢x12 + a8N􏽢x8Ω − a9N􏽢x10 + 􏽢f(􏽢x8, 􏽢x10, 􏽢x12) + U3 + k2(x9 − 􏽢x9), (T2.10)
x10 d � − k1(x9 − 􏽢x9) + v5 − S9c9/η5, τ10 _x10 d + x10 d � x10d, x10 d(0) � x10 d(0). (T2.11)
Step 10
S10 � 􏽢x10 − x10 d, (T2.12)
U3 � − c10S10 − (1/2)S10

􏽢θ5ξ
T
5 (X5)ξ5(X5) − k2(x9 − 􏽢x9) − a7N􏽢x8􏽢x12 − a8N􏽢x8Ω + a9N􏽢x10 + _x10 d − μ5sgn(S10), (T2.13)

􏽢θ
.

5 � (1/2)S210ξ
T
5 (X5)ξ5(X5) − λ5􏽢θ5, 􏽢θ5(0)≥ 0. (T2.14)

Step 11
S11 � Θ11((e11(t))/(pψ(t))), (T2.15)
_􏽢x11 � 􏽢x12 + k1(x11 − 􏽢x11), (T2.16)
_􏽢x12 � a10N􏽢x8􏽢x10 − a11N􏽢x12 + 􏽢f(􏽢x8, 􏽢x10, 􏽢x12) + U4 + k2(x11 − 􏽢x11), (T2.17)
x12 d � − k1(x11 − 􏽢x11) + v6 − S11c11/η6, τ12 _x12 d + x12d � x12 d, x12 d(0) � x12 d(0). (T2.18)
Step 12
S12 � 􏽢x12 − x12 d, (T2.19)
U4 � − c12S12 − (1/2)S12

􏽢θ6ξ
T
6 (X6)ξ6(X6) − k2(x11 − 􏽢x11) − a10N􏽢x8􏽢x10 + a11N􏽢x12 + _x12 d − μ6sgn(S12), (T2.20)

􏽢θ
.

6 � (1/2)S212ξ
T
6 (X6)ξ6(X6) − λ6􏽢θ6, 􏽢θ6(0)≥ 0. (T2.21)

Figure 3: Actual experimental environment.
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Case 1: normal case: we assume that there are no
uncertainties in the model, and all parameters of the
quadrotor are normal.,e initial state vector is set to be
x(0) � [0.02, 0, 0.02, 0, 0, 0, 0, 0, 0, 0, 0.1, 0]T. And, the
fuzzy membership function is adopted as
μFl

k
� exp(− ((􏽢xk − 6 + 2l)2)/2), where l � 1, . . . , 5 and

k � 2, 6, 8, 10, 12.
Cases 2, 3, and 4: uncertainty (15%, 30%, and 50%
added) in rotary inertia: in these cases, we consider
three different model uncertainties 15%, 30%, and 50%
separately added in the yaw axis.

,e experimental results are shown in Figures 5–15.
Figures 5–9 illustrate the comparison experimental results of
the tracking trajectory in Case1 between the proposed
control method and the traditional PID control method.
From Figures 6–9, it can be seen clearly that all the tracking
errors of the position and yaw angles of the proposed control
scheme are always kept within the performance function
curves. ,at is, the control method proposed in this paper
obtains much better control performance by comparing with
the traditional PID control scheme. Figure 10 shows the

control signals. Figure 11 shows the response curves of roll
and pitch angles. Figures 12 and 13 show the change of six
adaptive parameters. Figures 14 and 15 show the trajectories
of xi and 􏽢xi, (i � 2, 4, 6, 8, 10, 12). We can see that the
proposed state observer can quickly approximate the output
of the system. Figure 16 shows the 3D tracking trajectory
with uncertainties 15%, 30%, and 50% added in the yaw
rotating axes. Figure 17 illustrates the results of the tracking
error under cases 2, 3, and 4. Also, the maximum value of the
tracking error (MVTE) and the root mean square value of
the tracking error (RMSVTE) in the steady state (t> 5 s) are

Quadrotor 
UAV

simulation 
model (.dll) StarSim HIL

Control 
algorithm (.dll)

StarSim RCP

Host computer

Host computer interface 
online tuning parameters

MT 8010 real-
time simulator

Adapter plate MT RCP

Observing
experimental

signals

Analog
signal

Control
signal

It runs on the
the simulator

It runs on the
controller

Figure 4: ,e experimental system architecture.

Table 3: Quadrotor parameters.

Symbol Case 1 Case 2 Case 3 Case 4 Units
m 1.4 1.4 1.4 1.4 kg
k 2.98 2.98 2.98 2.98 10− 6 N·s2 ·rad− 2

l 0.2 0.2 0.2 0.2 m
τ 1.14 1.14 1.14 1.14 10− 7 N·s2 ·rad− 2

dϕ, dθ, dψ 1.2 1.2 1.2 1.2 10− 2 N·s·rad− 1

JR 5 5 5 5 10− 5 N·s2 ·rad− 1

Jxx, Jyy 0.03 0.03 0.03 0.03 N · s2 · rad− 1

Jzz 0.04 0.046 0.052 0.06 N·s2 ·rad− 1

1.5
1 1.50.5 1

0.50
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–1.5 –1.5
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10
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m

)

Figure 5: Space diagram of position in the normal case.
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Figure 6: ,e tracking trajectory of xd, x, and the tracking error.
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Figure 7: ,e tracking trajectory of yd, y, and the tracking error.
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Figure 11: Change of roll and pitch angles.
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hown in Table 4. From Table 4, we can see that the proposed
control scheme has strong robustness, and even the un-
certainty in yaw rotary inertia is up to 50%.

6. Conclusion

In this paper, an adaptive dynamic surface sliding-mode
output feedback controller has been proposed for attitude
and position control of a class of quadrotor UAVs with
consideration of parametric uncertainties and disturbances.

By using the norm estimation approach, there is only one
parameter which needs to be updated online at each design
step regardless of the plant order and input-output di-
mension. Also, by introducing an error transformed func-
tion, the tracking performance of the quadrotor UAV has
been achieved. ,e proposed control scheme can not only
eliminate the problem of “explosion of complexity” existing
in the backstepping control scheme but also improve the
robustness of the system. ,e results of the hardware-in-
loop simulation validate the effectiveness of the proposed
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Figure 17: ,e tracking errors of different uncertainty cases added in the z rotating axis.

Table 4: ,e MVTE and RMSVTE.

Kind of errors Normal case Uncertainty 15% Uncertainty 30% Uncertainty 50%

MVTE

x(m) 5.1254e− 03 5.5325e− 03 5.7471e− 03 5.9153e− 03

y(m) 4.9051e− 03 5.2051e− 03 5.3593e− 03 5.5154e− 03

z(m) 4.3216e− 02 4.4239e− 02 4.4799e− 02 4.5935e− 02

ψ(rad) 1.5415e− 02 1.6041e− 02 1.6869e− 02 1.7956e− 02

RMSVTE

x(m) 3.6036e− 03 3.9049e− 03 4.1057e− 03 4.2059e− 03

y(m) 3.4844e− 03 3.4966e− 03 3.5137e− 03 3.5714e− 03

z(m) 3.7271e− 02 3.7414e− 02 3.7710e− 02 3.8117e− 02

ψ(rad) 0.9939e− 02 1.0468e− 02 1.1347e− 02 1.1592e− 02
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control algorithm. Furthermore, our future research work
will focus on applying the control algorithm of this paper to
the quadrotor UAV test platform for experimental
verification.

Appendix

A. The Procedures of Controller Design

,e controller design process.

Step 1. After error transformation, let S1 given by (25) be the
first error variable. ,en, the derivative of S1 can be
expressed as

_S1 � η1 _􏽢x1 − η1v1. (A.1)

According to adaptive laws (T1.2), (A.1) can be rewritten
as

_S1 � η1 􏽢x2 + k1 x1 − 􏽢x1( 􏼁􏼂 􏼃 − η1v1, (A.2)

which suggests that we choose the virtual control signal x2d

as x2d � − k1(x1 − 􏽢x1) + v1 − S1c1/η1, where c1 is a positive
constant. Introduce a new state variable x2d, which can be
obtained by the following first-order filter:

τ2 _x2 d + x2 d � x2 d, x2 d(0) � x2d(0). (A.3)

Define the error surface (T1.4), and the time derivative of
S2 is

_S2 � _􏽢x2 − _x2d � F1 X1( 􏼁 + χ1 + k2 x1 − 􏽢x1( 􏼁 − _x2 d, (A.4)

where variables χ1 � (Cx7
Sx9

Cx11
+ Sx7

Sx11
)U1 and F1(X1) �

􏽢f(􏽢x2), X1 � 􏽢x2 are introduced. Since F1(X1) is unknown,
we use FLSs to approximate the function F1(X1):

F1 X1( 􏼁 � W
∗T
1 ξ1 X1( 􏼁 + σ∗1 , σ∗1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ε1, (A.5)

with respect to the unknown optimal weight vector in (A.5),
define θ1 � ‖W∗1 ‖2, and since θ1 is unknown, let 􏽢θ1 be the
estimation of θ1 and 􏽥θ1 � θ1 − 􏽢θ1. Choosing the following
proper sliding surface σs1 � S2, consider the first Lyapunov
function:

Γ1 �
1
2

S
2
1 + S

2
2 + 􏽥θ

2
1􏼒 􏼓, (A.6)

where the differential of Lyapunov Function Γ1 can be found
as follows:

_Γ1 � S1
_S1 + S2

_S2 − 􏽥θ1􏽢θ
.

1

� − c1S
2
1 + S1η1 􏽢x2 − x2 d( 􏼁 + S2W

∗T
1 ξ1 X1( 􏼁 + S2σ

∗
1 −

1
2
S
2
2

+ S2χ1 + S2k2 x1 − 􏽢x1( 􏼁 − S2 _x2 d − 􏽥θ1􏽢θ
.

1.

(A.7)

Using Young’s inequality, it can be verified that

S2W
∗T
1 ξ1 X1( 􏼁≤

1
2
S
2
2 W
∗
1

����
����
2ξT

1 X1( 􏼁ξ1 X1( 􏼁 +
1
2

≤
1
2
S
2
2θ1ξ

T
1 X1( 􏼁ξ1 X1( 􏼁 +

1
2
,

S2σ
∗
1 ≤

1
2
S
2
2 +

1
2
ε21.

(A.8)

,en, (A.7) can be rewritten as

_Γ1 ≤ − c1S
2
1 +

1
2
S
2
2
􏽢θ1ξ

T
1 X1( 􏼁ξ1 X1( 􏼁 + S2χ1 + S2k2 x1 − 􏽢x1( 􏼁 − S2 _x2d

+
1
2

+
1
2
ε21 − 􏽥θ1 􏽢θ

.

1 −
1
2
S
2
2ξ

T
1 X1( 􏼁ξ1 X1( 􏼁􏼔 􏼕

+ S1η1 􏽢x2 − x2 d( 􏼁 +
1
2
S
2
2.

(A.9)

,e stabilization of Γ1 can be obtained by designing the
virtual control (T1.5) and the adaptation law (T1.6), where
c2, μ1, and λ1 are the positive constants and ε1 is an arbi-
trarily small positive constant. For the external disturbance
dt1 encountered in the quadrotor flight process, the sliding
surface is added to maintain system stability with μ1 ≥ |dt1|.
Substituting (T1.5) and (T1.6) into (A.9), we get

_Γ1 ≤ − c1S
2
1 + S1η1 􏽢x2 − x2 d( 􏼁 − c2 −

1
2

􏼒 􏼓S
2
2 +

1
2

+
1
2
ε21 + λ1􏽥θ1􏽢θ1.

(A.10)

Similar design procedures can be used to design adaptive
DSC sliding-mode laws for trajectory tracking control of y

axis position (x3) and z axis position (x5). Introduce two
variables χ2 � (Cx7

Sx9
Sx11

− Sx7
Cx11

)U1 and
χ3 � (Cx7

Cx9
)U1. ,e corresponding control laws and

adaptive laws are designed as follows.

Step 2. Let S3 given by (26) be the second error variable.
,en, the derivative of S3 can be expressed as

_S3 � η2 _􏽢x3 − η2v2. (A.11)

According to (29) and (T1.8), (A.11) can be rewritten as
_S3 � η2 􏽢x4 + k1 x3 − 􏽢x3( 􏼁􏼂 􏼃 − η2v2, (A.12)

choosing the virtual control signal
x4 d � − k1(x3 − 􏽢x3) + v2 − S3c3/η2, where c3 is a positive
constant. Introduce a new state variable x4 d, which can be
obtained by the following first-order filter:

τ4 _x4d + x4d � x4 d, x4 d(0) � x4d(0). (A.13)

Define the error surface (T1.10), and the time derivative
of S4 is

_S4 � _􏽢x4 − _x4 d � F2 X2( 􏼁 + χ2 + k2 x3 − 􏽢x3( 􏼁 − _x4 d,

(A.14)

where F2(X2) � 􏽢f(􏽢x4), X2 � 􏽢x4. FLSs are used to approx-
imate the unknown function F2(X2):
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F2 X2( 􏼁 � W
∗T
2 ξ2 X2( 􏼁 + σ∗2 , σ∗2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ε2, (A.15)

with respect to the unknown optimal weight vector in (A.15),
define θ2 � ‖W∗2 ‖2, and since θ2 is unknown, let 􏽢θ2 be the
estimation of θ2 and 􏽥θ2 � θ2 − 􏽢θ2. Choosing the following
proper sliding surface σs2 � S4, consider the second Lya-
punov function:

Γ2 �
1
2

S
2
3 + S

2
4 + 􏽥θ

2
2􏼒 􏼓. (A.16)

Differentiating Γ2, we obtain

_Γ2 � S3
_S3 + S4

_S4 − 􏽥θ2􏽢θ
.

2
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+ S4χ2 + S4k2 x3 − 􏽢x3( 􏼁 − S4 _x4 d − 􏽥θ2􏽢θ
.

2.

(A.17)

Using Young’s inequality, it can be verified that

S4W
∗T
2 ξ2 X2( 􏼁≤

1
2
S
2
4 W
∗
2

����
����
2ξT

2 X2( 􏼁ξ2 X2( 􏼁 +
1
2

≤
1
2
S
2
4θ1ξ

T
2 X2( 􏼁ξ2 X2( 􏼁 +

1
2
,

S4σ
∗
2 ≤

1
2
S
2
4 +

1
2
ε22.

(A.18)

,en, (A.17) can be rewritten as

_Γ2 ≤ − c3S
2
3 +

1
2
S
2
4
􏽢θ2ξ

T
2 X2( 􏼁ξ2 X2( 􏼁 + S4χ2

+ S4k2 x3 − 􏽢x3( 􏼁 − S4 _x4d
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2

+
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ε22 − 􏽥θ2 􏽢θ

.
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4ξ
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+
1
2
S
2
4 + S3η2 􏽢x4 − x4d( 􏼁.

(A.19)

,e stabilization of Γ2 can be obtained by designing the
virtual control (T1.11) and the adaptation law (T1.12), where
c4, μ2, and λ2 are the positive constants and ε2 is an arbi-
trarily small positive constant. For the external disturbance
dt encountered in the quadrotor flight process, the sliding
surface is added to maintain system stability with μ1 ≥ |dt2|.
Substituting (T1.11) and (T1.12) into (A.20), we get

_Γ2 ≤ − c3S
2
3 + S3η2 􏽢x4 − x4d( 􏼁 − c4 −

1
2

􏼒 􏼓S
2
4 +

1
2

+
1
2
ε22 + λ2􏽥θ2􏽢θ2.

(A.20)

Step 3. Let S5 given by (26) be the third error variable. ,en,
the derivative of S5 can be expressed as

_S5 � η3 _􏽢x5 − η3v3. (A.21)

According to (29) and adaptive laws (T1.14), (A.21) can
be rewritten as

_S5 � η3 􏽢x6 + k1 x5 − 􏽢x5( 􏼁􏼂 􏼃 − η3v3, (A.22)

and the virtual control signal can be chosen as x6d as x6 d �

− k1(x5 − 􏽢x5) + v3 − S5c5/η3 with c5 being a positive con-
stant. Introduce a new state variable x6d, which can be
obtained by the following first-order filter:

τ6 _x6d + x6d � x6 d, x6 d(0) � x6d(0). (A.23)

Define the error surface (T1.16), and the time derivative
of S6 is

_S6 � _􏽢x6 − _x6 d � F3 X3( 􏼁 + χ3 + k2 x5 − 􏽢x5( 􏼁 − _x6 d,

(A.24)

where F3(X3) � 􏽢f(􏽢x6), X3 � 􏽢x6. Utilizing FLSs to approx-
imate the unknown function F3(X3), we obtain

F3 X3( 􏼁 � W
∗T
3 ξ3 X3( 􏼁 + σ∗3 , σ∗3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ε3. (A.25)

Define θ3 � ‖W∗3‖2, and let 􏽢θ3 be the estimation of θ3 and
􏽥θ3 � θ3 − 􏽢θ3. Choosing the following proper sliding surface
σs3 � S6, consider the third Lyapunov function:

Γ3 �
1
2

S
2
5 + S

2
6 + 􏽥θ

2
3􏼒 􏼓. (A.26)

,e differentiation of Γ3 is as follows:

_Γ3 � S5
_S5 + S6

_S6 − 􏽥θ3􏽢θ
.
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∗
3 −

1
2
S
2
6

+ S6χ3 + S6k2 x5 − 􏽢x5( 􏼁 − S6 _x6d − 􏽥θ3􏽢θ
.

3.

(A.27)

Using Young’s inequality, it can be verified that

S6W
∗T
3 ξ3 X3( 􏼁≤

1
2
S
2
6 W
∗
3

����
����
2ξT

3 X3( 􏼁ξ3 X3( 􏼁 +
1
2

≤
1
2
S
2
6θ3ξ

T
3 X3( 􏼁ξ3 X3( 􏼁 +

1
2
,

S6σ
∗
3 ≤

1
2
S
2
6 +

1
2
ε23.

(A.28)

,en, (A.27) can be rewritten as

_Γ3 ≤ − c5S
2
5 +

1
2
S
2
6
􏽢θ3ξ

T
3 X3( 􏼁ξ3 X3( 􏼁 + S6χ3

+ S6k2 x5 − 􏽢x5( 􏼁 − S6 _x6d

+
1
2

+
1
2
ε23 − 􏽥θ3 􏽢θ

.

3 −
1
2
S
2
6ξ

T
3 X3( 􏼁ξ3 X3( 􏼁􏼔 􏼕 +

1
2
S
2
6

+ S5η3 􏽢x6 − x6 d( 􏼁.

(A.29)
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,e stabilization of Γ3 can be obtained by designing the
virtual control (T1.17) and the adaptive law (T1.18), where
c6, μ3, and λ3 are the positive constants and ε3 is an arbi-
trarily small positive constant. For the external disturbance
dt3, the sliding surface is added to maintain system stability
with μ3 ≥ |dt3|. Substituting (T1.17) and (T1.18) into (A.29),
we get

_Γ3 ≤ − c5S
2
5 + S5η3 􏽢x6 − x6d( 􏼁 − c6 −

1
2

􏼒 􏼓S
2
6 +

1
2

+
1
2
ε23 + λ3􏽥θ3􏽢θ3.

(A.30)

By associating χ1, χ2, and χ3, the virtual controllers are
obtained as

χ1 � Cx7
Sx9

Cx11
+ Sx7

Sx11
􏼐 􏼑U1,

χ2 � Cx7
Sx9

Sx11
− Sx7

Cx11
􏼐 􏼑U1,

χ3 � Cx7
Cx9

􏼐 􏼑U1.

(A.31)

Notably, (A.31) has four degrees of freedom, namely, x7,
x9, x11, and U1. We consider the reference trajectory for yaw
angle x11 d, which is usually given in advance, and the
corresponding DSC sliding-mode lawU4 is directly designed
in the next section to ensure the rapid convergence of x11 to
x11d.,us, we regarded x11 as known that can be replaced by
x11d in the controller, and the degrees of freedom in (A.31) is
reduced so that x7, x9, and U1 can be solved. ,e programs
are as follows:

x7 d � arctan Cx9

βχ1 − αχ2
χ3

􏼠 􏼡,

x9 d � arctan
αχ1 + βχ2

χ3
􏼠 􏼡,

U1 �
χ3

Cx7
Cx9

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.32)

where U1 is one of the ultimate control laws, and in addition,
α � cos(x11d) and β � sin(x11 d). Introduce two new state
variables x7 d andx9 d, which can be obtained by the fol-
lowing first-order filters:

τ7 _x7d + x7 d � x7d, x7d(0) � x7 d(0),

τ9 _x9 d + x9 d � x9 d, x9d(0) � x9 d(0).
(A.33)

For attitude trajectory tracking control, by taking
x7d, x9d, x11d􏼈 􏼉 as the desired attitude trajectory, the design
of control laws contains three steps. ,e attitude dynamic
system can be extracted as follows:

_x7 � x8,

_x8 � a4x10x12 + a5x10Ω − a6x8 + U2,

_x9 � x10,

_x10 � a7x8x12 + a8x8Ω − a9x10 + U3,

_x11 � x12,

_x12 � a10x8x10 − a11x12 + U4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.34)

Step 4. Let S7 given by (26) be the fourth error variable.
,en, the derivative of S7 can be expressed as

_S7 � η4 _􏽢x7 − η4v4. (A.35)

According to (29) and adaptive laws (T2.2) and (T2.3),
where 􏽢f(􏽢x8, 􏽢x10, 􏽢x12) � Δa4􏽢x10􏽢x12 + Δa5􏽢x10Ω − Δa6􏽢x8,
(A.35) can be rewritten as

_S7 � η4 􏽢x8 + k1 x7 − 􏽢x7( 􏼁􏼂 􏼃 − η4v4, (A.36)

which suggests that we choose the virtual control signal x8 d

as x8 d � − k1(x7 − 􏽢x7) + v4 − S7c7/η4, where c7 is a positive
constant. Introduce a new state variable x8 d, which can be
obtained by the following first-order filter:

τ8 _x8d + x8d � x8 d, x8 d(0) � x8d(0). (A.37)

Define the error surface (T2.5), and the time derivative of
S8 is

_S8 � _􏽢x8 − _x8d � a4N􏽢x10􏽢x12 + a5N􏽢x10Ω − a6N􏽢x8

+ F4 X4( 􏼁 + U2 + k2 x7 − 􏽢x7( 􏼁 − _x8d,
(A.38)

where F4(X4) � 􏽢f(􏽢x8, 􏽢x10, 􏽢x12), X4 � [􏽢x8, 􏽢x10, 􏽢x12]
T. Uti-

lizing FLSs to approximate the unknown function F4(X4),
we obtain

F4 X4( 􏼁 � W
∗T
4 ξ4 X4( 􏼁 + σ∗4 , σ∗4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ε4. (A.39)

Define θ4 � ‖W∗4‖2, and let 􏽢θ4 be the estimation of θ4 and
􏽥θ4 � θ4 − 􏽢θ4. Choosing the following proper sliding surface
σs4 � S8, consider the following Lyapunov function:

Γ4 �
1
2

S
2
7 + S

2
8 + 􏽥θ

2
4􏼒 􏼓, (A.40)

where the differential of Lyapunov function Γ4 can be found
as follows:

_Γ4 � S7
_S7 + S8

_S8 − 􏽥θ4􏽢θ
.

4

� − c7S
2
7 + S7η4 􏽢x8 − x8d( 􏼁 + S8W

∗T
4 ξ4 X4( 􏼁 + S8σ

∗
4 −

1
2
S
2
8

+ S8U2 + S8k2 x7 − 􏽢x7( 􏼁 − S8 _x8d + 􏽥θ4􏽢θ
.

4.

(A.41)

Using Young’s inequality, it can be verified that

S8W
∗T
4 ξ4 X4( 􏼁≤

1
2
S
2
8 W
∗
4

����
����
2ξT

4 X4( 􏼁ξ4 X4( 􏼁 +
1
2

≤
1
2
S
2
8θ4ξ

T
4 X4( 􏼁ξ4 X4( 􏼁 +

1
2
,

S8σ
∗
4 ≤

1
2
S
2
8 +

1
2
ε24.

(A.42)

,en, (A.41) can be rewritten as
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_Γ4 ≤ − c7S
2
7 +

1
2
S
2
8
􏽢θ4ξ

T
4 X4( 􏼁ξ4 X4( 􏼁 + S8 a4N􏽢x10􏽢x12(

+ a5N􏽢x10Ω − a6N􏽢x8􏼁 + S8U2 + S8k2 x7 − 􏽢x7( 􏼁

− S8 _x8 d +
1
2

+
1
2
ε24 +

1
2
S
2
8

+ S7η4 􏽢x8 − x8 d( 􏼁

− 􏽥θ4 􏽢θ
.

4 −
1
2
S
2
8ξ

T
4 X4( 􏼁ξ4 X4( 􏼁􏼔 􏼕.

(A.43)

,e stabilization of Γ4 can be obtained by designing the
virtual control (T2.6) and the adaptation law (T2.7),
where c8, μ4, and λ4 are positive constants and ε1 is an
arbitrarily small positive constant. For the external dis-
turbance dt4 encountered in the quadrotor flight process,
the sliding surface is added to maintain system stability
with μ4 ≥ |dt4|. Substituting (T2.6) and (T2.7) into (A.43),
we get

_Γ4 ≤ − c7S
2
7 + S7η4 􏽢x8 − x8d( 􏼁 − c8 −

1
2

􏼒 􏼓S
2
8 +

1
2

+
1
2
ε24 + λ4􏽥θ4􏽢θ4.

(A.44)

Similarly, the adaptive DSC sliding-mode laws for tra-
jectory tracking control of pitch angle (x9) and yaw angle
(x11) can be designed as (T2.13), (T2.20), (T2.14), and
(T2.21), where S10 � 􏽢x10 − x10d, S12 � 􏽢x12 − x12 d, X5 �

[􏽢x8, 􏽢x10, 􏽢x12]
T, X6 � [􏽢x8, 􏽢x10, 􏽢x12]

T, x10d and x12d are the
output of each first-order filter, and c9, c10, c11, c12, λ5, λ6, μ5,
and μ6 are the positive constants.

,e derivative of Lyapunov candidate for pitch angle
(x9) and yaw angle (x11) are designed as follows:

_Γ5 ≤ − c9S
2
9 + S9η5 􏽢x10 − x10 d( 􏼁 − c10 −

1
2

􏼒 􏼓S
2
10 +

1
2

+
1
2
ε25 + λ5􏽥θ5􏽢θ5,

_Γ6 ≤ − c11S
2
11 + S11η6 􏽢x12 − x12 d( 􏼁 − c12 −

1
2

􏼒 􏼓S
2
12 +

1
2

+
1
2
ε26 + λ6􏽥θ6􏽢θ6.

(A.45)

B. Proof of Theorem 1

Taking the time derivative of Γi, (i � 1, . . . , 6) and combing
(38) yields

_Γi ≤ − c(2i− 1)S
2
(2i− 1) + S(2i− 1)ηi S2i + y2i( 􏼁 − c2i −

1
2

􏼒 􏼓S
2
2i

+
1
2

+
1
2
ε2i + λi

􏽥θi
􏽢θi,

y2i _y2i ≤ −
y2
2i

τ2i

+ B2i y2i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, i � 1, . . . , 6,

y7 _y7 ≤ −
y2
7

τ7
+ B7 y7

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

y9 _y9 ≤ −
y2
9

τ9
+ B9 y9

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(B.1)

Consider the sets

Υ1 ≔ xd, _xd, xd, yd, _yd, €yd, zd, _zd, zd,ψd, _ψd,ψd􏼐 􏼑: x
2
d + _x

2
d + x

2
d + y

2
d + _y

2
d + y

2
d􏼚

+ z
2
d + _z

2
d + z

2
d + ψ2

d + _ψ2
d + ψ2

d􏽯≤B0,

Υ2 ≔ 􏽘
6

i�1
Γi + 􏽘

6

i�1

1
2
y
2
2i +

1
2
y
2
7 +

1
2
y
2
9 ≤p

⎧⎨

⎩

⎫⎬

⎭,

(B.2)

where Υ1 × Υ2 is also in a compact set. ,en, the continuous
functions B2i(·), (i � 1, . . . , 6), B7, B9 have maximums on
Υ1 × Υ2, say, Mi(i � 1, . . . , 6), M7, M9. ,us,
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y2iy
2
2i ≤ −

y2
2i

τ2i

+
M2

i y2
2i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2ϱ
+
ϱ
2
,

y7y
2
7 ≤ −

y2
7

τ7
+

M2
7 y2

7
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2ϱ
+
ϱ
2
,

y9y
2
9 ≤ −

y2
9

τ9
+

M2
9 y2

9
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2ϱ
+
ϱ
2
,

(B.3)

and using the following inequalities,

ηiS(2i− 1) S2i + y2i( 􏼁≤ η2i S
2
(2i− 1) +

1
2
S
2
2i +

1
2
y
2
2i, i � 1, . . . , 6,

(B.4)

which together with (B.1) implies that

_Γ ≤
1
2

_
􏽥x

T
P􏽥x +

1
2

􏽥x
T
P_􏽥x − 􏽘

6

i�1
c(2i− 1) − η2i􏼐 􏼑S

2
(2i− 1) − 􏽘

6

i�1
c2i − 1( 􏼁S

2
2i

+ 􏽐
6

i�1
λi

􏽥θiθ̂i + 􏽐
6

i�1

1
2

+
1
2
ε2i􏼒 􏼓 − 􏽐

6

i�1

1
τ2i

−
M2

i

2ϱ
−
1
2

􏼠 􏼡y2
2i

−
1
τ7

−
M2

7
2ϱ

􏼠 􏼡y2
7 −

1
τ9

−
M2

9
2ϱ

􏼠 􏼡y2
9 + 4ϱ

≤ −
1
2
λmin Q1( 􏼁‖􏽥x‖

2
+ 􏽥x

T
P 􏽘

6

i�1
bi

􏽥W
∗T

i ξi
􏽢Xi􏼐 􏼑

+􏽥xTPε − 􏽐
6

i�1
c(2i− 1) − η2i􏼐 􏼑S2(2i− 1) − 􏽐

6

i�1
c2i − 1( 􏼁S22i + 􏽐

6

i�1
λi

􏽥θi
􏽢θi

+ 􏽐
6

i�1

1
2

+
1
2
ε2i􏼒 􏼓 − 􏽐

6

i�1

1
τ2i

−
M2

i

2ϱ
−
1
2

􏼠 􏼡y2
2i

−
1
τ7

−
M2

7
2ϱ

􏼠 􏼡y2
7 −

1
τ9

−
M2

9
2ϱ

􏼠 􏼡y2
9 + 4ϱ,

(B.5)

where ε � [0, ε1, 0, ε2, 0, ε3, 0, ε4, 0, ε5, 0, ε6]
T and λmin(Q1) is

the smallest eigenvalue of matrix Q1. Applying Young’s
inequality ab≤ (a2 + b2)/2 and the fact ξT

i ( 􏽢Xi)ξi(
􏽢Xi)≤ 1, the

following inequation can be obtained:

􏽥x
T
P 􏽘

6

i�1
bi

􏽥W
∗T

i ξi
􏽢Xi􏼐 􏼑≤

1
2
λmax2(P)‖􏽥x‖

2
+
1
2

􏽥W
∗����
����
2 ≤

1
2
λ 2
max (P)‖􏽥x‖

2
+
1
2

􏽥θ,

(B.6)

where 􏽥θ � 􏽥θ1 + 􏽥θ2 + 􏽥θ3 + 􏽥θ4 + 􏽥θ5 + 􏽥θ6 and λ 2
max (P) is the

largest eigenvalue of matrix P.

􏽥x
T
Pε≤

1
2
‖􏽥x‖

2
+
1
2
λ 2
max (P) ε∗

����
����
2
. (B.7)

By using Young’s inequality, we obtain

2􏽥θi
􏽢θi ≤ θ

2
i − 􏽥θ

2
ı̀ . (B.8)

Substituting (B.6) and (B.7) into (B.5), we have

_Γ ≤ − μ1‖􏽥x‖
2

+
1
2

􏽥θ +
1
2
λmax2(P) ε∗

����
����
2

− 􏽘

6

i�1
c(2i− 1) − η2i􏼐 􏼑S

2
(2i− 1)

− 􏽘
6

i�1
c2i − 1( 􏼁S

2
2i

− 􏽘

6

i�1

1
2
λi

􏽥θ
2
i − 􏽘

6

i�1

1
2

+
1
2
ε2i􏼒 􏼓 − 􏽘

6

i�1

1
τ2i

−
M2

i

2ϱ
−
1
2

􏼠 􏼡y
2
2i

−
1
τ7

−
M2

7
2ϱ

􏼠 􏼡y
2
7 −

1
τ9

−
M2

9
2ϱ

􏼠 􏼡y
2
9 + 4ϱ + 􏽘

6

i�1

1
2
λiθ

2
i

≤ − μ1‖􏽥x‖
2

− 􏽘

6

i�1
c(2i− 1) − η2i􏼐 􏼑S

2
(2i− 1) − 􏽘

6

i�1
c2i − 1( 􏼁S

2
2i

− 􏽘
6

i�1

1
2
λi

􏽥θ
2
i +

1
2

􏽥θ

− 􏽘
6

i�1

1
τ2i

−
M2

i

2ϱ
−
1
2

􏼠 􏼡y
2
2i −

1
τ7

−
M2

7
2ϱ

􏼠 􏼡y
2
7 −

1
τ9

−
M2

9
2ϱ

􏼠 􏼡y
2
9 + C,

(B.9)

where

μ1 �
1
2

􏼒 􏼓λmin Q1( 􏼁 −
1
2

􏼒 􏼓λ 2
max (P) − 1,

C �
1
2
λ 2
max (P) ε∗

����
����
2

+ 3 + 4ϱ + 􏽘
6

i�1

1
2
λiθ

2
i − 􏽘

6

i�1

1
2

+
1
2
ε2i􏼒 􏼓.

(B.10)

Choose the suitable design parameters to make
μ1 > 0 and satisfy

����
C/μ1

􏽰
< ‖􏽥x‖. ,e following conditions

hold:

c(2i− 1) ≥ η
2
i + r,

c2i ≥ 1 + r,

1
τ2i

≥
1
2

+
M2

i

2ϱ
+ r,

1
2
λi ≥

1
8

+ r,

1
τ7
≥

M2
7

2ϱ
+ r,

1
τ9
≥

M2
9

2ϱ
+ r,

(B.11)

where r is the positive constant. ,us, we have _Γ ≤ 0. Hence,
all the signals of the closed-loop system are semiglobal
bounded. Particularly, the tracking errors of position and
attitude angle can converge to an arbitrarily residual set and
are always kept in the prespecified cures. ,is completes the
proof.
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