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In this research, a continuous nutrient-phytoplankton model with time delay and Michaelis–Menten functional response is
discretized to a spatiotemporal discrete model. Around the homogeneous steady state of the discrete model, Neimark–Sacker
bifurcation and Turing bifurcation analysis are investigated. Based on the bifurcation analysis, numerical simulations are carried
out on the formation of spatiotemporal patterns. Simulation results show that the di�usion of phytoplankton and nutrients can
induce the formation of Turing-like patterns, while time delay can also induce the formation of cloud-like pattern by
Neimark–Sacker bifurcation. Compared with the results generated by the continuous model, more types of patterns are obtained
and are compared with real observed patterns.

1. Introduction

Phytoplankton is the main producer of aquatic ecosystems
and forms the basis of food webs [1]. �e growth of phy-
toplankton can determine the behavioral space of plankton
directly and then even a�ects the development of the whole
aquatic ecosystem. As the spatial and temporal distribution/
self-organization of phytoplankton is quite visible, it can
re�ect the “structure” of the aquatic ecosystem, which also
reveals the strategy that phytoplankton takes to adapt to
environmental changes. �erefore, investigation on the self-
organization of phytoplankton has been essential to the
understanding of ecosystem evolution and remains a hot
topic in ecosystem dynamics and complexity.

One of the most striking manifestations of biological
ocean dynamics is the proliferation of particularly dense
phytoplankton, which often forms marvelous patterns with
unexpectedly clear boundaries, such as banded patterns,
chaotic patterns, and solitons. [2–4]. �ese patterns are
usually produced by the interaction between the behavior of
organisms (sinking, �oating, or swimming) and the sur-
rounding physical �ow [3]. By examining the structure of
dense phytoplankton mass reproduction, the local physical
dynamics of living organisms, as well as behavioral and

physiological responses, can be obtained. Patterns of some
accumulations are the re�ection of speci�c �ows; observation
of these visible patterns may reveal underlying dynamics [3].
However, the formation mechanism of these patterns is still
unclear, and further research is urgently needed.

Since the environmental factors in the phytoplankton
ecosystem vary with time, simple statistical models cannot
accurately describe the dynamic process of phytoplankton
growth in time and space. �erefore, the establishment of
a dynamic model of plankton populations is an important
method to study the physical and biological processes of
plankton [5–10]. In 1949, Riley et al. established a vertical
one-dimensional ecological dynamics model to simulate the
seasonal changes of plankton in the North Sea of Europe,
which symbolizes the study of aquatic ecosystems from
qualitative description to the era of quantitative simulation
[11]. In the same year, Monod, the founder of modern cell
growth, proposed the famous Monod kinetic model, which
describes the e�ect of substrate concentration on the cell
growth rate, laying the foundation for the development of
cell growth dynamics, thus promoting the development of
phytoplankton growth dynamics [12]. After the Monod
model was proposed, it was widely used in the study of
phytoplankton growth dynamics [13–19] and found that the
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Monod model is very suitable under certain conditions. Ye
et al. used the Monod model to quantitatively study the
relationship between phytoplankton biomass and nutrients in
Taihu Lake [20]. It was found that total nitrogen is a key factor
affecting the growth of phytoplankton, and eutrophication of
lakes to phytoplankton growth has served as positive feed-
back. However, some studies have shown that the relationship
between phytoplankton growth and nutrients does not follow
the Monod model, which means that the Monod model has
limitations [21]. Dugdale used the Michaelis–Menten model
to describe the absorption of nutrients by planktonic algae
under steady-state conditions [22, 23], revealing the effects of
limited nutrient salts on the growth of planktonic algae.
Studies have shown that it is feasible to describe the quan-
titative relationship between phytoplankton growth rate and
nutrient salt concentration with Michaelis–Menten model
under steady-state conditions [24].

Reaction-diffusion equations have been widely used to
describe temporal and spatial complexity in ecology [25–33].
Time delay always exists and plays an important role in
dynamical systems, and some dynamical phenomena could
be affected by the time delay [34–37]. Turing bifurcation
helps with the explanation of self-organization. Usually,
Turing analysis is carried out on the basis of continuous
models. In ecosystems, discrete models can generate more
dynamical behaviors, which undoubtedly reflect ecological
complexity [38, 39]. It is worth noting that numerical
simulation is actually based on discrete forms of continuous
systems, which automatically give numerical simulation
algorithms. *erefore, the discrete form is the natural link
between the actual model and the simulation. At the same
time, in many cases, the environment exhibits considerable
spatial variability and is best considered using spatial dis-
crete methods [40–43]. Wang et al. studying the discrete
forms of the Gierer–Meinhardt system found that discrete
systems lead to more complex nonlinear behaviors and new
dynamic phenomena than continuous forms. In addition,
for the discrete time and space G-M system, they found
a new instability mechanism, pronunciation flip-Turing
instability [44]. In addition, when we apply Turing analysis
on discrete models, there are some differences. First, the
solution space of the continuous Turing model is infinite
dimension, while the corresponding discretization model is
in finite dimension. Secondly, in the linearization analysis of
Turing bifurcation, elliptic operators have infinite eigen-
values and eigenvalue sequences are unbounded, while
discrete elliptic operators have only finite eigenvalues.
*erefore, it is of great significance to further reveal the
formation mechanism of space-time self-organization by
discretizing the reaction-diffusion equation in space and
time. In this research, we use the N-S bifurcation theorem
described by Guckenheimer and Holmes [45] to determine
the conditions under which bifurcation occurs.

*erefore, in this research, we will investigate the self-
organization of phytoplankton in a spatiotemporal discrete
nutrient-phytoplanktonmodel with time delay.*emodel is
obtained through the discretization of a continuous nutri-
ent-phytoplankton model proposed by Dai et al. [46]. Based
on the discrete model, Neimark–Sacker bifurcation analysis

and Turing bifurcation analysis are carried out, and pa-
rameter space is obtained correspondingly. Numerical
simulations are then carried out using MATLAB (2011a) on
the formation of phytoplankton patterns with different
parameter values. Considering the pattern types and holistic
shapes, the simulated phytoplankton patterns are compared
with those observed in the real world. In addition, we also
illustrate the results that can be obtained by the discrete
model in the research are far more than those by the
continuous model in [46].

2. Model and Analysis

2.1. ADiscrete SpatiotemporalNutrient-PhytoplanktonModel
with Delay. Considering the rate of diffusion of nutrients
and phytoplankton is different in real-world systems,
therefore, in this paper, we obtain the following spatial
nutrient-phytoplankton models based on Ref. [46]:

zN

zt
� d1ΔN + I −

bN

a + N
P − qN + εmP,

zP

zt
� d2ΔP +

αbNτ
a + Nτ

P − mP,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where N and P represent nutrient concentration and the
population biomass of phytoplankton, respectively. All
parameters are non-negative and Nτ � N(x, t − τ).
Let f1(N, P) � I − (bN/(a + N))P − qN + εmP and
g1(N, P) � (αbNτ/(a + Nτ))P − mP.

In the Turing instability analysis, people often give
theoretical analysis to the continuous model, while the
Turing pattern simulation undoubtedly adopts the corre-
sponding discretization model. It is important to discretize
the reaction-diffusion equation in space-time, which is of
great significance for further revealing the formation
mechanism of space-time self-organized structure. *ere-
fore, in this paper, we consider the model on a n × n lattice,
and the two variables can be expressed as Nt

i,j and Pt
i,j

(i, j ∈ 1, 2, 3, . . . , n{ } and t ∈ Z+), which represent the nu-
trient concentration and the phytoplankton density in lattice
(i, j) at time t, respectively. According to the former re-
search works of [39, 47], there are two stages, reaction stage
and diffusion stage, when we discretize the continuous
model (equation (1)). Meanwhile, we use a standard second-
order central finite difference scheme to discretize (1) in
space. *e spatial dispersal stage, that is, diffusion, is con-
sidered firstly as

N(i,j,t)
′ � Nt

i,j + D1∇2dNt
i,j,

P(i,j,t)
′ � Pt

i,j + D2∇2dPt
i,j,

⎧⎪⎨

⎪⎩
(2)

where D1 � d1e/h2, D2 � d2e/h2, e, and h are the time in-
terval and space interval. ∇2d denotes the discrete form of the
Laplacian operator:

∇2dN
t
i,j � N

t
i+1,j + N

t
i− 1,j + N

t
i,j+1 + N

t
i,j− 1 − 4N

t
i,j,

∇2dP
t
i,j � P

t
i+1,j + P

t
i− 1,j + P

t
i,j+1 + P

t
i,j− 1 − 4P

t
i,j.

(3)
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*en, we consider the reaction stage:

Nt+1
i,j � f N(i,j,t)

′ , P(i,j,t)
′􏼐 􏼑 � N(i,j,t)

′ + ef1 Nt
i,j, Pt

i,j􏼐 􏼑,

Pt+1
i,j � g N(i,j,t)

′ , P(i,j,t)
′􏼐 􏼑 � P(i,j,t)

′ + eg1 Nt
i,j, Pt

i,j􏼐 􏼑.

⎧⎪⎨

⎪⎩

(4)

Boundary conditions are set as periodic conditions as
follows:

Nt
i,0 � Nt

i,k,

Nt
i,1 � Nt

i,k+1,

Nt
0,j � Nt

k,j,

Nt
1,j � Nt

k+1,j,

i, j ∈ (1, 2, . . . , k), t ∈ Z+.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Equations (2) and (4) including both diffusion and re-
action stages are defined as our discrete model. According to
the spatial homogeneity of the discrete system, with all i, j,
and t, we have

∇2dN
t
i,j � 0,

∇2dP
t
i,j � 0.

(6)

From (6), together with (2)–(4), then the homogeneous
dynamics satisfies the following equation:

Nt+1
i,j � Nt

i,j + e I −
bNt

i,j

a + Nt
i,j

P
t
i,j − qN

t
i,j + εmP

t
i,j

⎛⎝ ⎞⎠,

Pt+1
i,j � Pt

i,j + e
αbNτt

i,j

a + Nτt
i,j

P
t
i,j − mP

t
i,j

⎛⎝ ⎞⎠,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where Nτt
i,j � N(i, j, t − τ), we rewrite equation (7) into the

form of maps:

N

P

⎛⎝ ⎞⎠⟶

N + e I −
bN

a + N
P − qN + εmP􏼠 􏼡

P + e
αbNτ

a + Nτ
P − mP􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

In the sequel, we use (8) to analyze the homogeneous
dynamics of equations (2)–(4).

2.2. Analysis of the Stability of the Homogeneous Steady State.
*e fixed point of map (8) is a homogeneous steady state of
equations (2)–(4). So, we carry out the analysis of the sta-
bility about the fixed point of map (8). When both the delay
and the diffusion are not considered, it is easy to see that map
(8) has two fixed points: E0 � (I/q, 0) and E∗ � (N∗, P∗),
where P∗ � α(Iαb − Im − qma)/m(1 − εα)(αb − m) and
N∗ � ma/(αb − m). *e sufficient and necessary conditions
for that (N∗, P∗) is positive are as follows:

αb − m> 0,

Iαb − Im − qma> 0,

εα< 1.

(9)

*e Jacobian matrix method is used to determine the
local stability of fixed points. Since pattern formation re-
quires the nontrivial homogeneous stationary state, which is
corresponding to the fixed point (N∗, P∗), we just concern
the stability of (N∗, P∗). *e corresponding Jacobian is
given by

J(e) � J N
∗
, P
∗

( 􏼁 �

1 − e q +
(αb − m)(αbI − Im − qma)

abmα(1 − εα)
􏼠 􏼡 e εm −

m

α
􏼒 􏼓

e
(αb − m)(αbI − Im − qma)

abm(1 − εα)
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

*e two eigenvalues of matrix (10) are as follows:

λ1,2 �
tr(e) ±

������������

tr(e)2 − 4Δ(e)

􏽱

2
, (11)

where

tr(e) � 2 − q +
(αb − m)(αbI − Im − qma)

abmα(1 − εα)
􏼠 􏼡e,

Δ(e) � 1 − q +
(αb − m)(αbI − Im − qma)

abmα(1 − εα)
􏼠 􏼡e +

(αb − m)(αbI − Im − qma)

αab
e
2
.

(12)
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According to the criterion of stability of the fixed point, if
|λ1|< 1 and |λ2|< 1, the fixed point is locally asymptotically
stable. As shown in the previous research [48], this criterion
of stability is equivalent to Δ(e)< 1, − (1 + Δ(e))<
tr(e)< 1 + Δ(e). *rough calculations, the conditions for
(N∗, P∗) to be locally asymptotically stable are determined
as follows:

Ae
2

− Be< 0,

A> 0,

Ae
2

− 2Be + 4> 0,

(13)

where

A �
(αb − m)(αbI − Im − qma)

αab
,

B � q +
(αb − m)(αbI − Im − qma)

abmα(1 − εα)
.

(14)

*e dynamics of the discrete model without spatial
diffusions can be shown in Figure 1, and the following bi-
furcations and simulations are all carried out in this situ-
ation. Note that, in the discrete system, the arrows in the
figure represent the direction of iteration rather than dy-
namic flow. And τ � 0 is considered, as when time delay
increases, the following bifurcation will occur.

2.3. Bifurcation Analysis of the Homogeneous Steady State

2.3.1. Neimark–Sacker Bifurcation Analysis. In this part, we
consider Neimark–Sacker bifurcation of equations (2)–(4)
when τ is small. We first make a corresponding change to
equation (1) and obtain equation (17) and then discretize
equation (17) to obtain map (18).

If τ is small, Nτ � N(x, t) − τ(zN(x, t)/zt), put it into
equation (1) and obtain

zN

zt
� d1ΔN + I −

bN

a + N
P − qN + εmP,

zP

zt
� d2ΔP + αbP R N(x, t) − τ

zN(x, t)

zt
􏼠 􏼡􏼠 􏼡 − mP,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(15)

in which

R(N) �
N

N + a
. (16)

Taylor expansion of R(N(x, t) − τ(zN(x, t)/zt)) at
(N, P) without considering the higher order nonlinear part
and equation (1) can be written as

zN(x, t)

zt
� d1ΔN + f1(N, P),

zP(x, t)

zt
� −

αabPτ
(N + a)2

d1ΔN + d2ΔP + g2(N, P) −
αabPτ

(N + a)2
f1(N, P),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

where f1(N, P) � I − (bN/(a + N))P − qN + εmP and
g2(N, P) � (αbN/(a + N))P − mP. *erefore, equation (8)
can be expressed as the following map:

N

P

⎛⎝ ⎞⎠⟶

N + eI −
ebN

N + a
P − eqN + eεmP

P + e
αbNP

a + N
− emP −

αabPτ
(N + a)2

e I −
bN

N + a
P − qN + εmP􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

According to [48], the first condition of Neimark–Sacker
bifurcation requires the eigenvalues at a fixed point, λ1 and
λ2 are conjugate and their modules are 1, shown as

λ2 � λ1,

λ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 1,
(19)

in which

λ1,2 �
tr0 ±

��������
tr20 − 4Δ0

􏽱

2
, (20)

tr0 � a11 + a22 � A0 + A1 + A2τ,

Δ0 � a11a22 − a12a21 � A0 A1 + A2τ( 􏼁 − B0 B1 + B2τ( 􏼁,

(21)
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A0, A1, A2, B0, B1, B2, a11, a12, a21, and a22 have been shown
in Appendix A.

*en, we can get

tr
2
0 − 4Δ0 < 0, Δ0 � 1. (22)

By calculation, we can obtain the Neimark–Sacker bi-
furcation point τ0:

τ0 �
1 + B0B1 − A0A1

A0A2 − B0B2
. (23)

Under the satisfaction of conditions (22) and (23), the
fixed point E∗ of map (18) is translated to the origin by the
following translation:

x � N − N
∗
,

y � P − P
∗
.

(24)

*en, map (18) is transformed into

x

y
􏼠 􏼡⟶

a11x + a12y + a13x
2 + a14y

2 + a15xy + a16x
3 + a17x

2y + a18xy2 + O (|x| +|y|)4􏼐 􏼑

a21x + a22y + a23x
2 + a24y

2 + a25xy + a26x
3 + a27x

2y + a28xy2 + O (|x| +|y|)4􏼐 􏼑

⎛⎝ ⎞⎠, (25)

where a11, a12, a13, a14, a15, a 16, a17, a18, a21, a22, a23, a24, a25,

a26, a27, and a28 have been shown in Appendix A with
τ � τ0.

*e second condition for Neimark–Sacker bifurcation
requires

d �
d|λ(τ)|

dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ�τ0
�

A0A2 − B0B2

2
��������������������������
A0A1 − B0B1 + A0A2 − B0B2( 􏼁τ0

􏽱 ≠ 0,

λ τ0( 􏼁( 􏼁
θ ≠ 1, θ � 1, 2, 3, 4,

(26)

in which

λ τ0( 􏼁,

λ τ0( 􏼁 �
tr0 τ0( 􏼁

2
±

i

2

���������������

4Δ0 τ0( 􏼁 − tr20 τ0( 􏼁

􏽱

� β ± ic,

i �
���
− 1

√
,

(27)

where tr0(τ0) and Δ0(τ0) are described in equation (21) with
τ � τ0. *en, we can obtain

A0 + A1 + A2τ0 ≠ 0, − 1. (28)

On the basis of map (25), the canonical form is studied to
obtain the last condition for the occurrence of Neimark–
Sacker bifurcation. *e invertible transformation is applied:

x

y
􏼠 􏼡 �

a12 0

β − a11 − c
􏼠 􏼡

􏽥x

􏽥y
􏼠 􏼡. (29)

To map (25), then the map becomes

􏽥x

􏽥y

⎛⎝ ⎞⎠⟶
β − c

c β
⎛⎝ ⎞⎠

􏽥x

􏽥y

⎛⎝ ⎞⎠ +
1

a12c

F(􏽥x, 􏽥y)

G(􏽥x, 􏽥y)

⎛⎝ ⎞⎠, (30)

where

F(􏽥x, 􏽥y) � a12c a12a13 + a15 β − a11( 􏼁( 􏼁􏽥x
2

− a12a15c
2
􏽥x􏽥y

+ a
2
12c a12a16 + a17 β − a11( 􏼁( 􏼁􏽥x

3
− a

2
12a17c

2
􏽥x
2
􏽥y

+ O (|􏽥x| +|􏽥y|)
4

􏼐 􏼑,

G(􏽥x, 􏽥y) � a
2
12 a13 β − a11( 􏼁 − a12a23( 􏼁 + a14 β − a11( 􏼁(􏼐

− a12a24􏼁 β − a11( 􏼁
2

+ a12a15 β − a11( 􏼁 − a
2
12a25􏼐 􏼑

· β − a11􏼁( 􏼁􏽥x
2

− a12a24c
2
􏽥y
2

+ a12c 2a24 − a15( 􏼁(

· β − a11􏼁 + a12a25( 􏼁􏽥x􏽥y + a
3
12a16 β − a11( 􏼁 − a

4
12a26􏼐 􏼑􏼐

+ a
2
12a17 β − a11( 􏼁 − a

3
12a27􏼐 􏼑 β − a11( 􏼁 − a

2
12a28

· β − a
2
11􏼑􏼐 􏼑􏽥x

3
− a

2
12c a17 β − a11( 􏼁 − a12a27( 􏼁(

− 2a28 β − a11( 􏼁)􏽥x
2
􏽥y − a

2
12a28c

2
􏽥x􏽥y

2
+ O (|􏽥x| +|􏽥y|)

4
􏼐 􏼑.

(31)
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Figure 1: Fixed points of (8). Parameter values: I � 1.6, a � 0.5,
b � 0.8, α � 0.7, m � 0.45, q � 0.01, ε � 0.001, and τ � 0.
∗Asymptotically stable fixed point E∗; “○” represents the boundary
fixed point E0.

Complexity 5



*e second-order and third-order partial derivatives of
F(􏽥x, 􏽥y) and G(􏽥x, 􏽥y) at (0, 0) are calculated as

F􏽥x 􏽥x � 2a
2
12a13c + 2a12a15c β − a11( 􏼁,

F􏽥x 􏽥y � − a12a15c
2
,

F􏽥y 􏽥y � 0,

F􏽥x 􏽥x 􏽥x � 6a
3
12a16c + 6a

2
12a17c β − a11( 􏼁,

F􏽥x 􏽥x 􏽥y � − a
2
12a17c

2
,

F􏽥x 􏽥y 􏽥y � 0,

F􏽥y 􏽥y 􏽥y � 0,

G􏽥x 􏽥x � 2a
2
12 a13 β − a11( 􏼁 − a12a23( 􏼁

+ 2 a14 β − a11( 􏼁 − a12a24( 􏼁 β − a11( 􏼁
2

+ 2 β − a11( 􏼁 a12a15 β − a11( 􏼁 − a
2
12a25􏼐 􏼑,

G􏽥x 􏽥y � 2ca12a24 β − a11( 􏼁 − c a12a15 β − a11( 􏼁 − a
2
12a25􏼐 􏼑,

G􏽥y 􏽥y � − 2a12a24c
2
,

G􏽥x 􏽥x 􏽥x � 6 a
3
12a16 β − a11( 􏼁 − a

4
12a26􏼐 􏼑

+ 6 a
2
12a17 β − a11( 􏼁 − a

3
12a27􏼐 􏼑 β − a11( 􏼁

− 6a
2
12a28 β − a11( 􏼁

2
,

G􏽥x 􏽥x 􏽥y � − 2c a
2
12a17 β − a11( 􏼁 − a

3
12a27􏼐 􏼑 + 4ca

2
12a28 β − a11( 􏼁,

G􏽥x 􏽥y 􏽥y � − 2a
2
12a28c

2
,

G􏽥y 􏽥y 􏽥y � 0.

(32)

*e third condition of Neimark–Sacker bifurcation
requires

R � − Re
(1 − 2λ)λ2

1 − λ
ξ11ξ20⎛⎝ ⎞⎠ −

1
2
ξ11

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− ξ02
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ Re λξ21􏼐 􏼑≠ 0,

(33)

in which

ξ11 �
1

4a12c
F􏽥x 􏽥x + F􏽥y 􏽥y􏼐 􏼑 + i G􏽥x 􏽥x + G􏽥y 􏽥y􏼐 􏼑􏼐 􏼑,

ξ20 �
1

8a12c
F􏽥x 􏽥x − F􏽥y 􏽥y + 2G􏽥x 􏽥y􏼐 􏼑 + i G􏽥x 􏽥x − G􏽥y 􏽥y − 2F􏽥x 􏽥y􏼐 􏼑􏼐 􏼑,

ξ02 �
1

8a12c
F􏽥x 􏽥x − F􏽥y 􏽥y − 2G􏽥x 􏽥y􏼐 􏼑 + i G􏽥x 􏽥x − G􏽥y 􏽥y + 2F􏽥x 􏽥y􏼐 􏼑􏼐 􏼑,

ξ21 �
1

16a12c
F􏽥x 􏽥x 􏽥x + F􏽥x 􏽥y 􏽥y + G􏽥x 􏽥x 􏽥y + G􏽥y 􏽥y 􏽥y􏼐 􏼑􏼐

+ i G􏽥x 􏽥x 􏽥x + G􏽥x 􏽥y 􏽥y − F􏽥x 􏽥x 􏽥y − F􏽥y 􏽥y 􏽥y􏼐 􏼑􏼑.

(34)

After calculation, the third condition for Neimark–
Sacker can be expressed as

R � −
1

A∗
􏼨B
∗

F􏽥x 􏽥x + F􏽥y 􏽥y􏼐 􏼑 F􏽥x 􏽥x − F􏽥y 􏽥y + 2G􏽥x 􏽥y􏼐 􏼑􏽨

− G􏽥x 􏽥x + G􏽥y 􏽥y􏼐 􏼑 G􏽥x 􏽥x − G􏽥y 􏽥y − 2F􏽥x 􏽥y􏼐 􏼑􏽩

+ C
∗

G􏽥x 􏽥x + G􏽥y 􏽥y􏼐 􏼑 F􏽥x 􏽥x − F􏽥y 􏽥y + 2G􏽥x 􏽥y􏼐 􏼑􏽨

− F􏽥x 􏽥x + F􏽥y 􏽥y􏼐 􏼑 G􏽥x 􏽥x − G􏽥y 􏽥y − 2F􏽥x 􏽥y􏼐 􏼑􏽩􏼩

−
1

32a2
12c

2 F􏽥x 􏽥x + F􏽥y 􏽥y􏼐 􏼑
2

+ G􏽥x 􏽥x + G􏽥y 􏽥y􏼐 􏼑
2

􏼔 􏼕

+
1

16a12c
β F􏽥x 􏽥x 􏽥x + F􏽥x 􏽥y 􏽥y + G􏽥x 􏽥x 􏽥y + G􏽥y 􏽥y 􏽥y􏼐 􏼑􏽨

+ c G􏽥x 􏽥x 􏽥x + G􏽥x 􏽥y 􏽥y − F􏽥x 􏽥x 􏽥y − F􏽥y 􏽥y 􏽥y􏼐 􏼑􏽩

−
1

64a2
12c

2 F􏽥x 􏽥x − F􏽥y 􏽥y − 2G􏽥x 􏽥y􏼐 􏼑
2

􏼔

+ G􏽥x 􏽥x − G􏽥y 􏽥y + 2F􏽥x 􏽥y􏼐 􏼑
2
􏼕≠ 0,

(35)

in which

A
∗

� 32a
2
12c

2
(1 − β) + c

2
􏼐 􏼑,

B
∗

� 1 − 3β + 2β2 − 2c
2

􏼐 􏼑 β2 − c
2

􏼐 􏼑 + 6β − 8β2􏼐 􏼑c
2
,

C
∗

� 2βc (1 − β)(1 − 2β) − 2c
2

􏼐 􏼑 − c(3 − 4β) β2 − c
2

􏼐 􏼑.

(36)

Based on the above calculations, when the conditions
(23), (28), and (35) are satisfied, Neimark–Sacker bifurcation
occurs at the fixed point E∗. Moreover, when R< 0 and d> 0,
then an attracting invariant closed curve bifurcates from the
fixed point E∗ for τ > τ0; otherwise, when R> 0 and d> 0,
a repelling invariant closed curve bifurcates from the fixed
point E∗ for 0< τ < τ0.

In Figure 2(a), the parameter space of time delay and
input rate I − τ is shown. Zone I represents that when the
input rate of nutrient is low, positive fixed point E∗ does not
exist. Zone II and III represent no bifurcation and bi-
furcation area around the fixed point E∗. And Figure 2(b)
shows the bifurcation diagram when I � 1.6 and e � 0.2.*e
Hopf bifurcation point is not suitable here with a time step e

not small enough, while the calculated Neimark–Sacker
bifurcation point is more correct compared with the sim-
ulated bifurcation point. *is difference can be shown in
Figure 2(d): e cannot be equal to 0.2, but in the discrete
model, when e � 0.2, Neimark–Sacker bifurcation occurs
and drives the system from stable fixed point to quasipe-
riodic dynamics. When time delay τ � 3 satisfy both τ > τN− S

and τ > τHopf , the dynamics of the continuous model (with
e � 0.01 as in [46]) and the discrete model (e � 0.2) show
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differences: Hopf bifurcation induces the continuous system
into a limit cycle (Figure 2(c)); Neimark–Sacker bifurcation
induces the discrete system into quasiperiodic iteration and
the amplitude of variables is larger.

2.3.2. Turing Bifurcation Analysis. In this part, we consider
Turing bifurcation of equations (2)–(4) when τ � 0. Turing
bifurcation requires two conditions. Firstly, a nontrivial
homogeneous stationary state exists and is stable to spatially
homogeneous perturbations, which has been obtained in the
above section. Secondly, the stable stationary state is un-
stable to at least one type of spatially heterogeneous per-
turbations. *is paper is based on the method of Bai and
Zhang to do Turing bifurcation analysis of the discrete
model [49]. We first consider the following eigenvalue
equation:

∇2Xij
+ λX

ij
� 0, (37)

with periodic boundary conditions:

X
i,0

� X
i,k

,

X
i,1

� X
i,k+1

,

X
0,j

� X
k,j

,

X
1,j

� X
k+1,j

,

i, j ∈ (1, 2, . . . , k).

(38)

When x≠ 0 and y≠ 0, we set Xij � xiyj, put it into
equation (38), and obtain xk � yk � 1. *en, we can get

xr � exp
2(r − 1)π

k
i′􏼠 􏼡,

yl � exp
2(l − 1)π

k
i′􏼠 􏼡,

r, l ∈ (1, 2, . . . , k), i′ �
���
− 1

√
.

(39)

I

τ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

3

4

5

6

7

8

I
III

II

N-S bifurcation e = 0.2
Hopf bifurcation
N-S bifurcation e = 0.01

(a)

2 3 4 5 6 7 8 9 10

5

10

15

20

25

τ

Ph
yt

op
la

nk
to

n,
 P

τN−S τHopf

(b)

1 2 3 4
0

2

4

6

Phytoplankton, P

N
ut

rie
nt

, N

(c)

Phytoplankton, P

0

2

4

6

N
ut

rie
nt

, N

1 2 3 4

(d)

Phytoplankton, P

0

2

4

6

N
ut

rie
nt

, N

1 2 3 4

(e)

Figure 2: (a) Parameter space graph of Neimark–Sacker bifurcation and Hopf bifurcation with I and τ; (b) bifurcation diagram of
Neimark–Sacker bifurcation with τ and phytoplankton; (c–e) phase portraits of Neimark–Sacker bifurcation with parameters (c) e � 0.01,
τ � 3; (d) e � 0.2, τ � 2.45; (e) e � 0.2, τ � 3. Other parameter values: I � 1.6, a � 0.5, b � 0.8, α � 0.7, m � 0.45, q � 0.01, and ε � 0.001.
∗Asymptotically stable fixed point E∗.
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Substituting Xij � xiyj into equation (37), we obtain
that

x
i− 1

y
j

+ x
i+1

y
j

+ x
i
y

j− 1
+ x

i
y

j+1
− 4x

i
y

j
+ λx

i
y

j
� 0.

(40)

By calculating λ � − ((1 − x)2/x) − ((1 − y)2/y), then,
using equation (39) we can get

λrl � −
1 − xr( 􏼁

2

xr

−
1 − yl( 􏼁

2

yl

� 4 sin2
(r − 1)π

k
+ sin2

(l − 1)π
k

􏼠 􏼡 � S
2
rl.

(41)

Turing bifurcation is caused by the lack of spatial
symmetry. To analyze the Turing bifurcation, a spatially
nonuniform perturbation is applied at the spatially uniform
state E∗. *e equation for spatially nonuniform perturba-
tions can be expressed as

􏽥N
t

i,j � N
t
i,j − N

∗
,

􏽥P
t

i,j � P
t
i,j − P

∗
.

(42)

Noticing ∇2d 􏽥N
t

i,j � ∇2dNt
i,j and ∇2d 􏽥P

t

i,j � ∇2dPt
i,j, and the

values of the two cannot be constant to 0. Substituting
equation (42) into equations (2)–(4) leads to the following
equation:

􏽥N
t+1
i,j � fN

􏽥N
t

i,j + D1∇2d 􏽥N
t

i,j􏼐 􏼑 + fP
􏽥P

t

i,j + D2∇2d 􏽥P
t

i,j􏼐 􏼑 + O 􏽥N
t

i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 􏽥P
t

i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

􏼠 􏼡,

􏽥P
t+1
i,j � gN

􏽥N
t

i,j + D1∇2d 􏽥N
t

i,j􏼐 􏼑 + gP
􏽥P

t

i,j + D2∇2d 􏽥P
t

i,j􏼐 􏼑 + O 􏽥N
t

i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 􏽥P
t

i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(43)

*e high-order terms in the above equations can be
ignored when the disturbance is very weak. Using the

corresponding characteristic function X
ij

rl of the eigenvalue
λrl to multiply equation (43), we obtain

X
ij

rl
􏽥N

t+1
i,j � fNX

ij

rl
􏽥N

t

i,j + fPX
ij

rl
􏽥P

t

i,j + D1fNX
ij

rl∇
2
d

􏽥N
t

i,j + D2fPX
ij

rl∇
2
d

􏽥P
t

i,j,

X
ij

rl
􏽥P

t+1
i,j � gNX

ij

rl
􏽥N

t

i,j + gPX
ij

rl
􏽥P

t

i,j + D1gNX
ij

rl∇
2
d

􏽥N
t

i,j + D2gPX
ij

rl∇
2
d

􏽥P
t

i,j.

⎧⎪⎨

⎪⎩
(44)

Summing equation (44) for all i and j gives the following
equation:

ΣXij

rl
􏽥N

t+1
i,j � fNΣX

ij

rl
􏽥N

t

i,j + fPΣX
ij

rl
􏽥P

t

i,j + D1fNΣX
ij

rl∇
2
d

􏽥N
t

i,j + D2fPΣX
ij

rl∇
2
d

􏽥P
t

i,j,

ΣXij

rl
􏽥P

t+1
i,j � gNΣX

ij

rl
􏽥N

t

i,j + gPΣX
ij

rl
􏽥P

t

i,j + D1gNΣX
ij

rl∇
2
d

􏽥N
t

i,j + D2gPΣX
ij

rl∇
2
d

􏽥P
t

i,j.

⎧⎪⎨

⎪⎩
(45)

Let Nt � 􏽐
k
i,j�1X

ij

rl
􏽥N

t+1
ij and Pt � 􏽐

k
i,j�1X

ij

rlP
t+1
ij , com-

bined boundary conditions (38), equation (45) can be
transformed into the following form:

Nt+1 � fN 1 − D1λrl( 􏼁Nt + fP 1 − D2λrl( 􏼁Pt,

Pt+1 � gN 1 − D1λrl( 􏼁Nt + gP 1 − D2λrl( 􏼁Pt.

⎧⎨

⎩ (46)

At this time, we know that a progressive solution of
equations (2)–(4) with boundary conditions (5) is

Nt
ij � NtX

ij

rl andPt
ij � PtX

ij

rl. *erefore, we know that if the
solution of the equation (46) is unstable, it will cause the
equations (2)–(4) to be unstable. *e eigenvalues of equa-
tions (2)–(4) are as follows:

λ±(r, l, e) �
1
2

tr(r, l, e) ±
1
2

������������������

tr(r, l, e)2 − 4Δ(r, l, e)

􏽱

, (47)

in which
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tr(r, l, e) � a11(e) + a22(e) −
e

h2 a11(e)d1 + a22(e)d2( 􏼁λrl,

Δ(r, l, e) � a11(e)a22(e) − a12(e)a21(e)( 􏼁 1 −
e

h2 d1λrl􏼒 􏼓 1 −
e

h2 d2λrl􏼒 􏼓,

J N
∗
, P
∗

( 􏼁 �
a11(e) a12(e)

a21(e) a22(e)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

1 − eq −
eab

N∗ + a( )2
P
∗

eεm −
ebN∗

N∗ + a

eαab

N∗ + a( )2
P
∗ 1 − em +

eαbN∗

N∗ + a

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

.

(48)

Here, a11(e), a12(e), a21(e), and a22(e) are denoted for
reminding that they are dependent on e. Based on the two
eigenvalues, we define

λm(r, l, e) � max λ+(r, l)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, λ− (r, l)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑,

λm(e) � maxn
r�1,l�1λm(r, l, e).

⎧⎨

⎩ (49)

*e occurrence of Turing bifurcation needs to satisfy
λm(e) � 1. According to this condition, we can determine
the critical value e′ of Turing bifurcation occurring, which
can be described as follows:

(1) If tr(r, l, e)2 > 4Δ(r, l, e) is satisfied in a small
neighborhood of e � e′, the critical value e′ satisfies
maxn

r�1,l�1(|tr(r, l, e′)| − Δ(r, l, e′)) � 1
(2) If tr(r, l, e)2 ≤ 4Δ(r, l, e) is satisfied in a small

neighborhood of e � e′, the critical value e′ satisfies
maxn

r�1,l�1Δ(r, l, e′) � 1

maxn
r�1,l�1(|tr(r, l, e′)| − Δ(r, l, e′)) � 1 and maxn

r�1,l�1Δ
(r, l, e′) � 1 determine the critical conditions for the oc-
currence of Turing bifurcation in discrete systems. From this
critical condition, the conditions for the formation of the
Turing pattern can be obtained. By simplifying the two cases
described above, it can be known that Turing instability
occurs and leads to the formation of spatial heterogeneity
patterns when λm(e)> 1.

*en, we discuss the influence of the diffusion co-
efficients d1 and d2 on the model. We use the following
parameter values: I � 1.6, a � 0.5, b � 0.8, α � 0.7, q � 0.01,
ε � 0.001, m � 0.45, d1 � 0.2, d2 � 0.2, e � 0.2, h � 1, τ � 0,
and t � 100. *e discrete model is solved numerically in
a rectangular spatial grid consisting of 100×100 units, and
periodic boundary conditions are adopted. As shown in
Figure 3, Turing bifurcation can be displayed via the change
of eigenvalue λ(k, l). In Figure 3(a), we can see that the
perturbation parameters k and l have symmetrical effects on
the eigenvalues. *erefore, for convenience of observation,
let k � l, then we can get the change in the eigenvalue to l, as
shown in Figure 3(b). If there is no disturbance, the system
will be at a stable point. But, when there is disturbance,
Turing bifurcation can happen. According to Figure 3(b), we
can know that if the diffusion coefficient d1 � 1.220, then the
eigenvalue of the system will not make the eigenvalue λ(k, l)

greater than 1 with the increase of the perturbation pa-
rameter; at this time, Turing bifurcation will not occur.
When d1 � 1.389, the curve is tangent to the straight line

λ(k, l) � 1, that is, only if the diffusion coefficient d1 > 1.389,
the value of the eigenvalue λ(k, l) will exceed 1 as the dis-
turbance coefficient increases; at this time, Turing bi-
furcation will occur in the system.

3. Numerical Simulations

In this section, numerical simulations on the formation of
phytoplankton are carried out focusing on three aspects
including time delay τ and diffusion coefficients d1 and d2.
Note that initial conditions are set as homogeneous steady
states on 100×100 (mostly) lattice with ±5% random per-
turbations. *en simulated patterns are compared with real
observed patterns.

3.1. Effects of Time Delay on the Pattern Formation.
According to the stability analysis and Neimark–Sacker
bifurcation analysis, time delay can cause the instability of
the system. As shown in Figure 4, with given parameter
values, the critical value of can be calculated as τ0 ≈ 2.2703.
*us, we take τ � 0, τ � 1, and τ � 3 and obtain
Figures 4(a)–4(c) respectively. Figures 4(a) and 4(b) show
that when 0≤ τ < τ0, there is no spatial patterns. Figure 4(c)
clearly shows the formation of a Neimark–Sacker type
pattern when τ > τ0. From the simulated patterns, we can see
that simulations are consistent with the Neimark–Sacker
analysis.

Figure 5 shows a time series of phytoplankton pattern
formation process from initial conditions to self-organiza-
tion when τ � 3. Small patches can be formed at the be-
ginning (Figures 5(b) and 5(c)), and then gradually forming
spirals (Figure 5(d)). *e spirals will break with time, and
reform afterwards (Figures 5(e)–5(g)). *en cloud-like
patterns will finally be formed (Figures 5(h) and 5(i)).

3.2. Effects of Diffusion Coefficients on the Pattern Formation.
Based on the Turing bifurcation analysis in Section 2.3.2, we
can see that the diffusion coefficient d1 can induce the
occurrence of Turing bifurcations, and the critical value is
d1 � 1.389. Figure 6(a) shows that there is no pattern, while
in Figure 6(b) we can clearly see the appearance of a typical
banded Turing-type pattern. In addition, diffusion co-
efficient d2 can also induce the occurrence of Turing bi-
furcation as shown in Figure 6(c). *e simulations are quite
consistent with the above analysis of Turing bifurcation.
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Figure 5: *e process of forming cloud-like patterns over time with a time delay of 3. Parameter values: I � 1.6, a � 0.5, b � 0.8, α � 0.7,
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Figure 7: *e formation of phytoplankton population spatial distribution pattern under certain diffusion parameters. Parameter values:
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In order to show the formation process of Turing-type
patterns, two sets of values are selected: d1 � 1.390, d2 � 0.20
and d1 � 1.389, d2 � 0.21. Figure 7 shows that, at the be-
ginning, random distribution of phytoplankton starts to
form a labyrinth pattern (Figures 7(b)–7(d)), and then some
patches die out and form some thin stripes (Figures 7(f) and
7(g)). Finally, the number of stripes decreases over time
(Figures 7(h) and 7(i)). Figure 8 shows a similar process of
pattern formation with slight differences.

Note that when time delay satisfies the Neimark-Sacker
bifurcation condition and coefficients d1 and d2 satisfy
Turing bifurcation condition, simulations on pattern for-
mation will be different. As shown in Figure 9, the general
process of pattern formation is similar to that when time
delay τ � 0 (see Figure 7). Note that as shown in Figure 9(d)
with t � 50, the same formation stage of patterns can be
obtained in Figure 7(e) with t � 40.*is reveals that the time
delay will not change the pattern type in this situation, but
will cause the delay of pattern formation stages, which is
reasonable and consistent with the research of [46].

3.3. Comparison between Simulated Patterns and Real Ob-
served Patterns. From numerical simulations, mainly two
types of patterns are obtained: cloud-like patterns
(Figure 10(a)) and banded patterns (Figures 11(a), 11(c), and
11(e)). Some observed patterns of phytoplankton are found
and can be briefly compared with the simulated patterns
from the holistic shapes. Figure 10(b) is the blooming
phenomenon in the Barents Sea and shows similarity to the
simulated cloud pattern (Figure 10(a)).

Figures 11(b) and 11(f) are phytoplankton bloom images
taken in the waters near Shenzhen, China, in 2014, and
Figure 11(d) is a large area phytoplankton bloom image of
Noctiluca scintillans taken in the waters near Rizhao in

Shandong, China in 2012.*e simulated banded patterns are
similar to the observed patterns. But note that we can only
compare the holistic shapes or types of the patterns due to
the unknown of real pattern scales, and further research
should be done to explore more detailed comparison on
spatial scales of the patterns.

4. Discussion and Conclusions

*rough theoretical analysis and numerical simulation, the
principle of space-time dynamics of phytoplankton growth
and the formation process of spatial pattern distribution of
phytoplankton population are explored. We mainly study
the effects of time delay and, diffusion coefficients on the
spatiotemporal dynamics of phytoplankton growth. *e
conclusions of theoretical studies and the results of nu-
merical simulations can show that: (1) time delay τ does not
affect the stability of the stable fixed point E0 � (I/q, 0), but
the time delay may affect the whole process; (2) when time
delay exists and is greater than a certain critical value τ0, the
time delay can not only lead to the instability of the stable
fixed point E∗, but also form a cloud Neimark–Sacker
pattern through Neimark–Sacker instability; (3) when
d1 ≠d2, by changing the value of d1 or d2 to make all the
eigenvalues of the diffusion term are greater than 1, then
Turing bifurcation occurs. A band-shaped Turing pattern
can be formed.

Both the continuous model (original model in [46]) and
the discrete model in this research are reaction-diffusion
models, and they have the same functional responses. *e
differences between the two models are as follows: in the
continuous model, reaction process and diffusion process
occurs at the same time, while in the discrete model, the
occurring order of reaction process and diffusion process
can be varied, to be exactly in this research, diffusion process
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Figure 11: Banded patterns. Parameter values: (a) I � 1.6, a � 0.5, b � 0.8, α � 0.7, e � 0.2, m � 0.45, d1 � 1.389, d2 � 0.21, q � 0.01, τ � 0,
h � 1, ε � 0.001, t � 100, and n � 100. (b) On November 25, 2014, the phytoplankton bloom photographed in the sea near Shenzhen, China;
(c) I � 1.6, a � 0.5, b � 0.8, α � 0.7, e � 0.2, m � 0.45, d1 � 1.390, d2 � 0.20, q � 0.01, τ � 0, h � 1, ε � 0.001, t � 100, and n � 100. (d) On
May 7, 2012, noctilucent algae bloomed in the sea near Rizhao, Shandong, China; (e) I � 1.6, a � 0.5, b � 0.8, α � 0.7, e � 0.2, m � 0.45,
d1 � 1.390, d2 � 0.20, q � 0.01, τ � 3, h � 1, ε � 0.001, t � 500, and n � 300. (f ) On November 25, 2014, the phytoplankton bloom
photographed in the sea near Shenzhen, China.
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occur first and then reaction process. *e main reason for us
to calculate the diffusion process first is that spatial
movements are quicker than reaction in the nutrient-phy-
toplankton system in the real world.

From the simulated patterns in this research, we can see
that more complex and more types of patterns can be ob-
tained with the discrete model than the continuous model.
For example, Figure 10(a) is the simulated pattern with
a similar type to the only simulated pattern in [46]. Besides,
spotted, banded, and some mixed patterns are obtained in
this research.*is is reasonable, as Dai et al. [46] only did the
Turing bifurcation. However, even with the same bi-
furcations, discrete models can still generate more complex
patterns, due to the flexible of both time and space steps.
Although continuous PDEs are still the main type of model
that are used in pattern formation, many research studies on
discrete dynamic systems have shown that spatiotemporal
discrete models are not only more related to realistic pro-
cesses but also can generate more complex dynamics
[38, 39, 43, 44]. And more work could be done to explore the
bifurcations induced by time step variation.

Appendix

A. Symbols Not Explained in Section 2

A0 � 1 − eq −
eabP∗

N∗ + a( )2
,

A1 � 1 − em +
eαbN∗

N∗ + a
,

A2 �
2eαab2N∗P∗

N∗ + a( )3
−

eαab I − qN∗ + 2εmP∗( 􏼁

N∗ + a( )2
,

B0 � eεm −
ebN∗

N∗ + a
,

B1 �
eαabP∗

N∗ + a( )2
,

B2 �
eαabqP∗

N∗ + a( )2
+

2eαabP∗

N∗ + a( )3
I − qN

∗
+ εmP

∗
( 􏼁

+
eαab2 a − 2N∗( )P∗2

N∗ + a( )4
,

a11 � 1 − eq −
eabP∗

N∗ + a( )2
,

a12 � eεm −
ebN∗

N∗ + a
,

a13 �
eabP∗

N∗ + a( )3
,

a14 � 0,

a15 � −
eab

N∗ + a( )2
,

a16 � −
eab

N∗ + a( )4
,

a17 �
eab

N∗ + a( )3
,

a18 � 0,

a21 �
eαabP∗(1 + qτ)

N∗ + a( )2
+
2eαabP∗τ
N∗ + a( )3

I − qN
∗

+ εmP
∗

( 􏼁

+
eαab2 a − 2N∗( )P∗2τ

N∗ + a( )4
,

a22 � 1 − em +
eαbN∗

N∗ + a
−

eαabτ
N∗ + a( )2

I − qN
∗

+ 2εmP
∗

( 􏼁

+
2eαab2N∗P∗τ

N∗ + a( )3
,

a23 � −
eαabP∗(1 + 2qτ)

N∗ + a( )3
−
3eαabP∗τ
N∗ + a( )4

I − qN
∗

+ εmP
∗

( 􏼁

−
3eαab2 a − N∗( )P∗2τ

N∗ + a( )5
,

a24 � −
eαabεmτ
N∗ + a( )2

+
eαab2N∗τ

N∗ + a( )3
,

a25 �
eαab(1 + qτ)

N∗ + a( )2
+

2eαabτ
N∗ + a( )3

I − qN
∗

+ 2εmP
∗

( 􏼁

+
2eαab2 a − 2N∗( )P∗τ

N∗ + a( )4
,

a26 �
eαabP∗(1 + 3qτ)

N∗ + a( )4
+
4eαabP∗τ
N∗ + a( )5

I − qN
∗

+ εmP
∗

( 􏼁

+
2eαab2 3a − 2N∗( )P∗2τ

N∗ + a( )6
,

a27 � −
eαab(1 + 2qτ)

N∗ + a( )3
−

3eαabτ
N∗ + a( )4

I − qN
∗

+ 2εmP
∗

( 􏼁

−
6eαab2 a − N∗( )P∗τ

N∗ + a( )5
,

a28 �
2eαabεmτ
N∗ + a( )3

−
2eαab2N∗τ

N∗ + a( )4
. (A.1)
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