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Re-entrant hybrid flow shop scheduling problem (RHFSP) is widely used in industries. However, little attention is paid to energy
consumption cost with the raise of green manufacturing concept. )is paper proposes an improved multiobjective ant lion
optimization (IMOALO) algorithm to solve the RHFSP with the objectives of minimizing the makespan and energy consumption
cost under Time-of-Use (TOU) electricity tariffs. A right-shift operation is then used to adjust the starting time of operations by
avoiding the period of high electricity price to reduce the energy consumption cost as far as possible. )e experimental results
show that IMOALO algorithm is superior to multiobjective ant lion optimization (MOALO) algorithm, NSGA-II, andMOPSO in
terms of the convergence, dominance, and diversity of nondominated solutions. )e proposed model can make enterprises avoid
high price period reasonably, transfer power load, and reduce the energy consumption cost effectively. Meanwhile, parameter
analysis indicates that the period of TOU electricity tariffs and energy efficiency of machines have great impact on the
scheduling results.

1. Introduction

Re-entrant hybrid flow shop scheduling problem (RHFSP) is
a combination of classic hybrid flow shop scheduling
problem and re-entrant scheduling problem. It means that
all jobs have the same processing path among the stages and
go back and forth in the same order many times. It is widely
used in some special industries, such as thin-film transistor-
liquid crystal display (TFT-LCD) panel manufacturing,
printed circuit board (PCB), and semiconductor wafer
manufacturing. With the rising energy prices and the in-
creasingly serious environmental problems, the issue of
reducing energy consumption cost has become a focus for
many factory managers. Recently, many power energy
suppliers have begun to implement a so-called Time-of-Use
(TOU) electricity tariffs, such pricing mechanism represents
a huge opportunity to reduce costs for consumers by shifting
electricity usage from on-peak period to other period.
RHFSP is a typical NP-hard problem [1], which is difficult to
solve with exact algorithms, so it will be of academic

significance and engineering application value to develop
efficient intelligent optimization algorithms for the RHFSP
under TOU electricity tariffs.

Since Graves et al. [2] first proposed reentrant sched-
uling problem (RSP) in 1983, many scholars have studied
this field. Bertel and Billaut [3] applied a genetic algorithm
for the RHFSP aiming at minimizing the weighted number
of delayed jobs. Chen et al. [4] proposed a hybrid tabu search
algorithm for the RHFSP with the objective of minimizing
the makespan. Choi and Kim [5] proposed several heuristic
algorithms for RHFSP, such as improved Nawaz Enscore
and Ham (NEH) algorithm, aiming at minimizing the
makespan. Kim and Lee [6] studied the RHFSP considering
unrelated parallel machines with the objective of minimizing
the makespan and total tardiness. In practice, the total
tardiness objective is treated as constraints, so the problem is
converted into single objective. El-Khouly et al. [7] used
Lagrange decomposition to optimize the RSP aiming at
minimizing the total tardiness. Wu et al. [8] studied RSP
with learning effects, aiming at minimizing the makespan.
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Cho et al. [9] proposed a genetic algorithm for the RHFSP in
order to minimise the makespan and total tardiness. Ying
et al. [10] used an iterative Pareto greedy algorithm for the
bi-objective RHFSP based on the research in [9]. Shen et al.
[11, 12] applied an improved teaching and learning opti-
mization algorithm and a Pareto-based discrete harmony
search algorithm to solve the bi-objective RHFSP. Cheng
and Lei [13] studied an improved imperialist competition
algorithm for the RSP in order to minimise the makespan
and total tardiness. In conclusion, production decision
makers assume that electricity prices are constant in the
production cycle, so they are only interested in time-related
objectives, such as maximum tardiness, total tardiness, and
makespan.

With the rising international energy costs and the in-
creasingly serious environmental problems in recent years, it
is particularly important to achieve green and sustainable
development in the manufacturing sector. Energy con-
sumption in the industrial sector is approximately 50% of
the total energy consumption [14]. In Germany, the
manufacturing enterprises consume around more than 47%
of the total energy consumption. In China, the
manufacturing industries are responsible for 50% of the
national electricity energy each year [15]. )erefore, the
increasing energy price and the current sustainable devel-
opment trend bring new pressure to manufacturing enter-
prises. It must be noted, however, that either adopting
advanced production technology or purchasing new
equipment needs a lot of investment. Under TOU electricity
tariffs, without investing a large amount of money in
equipment and technology, it can reduce the energy costs
just by adjusting production tasks reasonably, and the
benefits could be enjoyed easily by majority of SMEs. Zhang
et al. [16] proposed an integer programming model to solve
the flow shop scheduling problem under TOU electricity
tariffs without affecting the production efficiency in order to
minimise the carbon dioxide emissions and electricity cost.
Luo et al. [17] addressed the multiobjective ant colony
optimization algorithm to solve the hybrid flow shop
scheduling problem with unrelated parallel machines under
TOU electricity tariffs aiming at minimizing the makespan
and energy consumption cost. Wang and Li [18] studied the
manufacturingmodel considering both energy consumption
and demand under TOU electricity tariffs. Fang et al. [19]
used amixed integer programmingmethod for the flow shop
scheduling problem with peak power constraints. Moon and
Park [20] proposed two discrete-time mathematical models
for the flexible job shop scheduling problem under TOU
electricity tariffs with the objective of weighted sum of
maximum completion time and power cost. Che et al. [21]
proposed the mixed integer programming model for the
single machine scheduling problem with the objective of
minimizing the electricity cost under TOU electricity tariffs.
Mikhaylidi et al. [22] studied the production and operation
scheduling problem of rechargeable batteries under TOU
electricity tariffs using a dynamic programming algorithm,
aiming at minimizing total power consumption and
delaying penalty cost. Shrouf et al. [23] proposed a discrete-
time integer programming model and genetic algorithm to

solve the single machine scheduling problem with power
outage mechanism under TOU electricity tariffs. )e ob-
jective is to minimise the total power cost. Gong et al. [24]
modeled the same problem with arbitrary job processing
sequence and demonstrated how to reduce power cost under
real-time price, TOU electricity price, and critical peak price
schemes through a practical case of a surface grinder. In
addition, other scholars have also studied the scheduling
problems under TOU electricity tariffs in different fields
(e.g., Tan et al. [25]; Castro et al. [26]; Sharma et al. [27]; Tan
and Liu [28]). Although some achievements have been made
in this field, the research on green job shop scheduling under
TOU electricity tariffs is still immature, and the study on
RHFSP with unrelated parallel machines considering energy
consumption cost is even less. )is paper proposes the
improved multiobjective ant lion optimization (IMOALO)
algorithm with right-shift operation to approximate the
Pareto optimal solutions for RHFSP under TOU electricity
tariffs with the objective of minimizing the makespan and
energy consumption cost. On the premise of not affecting
the production efficiency, according to the characteristics of
TOU electricity tariffs, the operations are arranged in the
period with low electricity price as far as possible. )rough
this method, enterprises can reduce a large number of energy
consumption cost and improve the competitiveness of en-
terprises, so as to realize the green and sustainable devel-
opment of economy.

)e rest of the paper is organized as follows: the RHFSP is
described and the mathematical model is established in
Section 2. In Section 3, the proposed IMOALO algorithm is
introduced in detail. In Section 4, the performance com-
parisons with other three algorithms are shown. )e pa-
rameter analysis of the period of TOU electricity tariffs and
energy efficiency of machines are studied in Section 5. Finally,
some conclusions and future work are given in Section 6.

2. Problem Statement and Mathematical Model

2.1. Problem Statement. In this paper, the RHFSP with un-
related parallel machine is studied, which can be described as
follows: n jobs need to be processed in s serial stages. )ere is
at least one stage, in which the number of unrelated parallel
machines is more than one. Each job can be processed on any
machine at the corresponding stage, and part of jobs may visit
some stages more than once, as shown in Figure 1. )e
objective is to allocate all jobs to the machines and fix the
starting and ending time for each operation.

Additionally, the following assumptions are made: All
machines and jobs are ready at zero time. At any time, each
machine can process at most one job, and each job can only
be processed by one machine. )e number of jobs and the
processing time of all operations are given in advance. )e
number of stages and the number of unrelated parallel
machines at each stage are known in advance.)e power and
speed of each machine are given in advance. All operations
of each job have sequence constraints, and all jobs have no
influence on each other. )e power and speed of unrelated
parallel machines at each stage are different.)e total energy
consumption of each job is independent of the machine
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chosen. Preemption is not allowed, and once the job is
processed, it cannot be interrupted. )e buffer capacity
between any two continuous stages is infinite, regardless of
machine failure and adjustment time.

2.2. Mathematical Model. )e symbols involved in the
model and their implications are as follows:

n: number of jobs
j: index for jobs, j � 1, 2, . . . , n

s: number of stages
i: index for stages, i � 1, 2, . . . , s

mi: number of unrelated parallel machines at the stage i

l: index for machines at the stage i, l � 1, 2, . . . , mi

Mtotal: number of machines at all stages,
Mtotal � m1 + m2 + · · · + ms

q: index for machines
Nj: number of operations for job j

k: index of operations for job j, k � 1, 2, . . . , Nj

Ojk: the k − th operation of job j

Pjk: standard processing time of Ojk

Ui: set of operations processed at the stage i

Sjk: starting time of Ojk

Ejk: ending time of Ojk

Cj: completion time of job j

M: a large number
Mil: the l − th machine at the stage i

Vil: speed of Mil, if Ojk is arranged on the Mil, the
actual processing time is Pjk/Vil

PWq: power of machine q

SWq: idle power of machine q

f(t): electricity price function

yt
q �

1, if themachine q is working at time t,

0, otherwise, ∀q

rijkl �
1, if Ojk is processed on theMil,

0, otherwise, ∀i, j, k, l

Zjkj′k′ �
1, if Ojk procedesOj′k′ ,

0, otherwise, ∀j< j′, k, k′

On the basis of literature studies [10, 29], a bi-objective
RHFSP mathematical model is proposed in this paper.
Formulas (1) and (2) represent the two objective functions.
Constraint (3) implies that the starting time of the operation
Ojk+1 is not earlier than the ending time of Ojk. Constraint
(4) ensures that each operation can only be processed on one
machine at the corresponding stage. Constraints (5)–(7)
ensure that each machine processes at most one operation
simultaneously. Constraints (8) and (9) specify the starting
and ending time of Ojk. Constraints (10) and (11) describe
the maximum completion time.

)e first objective of this paper is to minimise the
makespan (maximum completion time), as shown in the
following formula:

f1 � Cmax � maxCj. (1)

Here, Cmax denotes the makespan.
)e second objective of this paper is to minimize the

total energy consumption cost, which mainly includes the
energy consumption cost in machine processing state and in
idle state, as shown in the following formula:

f2 � TECmin � 

Cmax

t�0


Mtotal

q�1
PWqy

t
q + SWq 1 − y

t
q   f(t).

(2)

Here, TECmin denotes the total energy consumption
cost.

)e two objectives are subject to



mi

l�1
rijkl Sjk +

Pjk

Vil

 ≤ 

m
i′

l�1
ri′jk+1lSjk+1, ∀i, i′, j, k, (3)
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Figure 1: Diagram of RHFSP with unrelated parallel machines.
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M 2 − rijkl − rij′k′l  + M 1 − Zjkj′k′  + Sj′k′ − Sjk ≥
Pjk

Vil

, ∀i, j< j′, l, Ojk ∈ Ui, Oj′k′ ∈ Ui, (5)

M 2 − rijkl − rij′k′l  + MZjkj′k′ + Sjk − Sj′k′ ≥
Pj′k′

Vi′l′
, ∀i, j< j′, l, Ojk ∈ Ui, Oj′k′ ∈ Ui, (6)

M 2 − rijkl − rijk′l  + Sjk′ − Sjk ≥
Pjk

Vil

, ∀i, k< k′, l, Ojk ∈ Ui, Ojk′ ∈ Ui, (7)

Sjk ≥ 0, ∀j, k, (8)

Ejk � Sjk +
Pjk

Vil

, ∀j, k, (9)

Cj � 
s

i�1


mi

l�1
rijNjl SjNj

+
PjNj

Vil

 , ∀j, (10)

Cj ≤Cmax, ∀j. (11)

3. The Proposed Improved Multiobjective Ant
Lion Optimization Algorithm

“No Free Lunch)eorem” [30] points out that there is no
algorithm that can solve all optimization problems. In
this paper, we use the ant lion optimization (ALO) al-
gorithm to solve the RHFSP. )e ALO algorithm is a new
metaheuristic algorithm proposed by Australian scholars
Mirjalili et al. in 2014 inspired by ant lion hunting be-
havior in nature [31]. )e locations of ants and ant lions
represent the solutions of the optimization problem.
Ants obtain the global optimal solution by random
walking around the ant lions and learning from the elite
ant lions. In 2016, Mirjalili et al. proposed a multi-
objective ant lion optimization (MOALO) algorithm
[32], of which the search mechanism is very similar to
ALO. At present, the ALO algorithm has been widely
used in power grid and power optimization [33–35],
optimal power flow optimization [36], link state routing
protocol optimization [37], feature selection [38], and
integrated process planning and scheduling [39]. To get
better optimization results, the MOALO algorithm is
improved from three aspects: (1) If the initial population
is generated by a completely random method, its solu-
tions may be concentrated in a local range, which is not
conducive to convergence to the global optimal solution.
)is paper adopted the Latin hypercube sampling
technology to initialize the population. (2) )e adaptive
elite ant lion updating strategy is used to improve the
exploring ability in the early stage and the exploiting
ability in the later stage of MOALO. (3) )e local search
ability of MOALO is improved by two neighbourhood
structures. )e flowchart for the proposed algorithm is
shown in Figure 2.

3.1. Encoding and Decoding. ALO algorithm is mainly used
to solve continuous optimization problems, but rarely to
deal with combination optimization problems. Random key
ascending sequence coding is used in this paper to construct
the mapping from individual position to job sequencing and
then using the decoding method in [9, 10] to decode it.
Finally, scheduling schemes are generated according to
various constraints. )e mathematical model contains a
large number of 0-1 variables. If the minimum time unit is
too small, it will seriously affect the calculation speed of the
model. If the minimum time unit is too large, the error will
be relatively large. In this paper, the minimum time unit is
set to one tenth of an hour. )e decoding process is detailed
as follows:

Step 1: select the first gene i (i.e., job i) from the
chromosome, arrange all the operations of job i on the
machine that can finish it as early as possible, and
record the starting time and ending time of each
operation
Step 2: select the next gene i′ and arrange machines for
it and obtain the available machine set MS for oper-
ation Oi′j

Step 3: select machine q from MS, obtain all idle time
periods [MStart, MEnd] of machine q, and traverse all
idle time periods of machine q, and the earliest starting
time ti′j of operation Oi′j is shown in the following
formula:

tij � max Ci′j− 1, MStart . (12)

Step 4: find a suitable insertion point for Oi′j according
to formula (13). If no idle time period satisfying the
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Figure 2: )e flowchart for the proposed IMOALO algorithm.
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conditions is found, set the starting time of operation
Oi′j to ti′j � LMq, where LMq represents the ending
time of the last operation of machine q:

ti′j + Pi′j ≤MEnd. (13)

Step 5: traverse all machines in MS, repeat step 3 and
step 4 to select the minimum ti′j:
Step 6: calculate the ending time of operation Oi′j, as
shown in the following formula:

Ci′j � ti′j + Pi′j. (14)

Step 7: repeat step 2–step 6 until all genes in the
chromosome have been processed.

Taking an example, in which there are 3 stages and 4 jobs.
)e number of unrelated identical parallel machines is 3, 2,
and 2 at each stage, respectively. )e standard processing
time of each operation on the corresponding stage is shown
in Table 1. In addition, the power and speed of machines at
each stage are different, as shown in Table 2. For example, at
stage 1, the processing speed and power of M1,1, M2,1, M3,1
are 1, 2, and 3 and 10, 20, and 30, respectively.)e idle power
of all machines is 2.

In this paper, according to [14], TOU electricity tariffs
function (yuan/Kwh) is as follows:

f(t) �

1.15, 15≤ t< 20,

0.75, 7≤ t< 15, 20≤ t< 22,

0.42, 0≤ t< 7, 22≤ t< 24.

⎧⎪⎪⎨

⎪⎪⎩
(15)

If the processing time Pjk � 0, it means that the job is not
processed in a certain pass. Using random key coding, the
permutation of all jobs represents each individual, and each
element in the individual is selected in [0, 1] arbitrarily. )e
corresponding permutation can be obtained by ascending
the ranking of each element. To get a feasible schedule, the
decoding method is used to determine the processing order
of all jobs at each stage and a suitable machine is assigned for
each operation. )en, the starting and ending time of each
operation can be obtained. At last, the objective function
values can be calculated. Taking the individual [0.8147,
0.1270, 0.9058, 0.9134] as an example, the corresponding
permutation is 2-1-3-4 according to the ascending order.
)e detailed process of decoding is as follows. Firstly, all the
operations of job 2 are arranged on the machine that can
finish it at the earliest time.)en, each operation of job 1 will
be arranged on the machine that can finish it as early as
possible. If the ending time of a certain operation of the job 2
is smaller than the starting time of the arranged operation of
job 4 on a certain machine, the operation of the job 2 will be
arranged before it, otherwise, it will be arranged behind it. By
analogy, all operations of job 3 and 4 are arranged on the
right machines, the Gantt charts are shown in Figure 3.
)en, Cmax � 7.8333 hour and TECmin � 184.1634 yuan are
obtained.

3.2. Population Initialization. Generally, the region of the
optimal solution is difficult to predict, and the solution space
characteristics of the initial population can represent the
information of all individuals to a certain extent, so the
distribution performance of the initial population directly
affects the convergence of the algorithm. In this paper, Latin
hypercube sampling technique is used to initialize the
population.

Assuming that m samples need to be extracted in
n-dimensional vector space, the specific steps of Latin hy-
percube sampling are as follows:

(1) Each dimension vector is divided into m intervals
and they do not overlap with each other

(2) )e point is randomly selected in all intervals of each
dimension

(3) )e selected points in (2) are randomly extracted
from each dimension to form a new vector

3.3. Adaptive Elite Ant Lion Updating Strategy. According to
the elite strategy, the ALO algorithm updates the ant po-
sition according to the following formula:

Anttj �
1
2

R
t
A + R

t
E . (16)

Among them, Anttj is the current position of ant and
Rt

A and Rt
E are ants selected by the roulette wheel selection

and ants around the elite ant lion in generation t, re-
spectively. However, in general, the initial stage of the
algorithm should have a strong exploring ability, the
update step is larger, and the later stage of the algorithm
should have a strong exploiting ability, the update step is
smaller, so the adaptive elite ant lion update strategy is
introduced to update the ant position in this paper, as
shown in the following formula:

Anttj � f(t)R
t
A + (1 − f(t))R

t
E, (17)

where f(t) � (1 − (t/T))2 is the adaptive coefficient and T

and t represent the maximum number and current number
of iterations. At the beginning of iterations, f(t) is about 1
and the value of Anttj is mainly determined by Rt

A, which can
ensure that the algorithm has strong exploratory ability and
global search ability in the early stage. As the number of
iterations increases, f(t) gets smaller and smaller. At the
later stage of iterations, the value of Anttj is mainly deter-
mined by Rt

E, and ants mainly walk around elite ant lions,
which ensures that the algorithm has strong exploiting
ability in the later stage. In summary, ants can choose
different walking modes adaptively, which help to improve
the exploring and exploiting ability of the algorithm.

3.4. Neighbourhood Structure. In this paper, insertion
neighbourhood and exchange neighbourhood are used to
improve the local search ability of MOALO. Each individual
has a 50% probability to perform insertion or exchange
operations, respectively.
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Insertion neighbourhood: first of all, a new sequence π
with n − 1 jobs is obtained by deleting one job from the
individual randomly. )en, the job j is inserted into n − 1
intervals of sequence π, and the objective function values
fitness(i) of n − 1 new individuals are calculated,
i ∈ [1, n − 1]. )e corresponding objective function values of
the original sequence is fitness(n). )en, the dominance is
judged and the optimal solution best is assumed to
fitness(1). If fitness(i)≺ best, then best � fitness(i), and so
on; the individual corresponding to best is taken as the
optimal insertion sequence, as shown in Figure 4(a).

Exchange neighbourhood: firstly, a job j is randomly
selected from the individual, and the job j is exchanged with
the remaining n − 1 jobs, respectively. )en, the objective
function values fitness(i) of the individual after exchange is
calculated, i ∈ [1, n − 1], and the corresponding objective
function values of the original sequence is fitness(n). Finally,
the dominance is judged and the optimal solution best is
assumed to fitness(1). If fitness(i)≺ best, then
best � fitness(i), and so on; the individual corresponding to
best is taken as the optimal exchange sequence, as shown in
Figure 4(b).

3.5. Right-Shift Operation Based on TOU Electricity Tariffs.
Under TOU electricity tariffs, the RHFSP considering energy
consumption cost should not only select the appropriate
machines for all jobs but also determine the starting time
and ending time for each operation reasonably. Due to the
complexity of RHFSP, it is inevitable that there will be
waiting time for machines and jobs, especially in the case of
large number of jobs, so the waiting time can be fully utilized
to adjust the processing time of each operation. A right-shift
operation is then added in the decoding process, and the
time to minimise the energy consumption cost of the op-
eration is selected from the possible starting time as the
appropriate starting time. If there are more than one
qualified starting time, the maximum value is chosen as the

starting time to ensure that there is enough right-shift space.
)e right-shift operation does not change the makespan and
job sequence but helps to reduce the energy consumption
cost. Due to the limitation of the decoding method, each
operation is decoded according to the earliest ending time,
so there is no space to move left. It can be seen that the
adjustment of the latter operation will affect the adjustment
of the former one, so the right-shift operation should follow
the rules from back to front in turn. Firstly, all operations are
arranged in a nonincremental order according to the ending
time, and then the right-shift operation is carried out in this
order. Taking the operation Ojk as an example, the detailed
adjustment process is as follows.

Assuming that the operation Ojk is processed on ma-
chine Mil, the index of machine Mil is q and the adjustment
range of Sjk is t ∈ [tmin, tmax]. So without affecting the
production efficiency, the job j can choose any time in this
range as the starting time.

(1) Suppose thatOjk is the last operation onmachineMil

and k � Nj. If Ejk =Cmax, then the operation does
not need to move right. If Ejk <Cmax, then tmin � Sjk,
tmax � Cmax − Pjk/Vil, and a new idle period will be
added in this case; the adjustment range is shown in
Figure 5. )erefore, the additional idle energy con-
sumption cost should be considered. )e starting
time of operation Ojk after adjustment is

Sjk
′ � argmin

tmin≤t<tmax



x+ Pjk/Vil( 

x�t

PWqf(x) + 
x�t

x�Sjk

SWqf(x)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(18)

(2) Suppose that Ojk is the last operation of job
j(k � Nj), but not the last operation of machine Mil.
If the next operation on machine Mil is Oj′k′ , then
tmin � Sjk and tmax � (Sj′k′ − Pjk/Vil); the adjust-
ment range is shown in Figure 6. )e starting time of
operation Ojk after adjustment is

Sjk
′ � argmin

tmin≤t<tmax



x+ Pjk/Vil( 

x�t

PWqf(x)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (19)

(3) Suppose that Ojk is the last operation on machine
Mil, job j has the next operation Ojk+1 and Ojk+1 is
processed on machine Mi′l′ . )e adjustment range is
shown in Figure 7; meanwhile, tmin � Sjk and
tmax � (Sjk+1 − Pjk)/Vil. )e starting time of opera-
tion Ojk after adjustment is

Table 1: Processing times of the four-job and three-stage example (hour).

Processing times (Pjk)
First pass re-entrant 1 re-entrant 2

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

Job 1 2 2 1 0 2 1 0 1 2
Job 2 1 3 0 0 2 1 0 2 1
Job 3 3 1 2 2 1 0 0 0 0
Job 4 2 1 1 2 0 0 3 1 0

Table 2: Speed and power settings of all machines.

Stage Machine Power Speed Idle power (SW)

Stage 1
M1,1 10 1

2

M2,1 20 2
M3,1 30 3

Stage 2 M1,2 10 1
M2,2 20 2

Stage 3 M1,3 10 1
M2,3 20 2
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Sjk
′ � argmin

tmin≤t<tmax



x+ Pjk/Vil( 

x�t

PWqf(x)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (20)

(4) In other cases, tmin � Sjk and tmax �

min Sj′k′ , Sjk+1  − Pjk/Vil. If Sj′k′ ≤ Sjk+1, the ad-
justment range is shown in Figure 8. If Sj′k′ > Sjk+1,
the adjustment range is shown in Figure 9. Ad-
justment of starting time of process Ojk can be di-
vided into two situations:

(a) If Ojk is the first operation on Mil, part of idle
time will be removed, so the removal idle energy
consumption cost should be considered, then

Sjk
′ � argmin

tmin≤t<tmax



x+ Pjk/Vil( 

x�t

PWqf(x) − 
x�t

x�Sjk

SWqf(x)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(21)

(b) Otherwise,

Sjk
′ � argmin

tmin≤t<tmax



x+ Pjk/Vil( 

x�t

PWqf(x)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (22)

4. Computational Results

In order to evaluate the effectiveness of the designed
IMOALO algorithm in solving RHFSP, three other multi-
objective optimization algorithms, MOALO, MOPSO, and
NSGA-II, are selected for comparative study. )e experi-
mental environment is Windows 8, Intel Core i7-7700
CPU@3.60GHz, 8G memory, and the computer simulation
program is written with Matlab R2017a. In addition, to
objectively compare the performance of the algorithms, the
common parameters of various algorithms are taken the
same value.

4.1. Description of Test Data. )is paper chooses the small-
sized test problems by Cho et al. [9] as benchmark instances
to verify the performance of the proposed IMOALO algo-
rithm for solving bi-objective RHFSP. Since there are no
parameters about the speed and power of machines in the
instances, it is assumed that the faster the machine pro-
cessing speed is, the more the power will be. In addition, the
energy consumption of the same job is fixed and

independent of the selected machine. )is paper selects six
small-sized test problems randomly for testing, and Table 3
shows the range of parameter values. For example, there are
two unrelated parallel machines at a stage, numbered 1 and
2, corresponding speed is 1 and 2, and corresponding power
is 10 and 20, respectively.

In this paper, a three-period TOU electricity tariffs
function with a total period of 24 hours is used. )e ex-
pression of the function is shown in formula (23), and the
graph of the piecewise function is shown in Figure 10. As can
be seen from the figure, the on-peak price (1.15 yuan/kwh) is
nearly three times as high as that of off-peak (0.42 yuan/
kwh). Such a large price gap means that there is a huge
potential to save energy consumption cost for the
manufacturing industry.

4.2. Performance Measures. )ree performance measures
[40] are used for performance comparison, including con-
vergence measure IGD, dominancemeasureΩ, and diversity
measure Δ. In addition, because the real optimal Pareto
fronts of the tested problem are unknown, this paper ap-
proximates the union set of nondominant solutions of the
four algorithms as the optimal Pareto solutions.

IGD evaluates the convergence of the algorithm and
the distribution of nondominated solutions by calculat-
ing the minimum distance between each point on the
optimal Pareto front and the Pareto front obtained by
using a certain algorithm. It is a comprehensive per-
formance measure. Because the units of two optimization
objectives are different, it is necessary to normalize the
objective values before participating in the calculation of
IGD.)e calculation formula is shown in (23), where |N∗|

is the number of nondominated solutions on the Pareto
optimal front and N is the set of nondominated solutions
obtained by using a certain algorithm. Obviously, the
smaller the IGD, the better the convergence and distri-
bution quality:

IGD �
x∈N∗dist(x, N)

N∗| |
. (23)
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)emeasureΩ denotes the percentage of nondominated
solutions obtained by a certain algorithm in the optimal
Pareto set, which is given by

Ωk �

P ∪
i

Hi \P ∪
i≠k

Hi 





P ∪
i

Hi 





, (24)

where |P(S)| is the number of nondominated solutions in
the Pareto set S and Hk is the set of nondominated solutions
obtained by the k − th algorithm. )e larger the value of Ω,
the better the dominance performance of the algorithm. If
the optimal Pareto set is obtained by using a certain algo-
rithm Hk, then Ωk = 100%.

)e measure Δ represents the diversity of the non-
dominated solutions, and it can be calculated by

Δ �
df + dl + 

N− 1
i�1 di − d




df + dl + (N − 1)d
, (25)

where N is the number of nondominated solutions in the
obtained Pareto set. df and dl are the Euclidean distances
between two boundary solutions in the nondominated
Pareto set and two extreme solutions on the optimal Pareto
front. di is the Euclidean distance between i and i + 1
consecutive solutions in the Pareto set. d is the mean Eu-
clidean distance of all nondominated solutions. )e smaller
the value of Δ, the better the diversity performance.

4.3. Results and Discussion. For each instance, each of the
four algorithms runs 20 times independently, and each run
gets a set of [IGD, Ω, Δ]. )e minimum (Min), average
(Avg), and maximum (Max) of each performance measure
after 20 runs for the four algorithms are reported in the
Table 4. )e bold font represents the optimal results of each
performance measure.

Minimum value, mean value, and maximum value can
only show the solution effect of each algorithm from the
macro level. Table 5 lists the statistical difference between the
IMOALO and other algorithms based on the T-test.)e bold
font represents that it is significantly different at the sig-
nificant level 0.05. It can be seen that IGD, Δ, and Ω
measures of IMOALO have significant differences on almost
all the problems with other three algorithms from Tables 4
and 5. )erefore, at 95% confidence level, the proposed
IMOALO algorithm has significant advantages over other
algorithms. )e box charts of three performance measures
are shown in Figure 11. It can be seen from the figure thatΩ
measures of IMOALO are greater than in other algorithms;
meanwhile, Δ and Ωmeasures of IMOALO are smaller than
in other algorithms significantly, which further verifies the
conclusion.

Take Sproblem-04-02 as an example to analyse the ef-
fectiveness of adding right-shift operation on the scheduling
results. )ere are 16 jobs, 8 machines, 1 reentrance, and 6
stages in the problem. Besides, the number of unrelated
parallel machines at each stage is 1, 2, 1, 2, 1, and 1, re-
spectively. Taking a nondominated solution 2-8-13-12-5-11-
9-6-1-4-10-7-16-15-14-3 of IMOALO as an example, its
objective function values Cmax � 151.5 hour and
TECmin � 4991 yuan. In Figure 12, the Gantt charts with
right-shift operation under TOU electricity tariffs are il-
lustrated, and Figure 13 shows the Gantt charts (Cmax �151.5
hour and TECmin � 5133 yuan) without right-shift operation
under TOU electricity tariffs. Comparisons show that the
processing times of some operations have been shifted
without affecting the production efficiency, and energy
consumption cost is reduced by 2.76% to 142 yuan. In the
processing cycle, the trend charts of total energy con-
sumption of all machines are shown in Figure 14. It can be
seen from Figure 14 that the electric load shifts obviously in
some period. For example, in the vicinity where 45 hours
and 75 hours are the periods with low electricity price, the
total energy consumption of all machines increases after the
right-shift procedure; on the contrary, in the vicinity where
55 hours and 115 hours are the periods with high electricity
price, the total energy consumption of all machines de-
creases after the right-shift procedure. Obviously, the
energy consumption cost can be saved by avoiding the
periods with high electric price. To further prove the ef-
fectiveness of the right-shift operation, the above six small-
scale problems run 20 times independently without con-
sidering right-shift operation under TOU electricity tariffs.
Figure 15 shows the relative change of the average Cmax
and TECmin of each problem (Sproblem is abbreviated as
S), and the negative sign denotes relative decrease. From
Figure 15, we can see that the energy consumption cost of
each case has decreased. Although the makespan of most

Table 3: Parameter settings.

Parameters Range Remarks

Number of jobs [10,
20]

Discrete integer values in
[10, 20]

Number of stages [5,
10]

Discrete integer values in
[5, 10]

Number of machines at each
stage [1, 2] 1 or 2

Number of reentrance [1, 2] 1 or 2
Processing time of each
operation [1, 10] Discrete integer values in

[1, 10]
Speed of machine [1, 2] 1 or 2

Power of machine [10,
20] 10 or 20

Idle power of machine 2 Constant

1.2

1

0.8

0.6

0.4

0.2

0

Pr
ic

e (
yu

an
/k

w
h)

0 5 10 15 20

Off-peak

On-peak

Mid-peak

Time (hour)

Figure 10: Electricity price over 24-hour time period.
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instances has increased slightly, it is acceptable that sac-
rificing a small amount of production efficiency for a large
reduction in production cost. In summary, the RHFSP
model considering energy consumption cost under the

TOU electricity tariffs can reduce the energy consumption
cost and enhance the competitiveness of enterprises;
meanwhile, there is no significant impact on the
makespan.

Table 4: Comparisons of four algorithms for six test problems.

Test problems Performance measures IMOALO MOALO MOPSO NSGA-II

Sproblem-01-02

IGD
Min 0.0133 0.0913 0.1282 0.0879
Avg 0.0724 0.1409 0.1733 0.1896
Max 0.1213 0.2033 0.2680 0.3088

Ω
Min 0.4182 0.1361 0.1353 0.1261
Avg 0.5539 0.2709 0.1755 0.2354
Max 0.6611 0.3336 0.2764 0.3044

Δ
Min 0.0622 0.0936 0.1462 0.0709
Avg 0.0906 0.1379 0.1803 0.1614
Max 0.1356 0.2254 0.2447 2415

Sproblem-02-02

IGD
Min 0.0441 0.0850 0.0649 0.0837
Avg 0.0718 0.1284 0.1313 0.1510
Max 0.1022 0.1588 0.1768 0.1801

Ω
Min 0.4776 0.2104 0.1368 0.1236
Avg 0.6116 0.2688 0.3026 0.2218
Max 0.7605 0.3348 0.4039 0.3016

Δ
Min 0.1177 0.1501 0.1549 0.1320
Avg 0.1330 0.1719 0.2113 0.1967
Max 0.1742 0.2297 0.2605 0.2937

Sproblem-03-02

IGD
Min 0.0037 0.0451 0.0818 0.1913
Avg 0.0690 0.0953 0.1016 0.1246
Max 0.1174 0.1545 0.1217 0.1771

Ω
Min 0.4952 0.2239 0.1568 0.1047
Avg 0.6002 0.2686 0.2531 0.2064
Max 0.7176 0.3389 0.3965 0.3439

Δ
Min 0.0714 0.0819 0.1260 0.1274
Avg 0.1180 0.1358 0.1621 0.1766
Max 0.1795 0.1717 0.2213 0.2326

Sproblem-04-02

IGD
Min 0.0359 0.0875 0.1230 0.1063
Avg 0.0676 0.1281 0.1494 0.1633
Max 0.0849 0.1936 0.2088 0.2155

Ω
Min 0.4427 0.1688 0.0903 0.1209
Avg 0.5645 0.3179 0.2060 0.2678
Max 0.6992 0.4287 0.3799 0.3596

Δ
Min 0.0714 0.0819 0.0961 0.1274
Avg 0.1011 0.1358 0.1621 0.1766
Max 0.1721 0.1617 0.2213 0.2326

Sproblem-05-02

IGD
Min 0.0031 0.0361 0.0485 0.0749
Avg 0.0496 0.0896 0.1051 0.0912
Max 0.0946 0.1339 0.1578 0.1193

Ω
Min 0.4894 0.1839 0.1134 0.1214
Avg 0.6634 0.2975 0.1727 0.2304
Max 0.7518 0.3814 0.2956 0.3167

Δ
Min 0.0659 0.0845 0.1332 0.1016
Avg 0.1199 0.1495 0.1731 0.1642
Max 0.1734 0.2009 0.2087 0.2034

Sproblem-06-02

IGD
Min 0.0370 0.1598 0.1252 0.1359
Avg 0.0738 0.2015 0.1717 0.1893
Max 0.1061 0.2427 0.2069 0.2272

Ω
Min 0.5693 0.0629 0.0904 0.1441
Avg 0.7411 0.1092 0.1469 0.1897
Max 0.8779 0.1721 0.1984 0.2366

Δ
Min 0.0530 0.1177 0.0620 0.1199
Avg 0.0922 0.1518 0.1372 0.1672
Max 0.1681 0.2024 0.1597 0.2371
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Figure 11: Box charts of three performance measures.

Table 5: T-test of IMOALO vs. MOALO, MOPSO, and NSGA-II.

Test problems Performance measures
p value of IMOALO vs.

MOALO MOPSO NSGA-II

Sproblem-01-02
IGD 0.0114 0.0003 0
Ω 0 0 0
Δ 0.1191 0.0045 0.0222

Sproblem-02-02
IGD 0.0043 0.0028 0.0001
Ω 0 0 0
Δ 0.0240 0 0.0004

Sproblem-03-02
IGD 0.0374 0.0110 0
Ω 0 0 0
Δ 0.2739 0.0091 0.0007

Sproblem-04-02
IGD 0.0001 0 0
Ω 0 0 0
Δ 0.0239 0.0001 0

Sproblem-05-02
IGD 0.0025 0 0.0018
Ω 0 0 0
Δ 0.0608 0.0013 0.0064

Sproblem-06-02
IGD 0 0 0
Ω 0 0 0
Δ 0.0007 0.008 0

0 50 100 150
Time (hour)

M1

M2

M3

M4

M5

M6

M7

M8

M
ac

hi
ne

s

1

1

1

1

1

1

1

1

2

152

2

2

42

2

2

3

163

3

3

3

3

4

4

4

4

4

5

5

5

5

116

6

116

6

6

6

6

14 6

6

6

7

7

7

7

7

7

7

7

8

8

8

8

8

9

9

9

9

9

1310

10

10

10

10

10

10

10

10

1211

11

11

11

11

11

11

11

11

11

12

12

12

12

12

12

12

13

13

13

13

13

13

13

13

14

14

14

1614

15

15

15

15

15

15

16

16

16

16

16

16

16

16

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Figure 12: Gantt charts with right-shift operation under TOU electricity tariffs.
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5. Parameter Analysis

5.1. Analysis of Machines with Different Power and Speed.
Each stage contains several unrelated parallel machines with
different power and speed in the RHFSP. For the purposes of
cost saving, many enterprises mix new machines with old ones
in practice. Although the new machine has a high processing
capacity, it also consumes a large amount of energy per unit
time. Taking the scheduling of 10 jobs, 2 reentrances, 2 stages, 2
parallel machines at each stage, and processing time ranges of
[10, 40] as an example, the effects of different parameter

combinations on the scheduling results are studied. In this case,
the speed and power of machines are divided into three levels.
Assuming that the idle power of all machines is SW=1. )e
specific parameters are shown in Table 6. To ensure the validity
of the comparison, all machines at one stage have the same
energy efficiency ratio (PW/V) and each stage has the same
production capacity. For example, the PW/V at the stage 1 is 2
and that at the stage 2 is 3. In addition, the total speed at every
stage is 6. )e Pareto fronts obtained by running each pa-
rameter combination once randomly based on IMOALO al-
gorithm are shown in Figure 16. As shown in Figure 16, there is
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Figure 14: Trend charts of real-time total energy consumption of all machines.

0 50 100 150
Time (hour)

M1

M2

M3

M4

M5

M6

M7

M8
M

ac
hi

ne
s

1

1

1

1

1

1

1

1

2

2

2

2

42

2

2

3

3

3

3

3

3

4

4

4

4

4

5

5

5

5

6

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

8

8

8

8

8

9

9

9

9

9

13 10

10

10

10

10

10

10

10

10

11

11

11

11

11

11

11

11

11

11

11

11

12

12

12

12

12

12

12

12

13

13

13

13

13

13

13

13

14

14

14

14

1614

15

15

15

15

15

15

15

16

16

16

16

16

16

16

16

16

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Figure 13: Gantt charts without right-shift operation under TOU electricity tariffs.
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no significant difference on the makespan. Combining the
high-power and low-power machines together is more energy
efficient than using two identical machines with middle power.
Although the faster machines consume more power, when
assigning the jobs to the faster machines, the processing time of
each operation is reduced.)is helps to transfer the operations
to the off-peak periods more flexibly.

5.2. Analysis of TOU Electricity Tariffs with Different Periods.
In practice, the period of TOU electricity tariffs varies with
season. In general, the period of on-peak in summer is

longer than that in winter, and there are differences between
holidays and working days. )us, it is important to study
how the period of TOU electricity tariffs impacts the
scheduling results. Taking Sproblem-04-02 as an example,
we just change the total period without changing the cor-
responding electricity price for each period in the following
five tests. Table 7 shows the specific parameters. )e Pareto
fronts obtained by each parameter combination based on
IMOALO algorithm are shown in Figure 17.

As can be seen from Table 7 and Figure 17, maintaining
the same electricity price in each period, energy

Table 6: Test results by three different settings of power and speed.

Test 1 Test 2 Test 3
Stage 1
Power PW1,1 � 6, PW2,1 � 6 PW1,1 � 8, PW2,1 � 4 PW1,1 � 10, PW2,1 � 2
Speed V1,1 � 3, V2,1 � 3 V1,1 � 4, V2,1 � 2 V1,1 � 5, V2,1 � 1
Stage 2
Power PW1,2 � 9, PW2,2 � 9 PW1,2 � 12, PW2,2 � 6 PW1,2 � 15, PW2,2 � 3
Speed V1,2 � 3, V2,2 � 3 V1,2 � 4, V2,2 � 2 V1,2 � 5, V2,2 � 1
Range of Cmax [109, 124] [108, 123] [109, 124]
Range of TECmin [1730, 1777] [1654, 1753] [1613, 1720]
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Figure 16: Pareto fronts by different settings of speed and power.
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consumption cost is affected obviously by the length of total
periods. However, the change has little effect on the
makespan, and the lower bound of the makespan remains
near 148 hours. )e cure of Pareto front shows a downward
trend with the increase of the periods. Tracing it to its cause,
with increasing period of TOU electricity tariffs, there is
more space for the operations transferring to off-peak pe-
riods after adding the right-shift operation. )erefore,
keeping the same electricity price in each period and the total
number of TOU electricity tariffs periods, increasing the
length of total periods appropriately can reduce energy
consumption cost effectively and maintain the makespan
unchanged.

6. Conclusions and Future Work

)is paper mainly studies the RHFSP under TOU electricity
tariffs with the objective of minimizing the makespan and
energy consumption cost. )e effectiveness of the proposed
algorithm is evaluated by considering the benchmark
problems. From the results, we can conclude that the
proposed IMOALO algorithm can solve the RHFSP effec-
tively and it is significantly superior to other algorithms in
terms of convergence, dominance, and diversity measures of
nondominated solutions. In addition, parameter analysis
shows that the energy efficiency of machines and period of
TOU electricity tariffs have great impact on the scheduling
results. Under the TOU electricity tariffs, although the total
electricity consumption has not decreased, the energy

consumption cost can be saved by avoiding the periods of
high electric price. Meanwhile, it helps to promote the use of
green energy to generate electricity in low valleys, such as
wind power, thus saving fossil energy and reducing pollutant
emissions. In the future, we will further study the RHFSP,
such as designing better coding and decoding methods and
designing better algorithms and joint optimization of pro-
duction scheduling and maintenance.
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Table 7: Test results by different periods of TOU electricity tariffs.

Test 1 Test 2 Test 3 Test 4 Test 5
Total periods 24 48 72 96 120
Length of each period 7, 8, 5, 2, 2 14, 16, 10, 4, 4 21, 24, 15, 6, 6 28, 32, 20, 8, 8 35, 40, 25, 10, 10
Price of each period 0.42, 0.75, 1.15, 0.75, 0.42
Range of Cmax [148, 166.5] [149, 165] [148.5, 157] [148, 159] [148, 161]
Range of TECmin [4788, 5251] [4706, 5123] [4795, 5039] [4520, 4759] [4460, 4729]
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Figure 17: Pareto fronts by different periods of TOU electricity tariffs.
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Project (2017A01109), and Henan Province Science and
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