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Based on the classical finite-time stability theory, the problem of finite-time stability (FTS) for time-varying nonlinear systems is
investigated in this paper. Several FTS theorems involving global form and local form are presented, and an estimate of the
settling-time of such systems is obtained. As an application, we consider the problem of asymptotic stabilization of the Brockett
integrator subject to time-varying disturbance. By the switched finite-time controller designmethodology, we establish a sufficient
condition to guarantee the relative asymptotic stability. For Brockett-like integrator subject to time-varying disturbance, we
achieve better convergence performance. Examples and their simulations are given to demonstrate the applicability of the
proposed results.

1. Introduction

Over the past decades, many researchers have focused on
Lyapunov asymptotic or exponential stability of dynamical
systems, see [1–7]. One of the typical features of the as-
ymptotic or exponential stability is that the solution will tend
to an equilibrium state as time tends to infinity. -us, it is
difficult to achieve fast transient and high-precision per-
formances. Finite-time stability (FTS) served as a special case
of asymptotic stability means that the system reaches an
equilibrium state in finite time, which presents an efficient
tool for many engineering problems. Lots of interesting
results on FTS have been raised from theoretical and
practical points of view. Haimo [8] introduced a definition of
continuous finite-time differential equations as fast accurate
controllers for dynamical systems. Bhat and Bernstein [9]
proposed Lyapunov theorem on FTS of continuous au-
tonomous systems. Bhat and Bernstein [10] achieved
globally FTS of the double integrator. Yang et al. [11]
concerned the stabilization of switched dynamical networks
with logarithmic quantization couplings in finite time.
Moulay and Perruquetti [12] studied the FTS for a class of
continuous systems using Lyapunov function. Furthermore,

Moulay et al. [13] established some FTS theorems for time-
delay systems based on Lyapunov functionals and the ex-
tension of Artsteins transformation. Polyakov and Hu et al.
[14, 15] introduced the concept of fixed-time stability, which
means that the system is globally finite-time stable and the
settling-time is bounded by some positive constant for any
initial values. However, most of existing results, such as
[8–13], are based on the framework of time invariant. Re-
cently, Haddad et al. [16] obtained a sufficient condition of
FTS for nonlinear time-varying systems. However, it can
only be applied to some special cases due to the strict re-
striction that the derivative of Lyapunov function is less than
zero almost everywhere. Moulay and Perruquetti [17] pre-
sented the FTS conditions for nonautonomous continuous
systems. However, it was simplified to the time-invariant
form through the inequality of the Lyapunov function.
Hence, more general methods should be established for
nonlinear time-varying systems. To avoid confusion, it
should be pointed out that the FTS considered in this paper
is different from another FTS concept adopted in [18–20],
which dealt with the finite-time boundedness.

As stated in Brockett’s result [21], Brockrtt integrator
(Nonholonomic integrator), covered in underactuated
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systems, was the first example of locally controllable non-
linear system which is not smoothly stabilizable and requires
additional constraints. In order to overcome the above-
mentioned limitations, various methods have been proposed
for the problem of asymptotic stabilization of the Brockett
integrator [22–26]. Astolfi [22] addressed the problem of
almost exponential stabilization with bounded control.
Banavar and Sankaranarayanan [23] studied a switched fi-
nite-time controller design methodology. Rehman [24] dealt
with steering control of nonholonomic systems with drift for
the extended nonholonomic double integrator. Rehman and
Ahmed [25] presented piecewise constant and state-de-
pendent feedback control for the nonholonomic integrator.
Chihchen [26] investigated the time-varying control for
globally exponential stabilization of the Brockett integrator.
However, the abovementioned works did not take distur-
bance into account and converged in infinite time domain.
-erefore, based on the FTS theorem for time-varying
systems, we will explore stability issues of the Brockett in-
tegrator subject to time-varying disturbance.

In this paper, we firstly address some essential stability
definitions in Section 2. -en, in Section 3, based on the
classical finite-time stability theorem [9], the FTS theorem
for time-varying nonlinear systems is considered. We apply
it to solve the problem of asymptotic stabilization of the
Brockett integrator subject to time-varying disturbance, as
shown in Section 4. By some examples, we verify the main
results in Section 5. In Section 6, conclusions are be
presented.

2. Preliminaries

Notations: letR denote the set of real numbers,R+ the set of
nonnegative numbers, Rn the n-dimensional real spaces
equipped with the Euclidean norm | · |, and N, D ⊂ Rn the
subspaces of Rn. a∨ b and a∧b are the maximum and
minimum of a and b, respectively. -e notation AT denotes
the transpose of A.

Consider the nonlinear system given by
_x(t) � f(t, x(t)),

x(0) � x0,
 (1)

where t≥ 0, x ∈ Rn denotes the state vector,
f(·): R+ × D⟶ Rn is a continuous function with f(t, 0) �

0 for all t≥ 0. We assume that f(t, x) satisfies suitable
conditions so the solution x(t) � x(t, 0, x0) with initial state
x0 ∈ D uniquely exists in forward time for all initial con-
ditions except possibly the origin (see [9]).

Definition 1 (see [9]). System (1) is said to be FTS if there
exist a function T: Rn⟼R+ and an open neighborhood
N⊆D such that the following statements hold:

(i) Finite-time convergence (FTC): for every x0 ∈ N/ 0{ },
x(t) ∈ N/ 0{ } holds for all t ∈ [0, T(x0)) and
x(t)⟶ 0 as t⟶ T(x0)

−

(ii) Lyapunov stability (LS): for every ε ball Bε around
the origin, there exists a δ ball Bδ around the origin

such that, for every x0 ∈ Bδ/ 0{ }, x(t) ∈ Bε for all
t ∈ [0, T(x0))

Definition 2 (see [23]). For a given set O that contains the
origin, system (1) is said to be relatively asymptotically stable
(RAS) with respect to the set O, if for any ε> 0, there exists
δ > 0 such that, for all x0 ∈ O∩Bδ, x(t) ∈ Bε holds when t≥ 0;
moreover, x(t)⟶ 0 as t⟶∞. Bδ and Bε are open balls
around the origin of radius δ and ε, respectively.

3. Main Results

In this section, we present a generalization of the classical
FTS theorem [9]. Given the following definition

_V(t, x(t))≜
zV

zt
(t, x) +

zV

zx
(t, x)f(t, x(t)), (2)

for a continuously differentiable function
V(t, x): R+ × Rn⟶ R+. With a slight stealing concept,
V(t, x): R+ × Rn⟶ R+ is said to be positive definite and
radially unbounded if there exists a positive definite and
radially unbounded continuous function W(x): Rn⟶ R+

such that V(t, x)≥W(x), for t≥ 0, x ∈ Rn.

Theorem 1. Consider system (1), if there exists a positive
definite, continuously differentiable function V: R+ × Rn

⟶ R+, an integrable function c(t): R+⟼R+, and two real
numbers α ∈ (0, 1), σ > 0, such that the derivative of V along
the solution x(t) � x(t, 0, x0) of system (1) satisfies

_V(t, x(t))≤ −c(t)V
α
(t, x(t)), ∀t≥ 0, (3)

where c(t) satisfies


+∞

0
c(s)ds≜ β≥

σ1− α

1 − α
. (4)

-en, system (1) is locally FTS with respect to x0 sat-
isfying V0 < σ, where V0 ≜V(0, x0). -e settling-time
function T: Rn⟼R+, depending on the initial state x0, is
bounded by

T x0( ≤ inf t> 0: 
t

0
c(s)ds �

V0
1− α

1 − α
 . (5)

Moreover, when β � +∞ and V is radially unbounded,
system (1) is globally FTS.

Proof. For a given x0 ∈ Rn/ 0{ }, let x(t) be the solution of
system (1) through (0, x0). By transforming (3), we obtain

dV

Vα ≤ − c(t)dt, ∀t≥ 0. (6)

Integrating both sides of the abovementioned inequality,
it gives


V(t,x(t))

V0

1
Vα dV≤ 

t

0
−c(s)ds. (7)

Since V is a positive definite function, we can obtain
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0≤
V1− α(t, x(t))

1 − α
≤

V0
1− α

1 − α
− 

t

0
c(s)ds. (8)

When β< +∞ and V0 < σ, it follows from (4) that there
exists a time point t∗ > 0 satisfying 

t∗

0 c(s)ds< σ1− α/(1 − α),
such that V0

1− α/(1 − α) − 
t∗

0 c(s)ds � 0. -at is to say
V(t∗, x(t∗)) � 0, from which the settling time T(x0) can be
estimated, namely, (5). When t≥T(x0), _V(t, x(t))≤ 0, it
follows from [27] that the solution of system (1) through
(T(x0), 0) is unique in forward time. -erefore,
V(t, x(t)) ≡ 0, for t≥T(x0), which means system (1) is
locally FTC with respect to x0 satisfying V0 < σ. Noting from
(3), it is easy to obtain that system (1) is LS. Combining these
two aspects, system (1) is locally FTS with respect to x0
satisfying V0 < σ.

When β � +∞ and V is radially unbounded, no matter
what initial value x0 it is, there always exists a time point
t∗∗ > 0, such that V0

1− α/(1 − α) − 
t∗∗

0 c(s)ds � 0, that is,
V(t∗∗, x(t∗∗)) � 0. -rough a similar procedure, we con-
clude that system (1) is globally FTS. □

Remark 1. -e classical FTS theorem mentioned in [9] has
been widely used in many fields, such as finite-time syn-
chronizion of complex networks, finite-time attitude sta-
bilization for spacecraft, and terminal sliding mode method
of nonlinear systems, see [10, 23]. However, these theoretical
results are applied under the framework of time invariant,
that is, c(t) ≡ c> 0. When inf c(t): t≥ 0{ } � 0, the classical
FTS theorem is unapplicable. However, in -eorem 1, we
can still achieve the FTS of system (1), as long as (3) and (4)
hold. -is assertion can be verified in Section 5.

4. Applications

Consider a class of systems described by equations of the
form

_x � G(x)u, (9)

where x ∈ Rn, u ∈ Rm, m< n, and G(x) is a matrix of proper
dimension. It has received considerable attention for the
asymptotic stabilization of such systems during the past
several decades. -e reason for such an interest lies in the
fact that system (9) cannot be asymptotically stabilized by
any continuous differentiable and state feedback control
laws (see [22]). -e Brockett integrator, as a special case of
system (9), has plenty of theoretical results with time-in-
variant form. However, there are few theoretical results
considering the form of time-varying systems. In this paper,
we study the Brockett integrator subject to time-varying
disturbance, that is,

_x1(t) � u1,

_x2(t) � u2,

_x3(t) � w1(t)x1u2 − w2(t)x2u1,

⎧⎪⎪⎨

⎪⎪⎩
(10)

where t≥ 0, xi(t): R+⟼R, i � 1, 2, 3, denotes the state
component, uj(t): R+⟼R, j � 1, 2, denotes the control
input, wj(t): R+⟼R, j � 1, 2, is continuous function

denoting the disturbance term. For any integrable function
ρ(t): R+⟼R, we introduce a set F as follows:

F � ρ(t) ∈ R: 
t

0
ρ(s)ds⟶ +∞ as t⟶ +∞ .

(11)

Assumption 1. -ere exists a continuous function
η(t): R+⟼R such that η(t)w1(t)≥ 0, for t≥ 0, and the
following inequality holds:


+∞

0
η(s)w1(s)ds � +∞. (12)

Assumption 2. -ere exist two functions ρ1(t), ρ2(t) ∈ F

such that

w1(t)ρ2(t) � w2(t)ρ1(t). (13)

Theorem 2. Assume that Assumptions 1 and 2 hold, then the
solution of system (10) converges to the origin and system (10)
is RAS with respect to the set O≜ x � (x1,

x2, x3)
T ∈ R3: x3 � 0, x1 ≠ 0} under the control input:

U �

u1

u2

⎛⎝ ⎞⎠ �

−ρ1(t)x1

−η(t)x3
1/3

x1
− ρ2(t)x2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (14)

Proof. We firstly show the attractivity of system (10). If
x1(0)≠ 0, then it follows from (14) that

_x1(t) � −ρ1(t)x1, (15)

which implies

x1(t) � x1(0)exp
t

0
−ρ1(s)ds. (16)

Note that ρ1(t) ∈ F; then, it is easy to see that

x1(t)⟶ 0 as t⟶ +∞, (17)

which shows that x1(t) asymptotically tends to zero.
In addition, the third state component of system (10)

becomes _x3(t) � −η(t)w1(t)x3
1/3 with control input u2,

which gives that x3(t) is FTS combining (12) and
-eorem 1. Moreover, the settling time T can be esti-
mated by (5). For the second state component of system
(10), when t>T, it holds x3

1/3/x1 ≡ 0; then, by (13), the
derivative of x2 becomes −ρ2(t)x2. Similar to the above
argument, we could conclude that the origin of x2(t)

asymptotically tends to zero. For the case that x1(0) � 0,
we can apply any open loop control to steer the system
to a nonzero value of x1. -is completes the proof of
attractivity.

Secondly, we show the relative stability of system (10).
When t>T, system (10) is transformed as
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_x1(t) � −ρ1(t)x1,

_x2(t) � −ρ2(t)x2,

x3(t) � 0,

(18)

which implies that x(t) enters the set O from this moment,
and x1(t) and x2(t) will converge to origin. -erefore, when
x(0) ∈ O, x3(t) ≡ 0x1(t), x2(t)⟶ 0 as t⟶∞, then one
can obtain that system (10) is RAS with respect to the set O.
-is completes the proof.

Remark 2. -eorem 2 provides a method for the problem of
asymptotic stabilization of the Brockett integrator subject to
time-varying disturbance. A relatively asymptotical stabili-
zation is achieved by weakening the stability conditions.
Besides, in the process of designing controller U, we apply a
switched finite-time controller design methodology. In fact,
it is also a discontinuous control.Worthmentioning that it is
of vital importance to design functions η(t), ρ1(t),

and ρ2(t), such that the FTS of x3(t) is achieved directly. In
Section 5, we will show an example to illustrate our
conclusion.

Corollary 1. Under conditions in ;eorem 1, when
w1(t) � w2(t), we just need ρ1(t) � ρ2(t) � p, where p is a
positive constant. ;en, the solution of system (10) converges
to the origin and system (10) is RAS with respect to the set
O≜ x � (x1, x2, x3)

T ∈ R3: x3 � 0, x1 ≠ 0  under the control
input:

U �
u1

u2

⎛⎝ ⎞⎠ �

−px1

−η(t)x3
1/3

x1
− px2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (19)

Remark 3. It should be pointed out that, in -eorem 2, the
selection of set O and control input U is not unique. In
-eorem 2, we only get the FTS of one state component. In
order to achieve better performance, we can further consider
multiple components to achieve the FTS for the Brockett-
like integrator, which is the result we will give in-eorem 3.

Consider the following Brockett-like integrator subject
to time-varying disturbance:

_x1(t) � u1,

_x2(t) � u2,

_x3(t) � w1(t)x1
ku2 − w2(t)x2u1,

⎧⎪⎪⎨

⎪⎪⎩
(20)

where t≥ 0, xi(t): R+⟼R, i � 1, 2, 3, denotes the state
component, uj(t): R+⟼R, j � 1, 2, denotes the control
input, wj(t): R+⟼R, j � 1, 2, is continuous function
denoting the disturbance term, k � a/b, a< b, and a and b are
positive odd numbers.

Assumption 3. -ere exists a continuous function
μ(t): R+⟼R such that μ(t)w1(t)≥ 0, for t≥ 0, and the
following inequality holds:


+∞

0
μ(s)w1(s)ds � +∞. (21)

Assumption 4. -ere exist two functions φ1(t), φ2(t) ∈ F
such that

w1(t)φ2(t) � w2(t)φ1(t). (22)

Assumption 5. -ere exist two functions T(x1) � inf
t> 0, x1 ≠ 0: 

t

0 φ1(s)ds � (x1
1− k/(1 − k)) , T(x3) � inf

t> 0: 
t

0 μ(s)w1(s)ds � ((x3
2/3)/2/3)  such that the set

K≜ x � (x1, x2, x3)
T ∈ R3: T(x3)<T(x1)  is not empty.

Theorem 3. Assume that Assumptions 3, 4, and 5 hold; then,
the solution of system (20) converges to the origin, and system
(20) is RAS with respect to the set Z≜ x � (x1, x2,

x3)
T ∈ R3: K∪ (0, 0, 0)T } under the control input:

U �

u1

u2

⎛⎝ ⎞⎠ �

−φ1(t)x1
k

−μ(t)x3
1/3

xk
1

− φ2(t)x2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (23)

Proof. If x1(0)≠ 0, it follows from (23) that
_x1(t) � −φ1(t)xk

1,

_x2(t) �
−μ(t)x3

1/3

xk
1

− φ2(t)x2,

_x3(t) � −μ(t)w1(t)x3
1/3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

About the first state component of system (20), we notice
that φ1(t) ∈ F and k � a/b, a< b, and a and b are positive
odd numbers, so obtained from -eorem 1, the first state
component of system (20) is FTS. Meanwhile, combining
(21), (22), and -eorem 1, the third state components of
system (20) is FTS. Hence, for initial value x1(0)and x3(0),
the settling time can be established, that is, T(x1(0)) and
T(x3(0)). Under the premise of Assumption 5, when
t>T(x3(0)), system (20) is transformed as

_x1(t) � −φ1(t)x1
k
,

_x2(t) � −φ2(t)x2,

x3(t) � 0.

(25)

Similar to the proof process of -eorem 2, we can obtain
that system (20) is RAS with respect to the setZ. For the case
that x1(0) � 0, we can apply any open loop control to steer the
system to a nonzero value of x1. -is completes the proof.

5. Numerical Simulations

In this section, we will demonstrate the effectiveness of the
proposed results for the above applications through the
following simulation examples.
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Example 1. Consider the following 2D time-varying system:

_x1(t) � (sin t − 1)x1
1/3 + sin tx2

2x1,

_x2(t) � (cos t − 1)x2
1/3 − x1

2x2,

⎧⎨

⎩ (26)

where t≥ 0. Consider the Lyapunov function
V(x) � x1

2 + x2
2, and the derivative along the trajectory of

the system (26) is
_V(t) � 2x1 (sin t − 1)x1

1/3
+ sin tx2

2
x1 

+ 2x2 (cos t − 1)x2
1/3

− x1
2
x2 

� 2(sin t − 1)x1
4/3

+ 2(cos t − 1)x2
4/3

+ 2(sin t − 1)x1
2
x2

2

≤ 2(sin t − 1)x1
4/3

+ 2(cos t − 1)x2
4/3

≤ 2((sin t − 1)∨ (cos t − 1)) x1
4/3

+ x2
4/3

 

≤ − c(t)V
2/3

(t),

(27)

where c(t) � 2 − 2(sin t∨ cos t) and c(t)≥ 0 on R+.
According to Lyapunov’s stability theory in [28], system
(26) is LS. It can be calculated that the lower bound of c(t)

is 0, so the classical FTS theorem in [9] is unapplicable.
On the contrary, note that c(t) satisfies (4) with β � +∞,
and it follows from-eorem 1 that system (26) is globally
FTS and the settling time can be estimated as
T(x0)≤ 4.51. Figure 1 illustrates the state trajectories of
system (26).

Example 2. Consider system (10) with w1(t) � t/20,
w2(t) � 1 − cos(t/2), η(t) � 1, ρ1(t) � t/200, and ρ2(t) �

1/10 − cos(t/2)/10. It is obvious that w1(t), w2(t) ∈F, η(t)

is a continuous function, and w1(t)ρ2(t) � w2(t)ρ1(t).
Hence, we can calculate that 

+∞
0 η(s)w1(s)ds � +∞. It

follows from-eorem 2 that system (10) is RAS with respect
to the set O≜ x � (x1, x2, x3)

T ∈ R3: x3 � 0, x1 ≠ 0 , and
the control input could be described by

U �

u1

u2

⎛⎝ ⎞⎠ �

−
t

200
 x1

−x3
1/3

x1
−

1
10

−
cos(t/2)

10
 x2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

It is worth pointing out that the classic FTS theorem in
[9] is not applicable. -is is due to the existence of the
disturbance term, and the control input will reach infinity
within a certain time, which is impractical. -e numerical
simulations for system (10) are follows.

In Figure 2, it can be clearly seen that x3(t) firstly
converges to zero, then x1(t) andx3(t) converge to zero.
-e control input u1 and u2 change over time and turn into
0 when x(t) converges to zero. In Figure 3, the state vector
x(t) enters the set O and finally reaches the origin in finite-
time. All of these results are corresponding to the con-
clusion of -eorem 2, which illustrates the validity of the
-eorem 2.

Example 3. For convenience, the same parameters as in
Example 2 are used. Consider system (2) with w1(t) � t/20,
w2(t) � 1 − cos(t/2), μ(t) � 1, φ1(t) � t/200,

0 1 2 3 4 5 6 7 8 9 10
t

–1
0
1
2
3
4
5
6
7
8
9

10

||x
 (t

)||

X: 4.45
Y: 0

4.45 ≤ 4.51

Figure 1: Simulation results of states for system (26).
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Figure 2: Simulation results of states and control inputs for system
(10).
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φ2(t) � 1/10, − cos(t/2)/10, and k � 1/3. It is not difficult to
verify that the setK is not empty. -erefore, following from
(21), (22), and-eorem 3, system (20) is RAS with respect to
the set Z and the control input could be described by

U �

u1

u2

⎛⎝ ⎞⎠ �

−
t

200
 x1

1/3

−x3
1/3

x1
1/3 −

1
10

−
cos(t/2)

10
 x2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

It can be seen from Figure 4 that the first and third state
components of the system (20) is FTS, and the second state
component of system (20) asymptotically tends to zero,
which shows the validity of -eorem 3.

6. Conclusion

-e problem of FTS for time-varying nonlinear systems is
investigated in this paper, where the results of global FTS
and local FTS are proposed, respectively. As an application,
the stabilization problem of the Brockett integrator sub-
jecting to time-varying disturbance is studied. By the
switched finite-time controller design methodology, we
achieve the RAS for the Brockett integrator subject to time-
varying disturbance. Further research topics would be
considered to extend the main results of this paper to other
more complex problems, such as the finite-time stabilization
for wheeled mobile robot subject to time-varying distur-
bance and the FTS theorem for time-varying nonlinear
systems in the sense of Lyapunov.
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