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In this paper, the stability and stabilization issues for a class of delayed neural networks with time-varying hybrid impulses are
investigated. -e hybrid effect of two types of impulses including both stabilizing and destabilizing impulses is considered
simultaneously in the analysis of systems. To characterize the occurrence features of impulses, the concepts of average impulse
interval and average impulse strength are employed. Based on the analysis of stability, a pinning impulsive controller which can
ensure the global exponential stability of the studied neural networks is designed by pinning a small fraction of neurons. Finally,
two numerical examples are given to illustrate the effectiveness of the proposed control schemes for delayed neural networks with
hybrid impulses.

1. Introduction

During the past few decades, dynamic networks have been
systematically studied due to their broad application
background in different areas [1–9]. In recent years, in order
to cater to the specific needs of modeling various practical
systems, many kinds of dynamic networks with special
structures have been developed, for example, [10–13] and
the references therein. When networks encounter transient
disturbance or abrupt dynamic variation in various instants,
systems may display switching or impulsive behaviors
[14, 15]. Consequently, impulsive neural networks, which
can model various electronic or biological networks en-
countering instantaneous and abrupt changes frequently,
have been extensively investigated in various fields of science
and engineering [16–19]. On the contrary, time delays
frequently appear in various dynamical systems [20, 21]. -e
existence of time delays in neural networks may induce more
complex dynamical behaviors such as instability,

oscillations, and chaos [22–27]. -erefore, it is necessary to
investigate effects of time delays and impulses on the stability
of neural networks.

Generally, impulses can be divided into two categories
according to their impact on systems. It is supposed that the
impulses are destabilizing if the impulses can potentially
destroy the stability of dynamical systems, while the im-
pulses are considered to be stabilizing if they are potentially
beneficial for the stabilization of dynamical systems. Sta-
bilizing impulses can be considered as impulsive controllers,
which can enhance the stabilization of dynamical systems. In
the last several decades, stabilizing impulses and destabi-
lizing impulses have been studied by a great many scholars
[28–31]. At the same time, the impulsive control method has
received many researchers’ attention (see [32–36] and ref-
erences therein). Particularly, stability or stabilization issue
for dynamical systems with delays and impulses was in-
vestigated in [37–41] and references therein. In [42], a
unified synchronization criterion for impulsive dynamical
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networks subject to desynchronizing or synchronizing im-
pulses was derived by using the average impulsive interval
approach. In [43], some adequate conditions that can ensure
the exponential synchronization of inertial memristor-based
neural networks with time delay were given by utilizing the
average impulsive interval approach. In [44], the pinning
impulsive control strategy was proposed. By utilizing the
Lyapunov method combined with the comparison principle,
pinning stabilization of probabilistic Boolean networks
subject to time delays was investigated in [45]. Synchroni-
zation problem for stochastic neural networks was studied
by impulsively controlling partial states in [46]. Recently,
networks with hybrid impulses were explored in [47, 48]. To
reduce conservativeness, a novel piecewise Lyapu-
nov–Krasovskii functional (LKF) was constructed by in-
troducing a line-integral type Lyapunov function and some
useful terms that take full advantage of the available in-
formation about the actual sampling pattern in [49].

In this paper, the concepts of average impulsive interval
and average impulsive strength are introduced to charac-
terize the features of hybrid impulses. -en, based on the
Lyapunov method combined with the utilization of proper
mathematical analysis techniques, the stability analysis for
neural networks with time-varying delays and hybrid
impulses is carried out. Under this circumstance, the
classification of stabilizing and destabilizing impulses is not
taken into account; just the overall effect of the impulses is
taken into consideration. Furthermore, a pinning impul-
sive controller design procedure for the stabilization of the
investigated neural networks is proposed based on the
above analysis. In this controller, only a small fraction of
variables is impulsively controlled to ensure the global and
exponential stability of neural networks. -e main con-
tributions of this paper are summarized as follows: (1) a
new concept of “average impulsive strength,” which can be
used to characterize much wider range of impulsive se-
quences, is introduced to describe the hybrid impulses
investigated in this paper. (2) By virtue of some proper
disposing techniques relevant to average impulsive interval
and average impulsive strength in the proof process of the
main results, less conservative results can thereafter be
obtained. (3) In consideration of the advantages of low cost
and high efficiency of the pinning controller, the strategy
that selects only a small fraction of neurons for impulsive
control is adopted to achieve the stabilization of the delayed
neural networks.

-e remainder of this paper is arranged as follows: in
Section 2, we propose the problem of stability and stabili-
zation of delayed neural networks with hybrid impulses and
give some necessary preliminaries. In Section 3, a criterion
for determining the stability of delayed neural networks with
hybrid impulses is established, and then a pinning impulsive
controller is designed to stabilize delayed neural networks.
In Section 4, numerical examples are given to illustrate our
theoretical results. Finally, Section 5 presents the conclusion.

Notation 1 . -e standard notations are used in this paper.
R+ and Rn denote the set of nonnegative real numbers and
the n-dimensional Euclidean space. N+ denotes the set of

positive integers. -e superscript “T” represents the trans-
pose of the matrix or vector. For x ∈ Rn, |x| denotes the
Euclidean norm of x. For matrix
A ∈ Rn, ‖A‖ �

���������
λmax(ATA)


, where λmax(·) represents the

largest eigenvalue. diag(· · ·) stands for a block-diagonal
matrix. Given τ > 0, C([− τ, 0],Rn) denotes the family of
continuous functions from [− τ, 0] to Rn.

2. Preliminaries

In this section, some preliminaries including model for-
mulation, lemmas, and definitions are presented.

Consider the following neural network:

_x(t) � Cx(t) + Bg(x(t)) + Dg(x(t − τ(t))) + I, (1)

where x(t) � (x1(t), x2(t), . . . , xn(t))T ∈ Rn is the state
vector associated with the neurons; C � diag(c1, c2,

. . . , cn)< 0 is the self-feedback matrix; B � (bij)n×n and D �

(dij)n×n are the connection weight matrices;
g(x(t)) � (g1(x(t)), g2(x(t)), . . . , gn(x(t)))T denotes the
activation function of the neurons; I ∈ Rn signifies constant
external input; and τ(t) represents the time-varying delays
that satisfies 0≤ τ(t)≤ τ. For the nonlinear function g(·), we
have the following assumption.

Assumption 1. Assume that gi(·)(i � 1, 2, . . . , n) are glob-
ally Lipschitz continuous functions, i.e., there exist constants
li > 0(i � 1, 2, . . . , n) such that

gi x1(  − gi x2( 


≤ li x1 − x2


, for any x1, x2 ∈ R. (2)

Denote L � diag(l1, l2, . . . , ln).
Let x∗ be the equilibrium point of (1). For convenience,

we can shift the intended equilibrium x∗ to be original by
letting y � x − x∗, and then system (1) can be transformed
into

_y(t) � Cy(t) + Bf(y(t)) + Df(y(t − τ(t))), (3)

where y(t) � (y1(t), y2(t), . . . , yn(t))T ∈ Rn is the state
vector of the transformed system. It follows from (2) that the
function f(y) � g(y + x∗) − g(x∗) satisfies

fi x1(  − fi x2( 


≤ li x1 − x2


, for any x1, x2 ∈ R. (4)

In consideration of the time-varying impulse effects, the
impulsive delayed neural network can be obtained in the
following form:

_y(t) � Cy(t) + Bf(y(t)) + Df(y(t − τ(t))), t≠ tk,

y t
+
k(  � αky t

−
k( , k ∈ N+,



(5)

where t1, t2, t3, . . . ,  is a sequence of strictly increasing
impulsive moments. αk ∈ R represents the strength of im-
pulses. We assume that y(t) is right-continuous at
t � tk, i.e., y(tk) � y(t+

k ). Hence, the solutions of (5) are
piecewise right-hand continuous functions which are dis-
continuous at t � tk for k ∈ N+. -e initial condition of (5) is
given by y(t) � ϕ(t) ∈ C([− τ, 0],Rn).
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Definition 1. (average impulsive interval; see [42]). Ta is
called the average impulsive interval of the impulsive se-
quence ζ � t1, t2, . . . ,  if

T − t

Ta

− N0 ≤Nζ(T, t)≤
T − t

Ta

+ N0, for allT≥ t≥ 0,

(6)

where N0 is a positive integer and Ta is a positive number.
Nζ(T, t) denotes the impulsive times of the impulsive se-
quence ζ in the time interval (t, T).

Definition 2 (average impulsive strength). α is called the
average impulsive strength of the sequence

ζ(T, t) � tl, tl+1, . . . , tl+Nζ(T,t)− 1 for all T≥ t≥ 0 if

αNζ(t,0)



 + αNζ(t,0)+1



 + · · · + αNζ(T,0)− 1





α
− N1 ≤Nζ(T, t)

≤
αNζ(t,0)



 + αNζ(t,0)+1



 + · · · + αNζ(T,0)− 1





α
+ N1,

(7)

where N1 is a positive integer and α is a positive number.
Nζ(T, t) denotes the impulsive times of the impulsive se-
quence ζ in the time interval (t, T).

Furthermore, inequality (7) implies that

α 1 −
N1

Nζ(T, t)
 ≤

αNζ(t,0)



 + αNζ(t,0)+1



 + · · · + αNζ(T,0)− 1





Nζ(T, t)

≤ α 1 +
N1

Nζ(T, t)
 .

(8)

Remark 1. -e concept of average impulsive gain was
proposed in [48], where the problem of the globally expo-
nential synchronization of coupled neural networks with
hybrid impulses was investigated. However, when the time-
varying delays are taken into consideration simultaneously,
this idea may fail to be applied to the analysis of the stability
of delayed neural networks with hybrid impulses. To deal
with the difficulties coming from time-varying delays, a new
concept named “average impulsive strength” is introduced
in this paper. -e conditions of our concept are more strict,
so it can ensure the establishment of the inequality in the
comparison principle.

Definition 3. Impulsive neural networks (5) are said to be
globally exponentially stable if there exist constants
M> 0, λ> 0, and T0 > 0 such that, for any initial values,
|y(t)|2 ≤Me− λt holds for all t≥T0.

Lemma 1 (see [42]). For any vectors x, y ∈ Rn, scale ϵ> 0,
and positive definite matrix Q ∈ Rn×n, the following in-
equality holds: 2xTy≤ εxTQx + ε− 1yTQ− 1y.

Lemma 2 (see [35]). Let 0≤ τi(t)≤ τ.
F(t, u, u1, u2, . . . , um): R+ × R × · · · × R

√√√√√√√√m+1

⟶ R is nonde-
creasing in ui for each fixed (t, u, u1, . . . ,

ui− 1, ui− 2, . . . , um), i � 1, 2, . . . , m, and Ik(u): R⟶ R is
nondecreasing in u.

Suppose that

D
+
u(t)≤F t, u(t), u t − τ1(t)( , . . . , u t − τm(t)( ( ,

u t
+
k( ≤ Ik u t

−
k( ( , k ∈ N+,

⎧⎨

⎩

D
+](t)>F t, ](t), ] t − τ1(t)( , . . . , ] t − τm(t)( ( ,

] t
+
k( ≥ Ik ] t

−
k( ( , k ∈ N+.

⎧⎨

⎩

(9)

Aen, u(t)≤ ](t), for − τ ≤ t≤ 0, implies that u(t)≤ ](t),
for t≥ 0.

3. Main Results

In this section, we will analyze the global exponential sta-
bility of delayed neural networks with hybrid impulses in-
cluding both destabilizing and stabilizing impulses.

Theorem 1. Consider time-varying neural network (5) with
hybrid impulses including both destabilizing and stabilizing
impulses. Suppose that Assumption 1 holds and that the
average impulsive interval of the impulsive sequence
ζ � t1, t2, . . . ,  is Ta. Aen, neural networks (5) with hybrid
impulses are globally exponentially stable if the following
inequality holds:

η1 + M0q< 0, (10)

where η1 � p + 2 ln α/Ta, p � λmax(C + CT + BBT +

LTL + DDT), q � λmax(LTL), and M0 is a constant satisfying
the following condition: when α≥ 1, M0 � e2N1α2N0 ; other-
wise, M0 � e2N1α− 2N0 .

Proof. Consider the Lyapunov function V(t) � yT(t)y(t).
-en, the derivative of V(t) along the trajectories of system
(5) can be obtained as follows:

D
+
V(t) � y

T
(t) C + C

T
 y(t) + 2y

T
(t)Bf(y(t))

+ 2y
T
(t)Df(y(t − τ(t))), t ∈ tk− 1, tk( , k ∈ N+.

(11)

By Lemma 1, one obtains

2y
T
(t)Bf(y(t)) ≤y

T
(t)BB

T
y(t) + f

T
(y(t))f(y(t))

≤y
T
(t)BB

T
y(t) + y

T
(t)L

T
Ly(t),

(12)

2y
T
(t)Df(t − τ(t)))≤y

T
(t)DD

T
y(t) + f

T
(y(t − τ(t)))

· f(y(t − τ(t)))≤y
T
(t)DD

T
y(t)

+ y
T
(t − τ(t))L

T
Ly(t − τ(t)).

(13)

From (11) to (13), it follows that
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D
+
V(t)≤y

T
(t) C + C

T
+ BB

T
+ L

T
L + DD

T
 y(t)

+ y
T
(t − τ(t))L

T
Ly(t − τ(t))

≤ λmax C + C
T

+ BB
T

+ L
T
L + DD

T
 V(t)

+ λmax L
T
L V(t − τ(t)) � pV(t) + qV(t − τ(t)),

t ∈ tk− 1, tk( , k ∈ N+.

(14)

For t � tk, one has

V t
+
k(  � y

T
t
+
k( y t

+
k(  � α2ky

T
t
−
k( y t

−
k(  � α2kV t

−
k( . (15)

For any ε> 0, let ](t) be a unique solution of the fol-
lowing impulsive delay system:

_](t) � p](t) + q](t − τ(t)) + ε, t≠ tk,

] t
−
k(  �α2k] t

−
k( , t � tk k ∈ N+,

](t) � |ϕ(t)|
2
, − τ ≤ t≤ 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

According to Lemma 2, one gets

](t)≥V(t), t≥ 0. (17)

By the formula for the variation of parameters, it follows
from (16) that

](t) � w(t, 0)](0) + 
t

0
w(t, s)[q](s − τ(s) + ε]ds, (18)

where w(t, s), t> s≥ 0, is the Cauchy matrix of the linear
system

_z(t) � pz(t), t≠ tk,

z t
+
k(  �α2kz t

−
k( , t � tk k ∈ N+.

⎧⎨

⎩ (19)

According to the representation of the Cauchy matrix,
we can obtain the following estimation: if Nζ(t, s)> 0, one
has

w(t, s) � e
p(t− s)


s<tk ≤t

α2k

≤ e
p(t− s)

αNζ(s,0)



 + αNζ(s,0)+1



 + · · · + αNζ(t− s)− 1





Nζ(t − s)
⎛⎝ ⎞⎠

2Nζ(t− s)

≤ e
p(t− s) α 1 +

N1

Nζ(t − s)
  

2Nζ(t− s)

≤ e
2N1e

p(t− s)α2Nζ(t− s)
.

(20)

Otherwise, when Nζ(t, s)> 0, one also has

w(t, s) � e
p(t− s) ≤ e

2N1e
p(t− s)α2Nζ(t,s)

. (21)

Since the average impulsive interval of the impulsive
sequence ζ � t1, t2, . . . ,  is equal to Ta, we have

t − s

Ta

− N0 ≤Nζ(t, s)≤
t − s

Ta

+ N0, for all t≥ s≥ 0. (22)

If α≥ 1, it follows from (20) to (22) that

w(t, s)≤ e
2N1e

p(t− s)α2 t− s/Ta+N0( ) ≤ α2N0e
2N1e

p+2lnα/Ta( )(t− s)
.

(23)

Similarly, when α< 1, it follows from (20) and (22) that

w(t, s)≤ e
2N1e

p(t− s)α2 t− s/Ta− N0( ) ≤ α− 2N0e
2N1e

p+2lnα/Ta( )(t− s)
.

(24)

Letting ε⟶ 0 and summarizing inequalities (23) and
(24) give that there exists constant
M0 � max α2N0e2N1 , α− 2N0e2N1  such that

w(t, s)<M0e
η1(t− s)

, (25)

where η1 � p + 2lnα/Ta.
Let η � M0sup− τ≤s≤0|ϕ(s)|2. From (18) and (25), one

obtains

](t)≤ ηe
η1t

+ 
t

0
M0e

η1(t− s)
[q](s − τ(s)) + ε]ds. (26)

Define h(v) � v + η1 + M0qevτ . It follows from (10) that
h(0)< 0. Since h(+∞) � +∞ and _h(v)> 0, there exists a
unique λ> 0 such that

λ + η1 + M0qe
λτ

� 0. (27)

On the contrary, it is obvious from (10) that
M− 1

0 η1 + q< 0. Hence,

](t) � |ϕ(t)|
2 ≤ η< ηe

− λt
−

ε
M

− 1
0 η1 + q

, − τ ≤ t≤ 0. (28)

-en, we claim

](t)< ηe
− λt

−
ε

M
− 1
0 η1 + q

. (29)

If inequality (29) is not true, there exists t∗ > 0 such that

] t
∗

( ≥ ηe
− λt∗

−
ε

M
− 1
0 η1 + q

, (30)

](t)< ηe
− λt

−
ε

M
− 1
0 η1 + q

, t< t
∗
. (31)

From (26) to (31), we have

] t
∗

( ≤ ηe
η1t∗

+ 
t∗

0
M0e

η1 t∗− s( )
[q](s − τ(s)) + ε]ds

< e
η1t∗ η −

ε
M

− 1
0 η1 + q

+ 
t∗

0
M0e

− η1s


· q ηe
− λ(s− τ(s))

−
ε

M
− 1
0 η1 + q

  + ε ds.

(32)

It is derived from (27) and (32) that
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] t
∗

( < e
η1t∗ η −

ε
M

− 1
0 η1 + q

+ ηe
− η1+λ( )t∗



− η −
ε

M
− 1
0 η1 + q

e
− η1t∗

+
ε

M
− 1
0 η1 + q



� ηe
− λt∗

−
ε

M
− 1
0 η1 + q

,

(33)

which contradicts with (30), and so, (29) holds. Letting
ε⟶ 0, one gets from (17) that

V(t)≤ ](t)≤ ηe
− λt

. (34)

By Definition 3, the solution y(t) of impulsive neural
networks (5) is exponentially stable. -e proof is hence
completed. □

Remark 2. -e concepts of average impulse interval [42, 43]
and average impulsive strength are employed to characterize
the features of hybrid impulses. -e classification of stabi-
lizing and destabilizing impulses is not taken into account;
just the overall effect of the impulses is taken into consid-
eration. By utilizing the comparison principle [35, 44],
Lyapunov theory [35, 42–44], Young’s inequality technique
[42, 43, 48], average impulsive interval approach [42, 43],
and the concept of average impulsive strength, -eorem 1
presenting conditions of ensuring the global exponential
stability of delayed neural networks (5) is derived.

In the following section, a pinning impulsive controller
will be designed to globally and exponentially stabilize
neural networks (5). In order to drive system (5) into the
equilibrium point x∗, the following impulsive controller is
constructed for l partial variables (l< n):

ui tk(  �

0, i ∉ D tk( ,



+∞

k�1
μyi(t)δ t − tk( , i ∈ D tk( ,

⎧⎪⎪⎨

⎪⎪⎩
(35)

where μ ∈ (− 2, − 1)∪ (− 1, 0) is a constant, which means that
the impulsive effects can be used to stabilize the delayed
neural networks; the index set of l partial variables D(tk)

which should be impulsively controlled is defined as follows:
at time instant tk, for the error of states of the partial
variables y1(tk), y2(tk), . . . , yn(tk), one can reorder the
states such that |yp1

(tk)|≥ |yp2
(tk)|≥ · · · ≥ |ypn

(tk)|.
-en, the index set of l controlled variables D(tk) is

defined as D(tk) � {p1, p2, . . ., pl}. After adding pinning
impulsive controller (35) to the variables D(tk), the con-
trolled delayed neural networks can be rewritten as follows:

_y(t) � Cy(t) + Bf(y(t)) + Df(y(t − τ(t))), t≠ tk,

yi t
+
k(  � μyi t

−
k(  + yi t

−
k( , i ∈ D tk( ,

y t
+
k(  � yi t

−
k( , i ∉ D tk( .

(36)

-e initial conditions of delayed neural networks (36)
are given by

yi(t) � ϕi(t) − τ ≤ t≤ 0 (i � 1, 2, . . . , n), (37)

where ϕi(t) ∈ C([− τ, 0],R) with C([− τ, 0],R) being the set
of continuous functions from [− τ, 0] to R.

Theorem 2. Let ρ � n + lμ(μ + 2)/n ∈ (0, 1). Suppose that
Assumption 1 holds and that the average impulsive interval
ζ � t1, t2, . . . ,  is Ta. Aen, neural networks (36) are globally
exponentially stabilized to the state x∗ by pinning controller
(35) if the following inequality holds:

η2 + M1q< 0, (38)

where η2 � p + ln ρ/Ta, p � λmax(C + CT + BBT + LTL +

DDT), q � λmax(LTL), andM1 � ρ− N0 .

Proof. Construct a Lyapunov function in the form of

V(t) � y
T
(t)y(t) � 

n

i�1
y
2
i (t). (39)

By a similar analysis as -eorem 1, for any t ∈ [tk− 1, tk),
taking the derivative of V(t) along the solution of (36) gives
that

D
+
V(t)≤pV(t) + qV(t − τ(t)). (40)

For any k ∈ N+, we have

V t
+
k(  � 

n

i�1
y

T
i t

+
k( yi t

+
k(  � 

i∈D tk( )

(1 + μ)
2
y

T
i t

−
k( yi t

−
k( 

+ 

i∉D tk( )

y
T
i t

−
k( yi t

−
k( .

(41)

For any k ∈ N+, let φ(t−
k ) � min |yi(t−

k )|: i ∈ D(tk)  and
ψ(t−

k ) � max |yi(t−
k )|: i ∉ D(tk) . According to the selec-

tion of parameters in setD(tk), we have φ(t−
k )≥ψ(t−

k ). Since
ρ � 1 + l/n · μ(μ + 2) ∈ (0, 1), we get (1 − ρ)(n − l) �

[ρ − (1 + μ)2]l. Hence, one has

(1 − ρ) 

i ∉ D tk( )

y
T
i t

−
k( yi t

−
k( ≤ (1 − ρ)(N − l) ψ t

−
k( ( 

2

≤ (1 − ρ)(N − l) φ t
−
k( ( 

2 ≤ l ρ − (1 + μ)
2

  φ t
−
k(( ( 

2

≤ ρ − (1 + μ)
2

  

i∈D tk( )

y
T
i t

−
k( yi t

−
k( ,

(42)

which follows that

(1 + μ)
2



i∈D tk( )

y
T
i t

−
k( yi t

−
k(  + 

i ∉ D tk( )

y
T
i t

−
k( yi t

−
k( 

≤ ρ
n

i�1
y

T
i t

−
k( yi t

−
k( .

(43)

From (41) to (43), we have

Complexity 5



V t
+
k( ≤ ρV t

−
k( . (44)

For any ε> 0, let ](t) be a unique solution of the fol-
lowing impulsive delayed system:

_](t) � p](t) + q] t − τm(t)(  + ε, t≠ tk,

] t
+
k(  � ρ] t

−
k( , t � tk k ∈ N+,

](t) � |ϕ(t)|
2
, − τ ≤ t≤ 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(45)

According to Lemma 2, we can get

](t)≥V(t), t≥ 0. (46)

By the formula for the variation of parameters, it follows
from (45) that

](t) � w(t, 0)](0) + 
t

0
w(t, s)[q](s − τ(s) + ε]ds, (47)

where w(t, s), t> s≥ 0, is the Cauchy matrix of the linear
system

_z(t) � pz(t), t≠ tk,

z t
+
k(  � ρz t

−
k( , t � tk k ∈ N+.

 (48)

According to the representation of the Cauchy matrix,
since 0< ρ< 1 and t − s/Ta − N0 ≤Nζ(t, s)≤ t − s/Ta + N0,
we can obtain the following estimation:

w(t, s) � e
p(t− s)


s<tk<t

ρ≤ e
p(t− s)ρNζ(t,s) ≤ e

p(t− s)ρt− s/Ta− N0

� M1e
η2(t− s)

,

(49)

where M1 � ρ− N0 and η2 � p + lnρ/Ta. Let M2 � M1
sup− τ≤s≤0|ϕ(s)|2. -en, it can be derived from (45) and (49)
that

](t)≤M2e
η2t

+ 
t

0
M1e

η2(t− s)
[q](s − τ(s)) + ε]ds. (50)

Define h(v) � v + η2 + M1qevτ . It follows from (38) that
h(0)< 0. Since h(+∞) � +∞ and _h(v)> 0, there exists
unique λ> 0 such that

λ + η2 + M1qe
λτ

� 0. (51)

On the contrary, it is obvious from (38) that
M− 1

1 η2 + q< 0. Hence,

](t) � |ϕ(t)|
2 <M2e

− λt
−

εM1

η2 + M1q
, − τ ≤ t≤ 0. (52)

-en, we claim

](t)<M2e
− λt

−
εM1

η2 + M1q
. (53)

If inequality (51) is not true, there exists t∗ > 0 such that

] t
∗

( ≥M2e
− λt∗

−
εM1

η2 + M1q
, (54)

](t)<M2e
− λt

−
εM1

η2 + M1q
, t< t

∗
. (55)

From (50) and (55), we have

] t
∗

( ≤M2e
η2t∗

+ 
t∗

0
M1e

η2 t∗− s( )
[q](s − τ(s)) + ε]ds

< e
η2t∗

M2 −
εM1

η2 + M1q
+ 

t∗

0
M1e

− η2s


· q M2e
− λ(s− τ(s))

−
εM1

η2 + M1q
  + ε ds.

(56)

It is derived from (51) and (56) that

] t
∗

( < e
η2t∗

M2 −
εM1

η2 + M1q
+ M2e

− η2+λ( )t∗
− M2

+
εM1

η2 + M1q
−

εM1

η2 + M1q
e

− η2t∗
 � M2e

− λt∗

−
εM1

η2 + M1q
,

(57)

which contradicts with (54), and so, (53) holds. Letting
ε⟶ 0, one gets from (17) that

V(t)≤ ](t)≤M2e
− λt

. (58)

-e proof is completed. □

4. Numerical Examples

Two numerical examples are presented to demonstrate the
validity of the above results in this section.

Example 1. Consider neural networks (5) with the following
parameters:

C �
− 3 0

0 − 8
⎡⎢⎣ ⎤⎥⎦,

B �
0.3 0.1

0.2 0.2
⎡⎢⎣ ⎤⎥⎦,

D �
0.4 0.2

0 0.2
⎡⎢⎣ ⎤⎥⎦,

L �
0.1 0

0 0.2
⎡⎢⎣ ⎤⎥⎦,

(59)

and f(y(t)) � tanh(0.8y(t)), τ(t) � et/1 + et, where y(t) �

(y1(t), y2(t))T is the state vector of the neural networks. By
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calculation, we can easily know η1 + M0q � − 3.5126. Fig-
ure 1 represents a hybrid impulsive sequence where
Ta � 0.2, N0 � 5, N1 � 2, and α � 1.2. -e effect of the
hybrid impulsive sequence is destabilizing.

According to-eorem 1, neural networks (5) with time-
varying impulses will be globally exponentially stable if
condition (10) is satisfied. Our numerical simulation draws
the conclusion of Figure 2. From Figure 2, it can be observed
that the state response of the neural networks tends to be
stable quickly, which means the simulation results are
consistent with the theory analysis.

Example 2. Consider neural networks (5) with

C �

1 0 0 0 0 0

0 − 4 0 0 0 0

0 0 − 1 0 0 0

0 0 0 − 3 0 0

0 0 0 0 − 2 0

0 0 0 0 0 − 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �

0.08 0 − 0.1 0 0 0

0 0.02 0 0.1 − 0.3 0

− 0.05 0 − 0.1 0.5 0 0.4

0.4 0.2 − 0.3 0.6 − 0.2 0.1

0 0 0 0.2 − 0.3 0

0.1 − 0.2 0 0 0.5 − 0.2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D �

0.2 0.1 0 0 0 0

0 0.1 0.2 0.3 0 0

0.1 0 − 0.2 0 4 0.2

0 0.1 0 0.1 0.2 0.2

0 0.1 0.2 0.3 0 0

0.2 0.1 0.3 0 0 0.2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L �

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(60)

and f(y(t)) � tanh(0.8y(t)), τ(t) � et/1 + et, where y(t) �

(y1(t), y2(t), . . . , y6(t))T is the state vector of the neural

networks. -e state response of neural networks (5) tends to
be unstable without any controller, as is depicted in Figure 3.
We select controller (35) with Ta � 0.25, N0 �

3, μ � − 1.5, l � 3, and n � 6. By calculation, we can easily
know η2 + M1q � − 4.570469. According to -eorem 2, the
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Figure 1:-ehybrid impulsive sequencewithTa � 0.2, N0 � 5, N1 � 2,
and α � 1.2.
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Figure 2: -e state response of the neural networks in -eorem 1.
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Figure 3: -e state response of neural networks (5) without any
controller in -eorem 2.
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pinning impulsive controller ensures global exponential
stability of the considered neural networks. Simulation re-
sults approve the declared property (see Figure 4).

5. Conclusion

In this paper, the stability and stabilization problems of
delayed neural networks with hybrid impulses have been
studied. Based on Lyapunov stability theory combined with
the comparison principle and the conception of average
impulsive strength, a criterion for the exponential stability of
delayed neural networks with hybrid impulses has been
proposed. -en, a pinning impulsive controller has been
designed to globally and exponentially stabilize the delayed
neural networks with hybrid impulses. By revising the proof
of the main results, some methods related to the concepts of
average impulsive interval and average impulsive strength
have been used to make the theoretical results less con-
servative. -e derived stabilization criterion and the con-
vergence rate are closely related with the proportion of the
controlled neurons, time delay, impulsive strengths, and
average impulsive interval of the neural networks. -e
validity of the theoretical results has been well explained by
simulation results. In the future research, finite-time sta-
bilization, persistent dwell-time, and state constraints will be
included.
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