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*is paper studies a V-type layout design, establishes the area utilization model of a V-type layout based on big data technology,
and verifies the validity of the area model. *is paper studies the ABC classification and storage strategy of V-type layout and
establishes a random model of return-shape picking paths for V-type layout. By calculating the sum of the expected picking
distance in the main channel and the expected picking distance of the subchannel, a mathematical model for return-shape picking
paths of the V-type layout is established. By using big data mining technology, this paper simulates a random picking path model
and obtains simulated data for cases with multiple orders, providing a theoretical basis for research on random picking path
models with a classified-storage strategy using an improved layout.

1. Introduction

Warehousing is a combination of logistics, information flow,
and capital flow that acts as a transfer station connecting
production, supply, and sales. In the complex logistics
picking environment, the correlation between goods is
obtained by edge calculation and objects in a warehouse are
identified based on a neural network. *e picking robot
selects different intelligent grasping methods based on the
different object categories to achieve improved storage
picking intelligence and efficiency.

*e warehouse layout is an important factor that de-
termines the operational efficiency of the distribution centre,
and it has an important influence on order picking and
picking distance. In fact, warehouse layout design has an
impact of over 60% on the total picking path distance. *us,
an efficient warehouse layout can greatly improve the
throughput of the warehouse and the customer-demand
response speed.

*e research motivation of this paper is as follows: (i)
Researchers have studied many optimization problems

under the traditional layouts but have proposed few new
layout methods. (ii) *e warehouse layout design has a high
impact on order picking and the picking walking distance.
By reducing the lengths of shelves and changing shelf
placements, the V-type warehouse layout can offer more
picking channels. (iii) A good storage strategy can reduce the
moving distance between storage locations andmake full use
of the available storage space. Currently, classification
storage strategies are the most widely used in practical
production situations. *erefore, this paper establishes an
area utilization model under an ABC classified-storage
strategy with a V-type layout and establishes a return-shape
picking path stochastic model for the V-type layout.

*e primary contributions of this article are as follows:
(i) summarize the existing literature on warehouse layouts
and selection paths; (ii) establish an area utilization model
for the V-type layout to verify the model validity; (iii) in-
troduce linear cutting to conduct an ABC partition of the
warehouse layout; (iv) establish the return-shape picking
path model for the V-type layout; and (v) report the results
of data simulations for multiple orders.
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*e remainder of this article is organized as follows:
Section 2 introduces the previous literature on warehouse
layouts and picking paths. Section 3 constructs the area
utilization model for a V-type warehouse layout and
verifies the model’s validity. Section 4 divides the V-type
layout into three ABC types and establishes a return-shape
picking path stochastic model for the V-type layout.
Section 5 simulates the V-type picking path model,
compares it with the s-shape path, and provides an
analysis. Section 6 summarizes the article and highlights its
shortcomings.

2. Related Work

In the new e-commerce environment, in order to ensure the
security of storage and the relevance of requirements,
scholars have explored the protection of data privacy [1–5],
and the storage of cargo space is no longer a traditional
classification standard.*rough edge calculation, Internet of
things and other technologies to explore the high correlation
between different goods, re-clustering goods based on a
certain degree of association rules, so as to form a network of
data between goods [6–8].

In terms of warehouse systems and classification of cargo
space storage, Azadeh et al. and Bahrami et al. [9, 10]
summarized the automatic robot processing system, dis-
cussed the storage strategy, and allocated cargo storage
location. Ramanathan et al. and Rezaei and Dowlatshahi
[11, 12] considered multiple criteria for inventory classifi-
cation and proposed a simple classification scheme based on
weighted linear optimization. Manzini et al. [13] introduced
a multiparameter dynamic model for rapidly estimating the
moving distance within the pick cycle. Lin et al. [14, 15]
proposed an integrated random forest algorithm, which
extended the multiresource scheduling and power con-
sumption model of CloudSim. Wang et al. [16, 17]
decomposed the multiobjective scheduling problem into a
certain number of scalar quantum problems, dynamically
matched supply and demand resources while considering
the matching cost, and solved all subproblems in a single
operation. Jiang et al. [18] developed a crowd perception
incentive model based on the voting mechanism, enabling
each participant to perform multiple tasks, which greatly
improved the participants’ execution ability. Scholars used
class-based storage strategy, gray clustering, fuzzy c-means
clustering, and other methods to classify the types of goods
in orders [19–22]. On this basis, this paper replans the ABC
classification of goods.

In recent years, experts and scholars worldwide have also
conducted considerable research work to investigate new
warehouse layouts.

In 2012, Cardona et al. [23] studied the fishbone
warehouse layout and obtained the oblique channel with the
optimal angle of the fishbone warehouse layout; Öztürkoğlu
et al. [24] found that a V-type warehouse layout achieved the
same performance as the fishbone warehouse layout. In
2014, Çelk and Süral [25] found that the fewer the number of
product categories ordered, the greater the difference in the
average walking time between a traditional storage centre

and the fishbone storage centre. In 2015, Cardona et al. [26]
proposed a third design method for a fishbone layout; this
approach used a mathematical finite sequence to model the
arrangement of openings and generated a detailed fishbone
layout design based on the four main characteristic values of
the fishbone layout. In 2017, Zhang et al. [27, 28] studied a
real production and warehousing case, proposed a com-
prehensive strategy combining warehouse layout with the
volume batch problem, and proposed a heuristic method
along with a variation to accommodate a large instance with
real data.

In 2018, Pferschy and Schauer [29] considered the
order batch when retrieving goods from the warehouse
and processing the order through a picking process and a
path stage. *e positions of goods were sorted based on the
minimum length route, and a heuristic algorithm based on
the general graph model was proposed; Weidinger [30]
studied the picker path problem in a rectangular scattered
warehouse and the influence of heterogeneity of different
order line levels on the picker cycle length.

In 2019, Öztürkoğlu and Hoser [31] developed a new
warehouse design called the “discrete cross aisle warehouse
design.” Compared with the traditional two-group layout,
the new design saves 7% of the order-picking trip and
provides a method to reduce the transportation distance for
the picking operation; Weidinger and others [32] found that
for e-commerce retail retrieval of a set of chosen items, shelf
access scheduling was an important optimization problem:
they defined mixed warehouse shelves when choosing the
resulting path problem—mixed shelf storage benchmarking
with traditional storage strategy—which could adapt to the
proportion of small and large orders under different sce-
narios. Zhou et al. [33] found that several densities and
surfaces are more influential when blocking time than are
picking speed and walking speed when items are picked
individually. *ey constructed a discrete time Markov state
transition probability matrix, studied the steady state of the
matrix, and analysed the blocking time ratio under the
chosen density. *en, the relationship between the number
of surfaces, the blocking time, and the extreme value points
are determined. Yener and Yazgan [34] studied warehouse
designs, evaluated the effectiveness of various warehouse
designs, and used an integer linear mathematical model to
sort the paths for a large number of randomly selected
picking requests. To reduce the picking distance, Zhou et al.
[35] used the genetic algorithm, the ant colony algorithm,
and the cuckoo algorithm to optimize the picking paths in
warehouses with fishbone layouts and established an opti-
mization model for selecting picking paths in warehouses
with a fishbone layout.

Scholars have conducted many studies to optimize
fishbone layouts; however, few studies exist regarding the
utilization, storage, and picking path strategy for V-type
layout areas. *is article uses the V-type layout and storage
policy classification to analyse the length of the return-
shape picking path, for which a schematic diagram is
shown in Figure 1. For a storage centre with a V-type
layout, the random model of the return-shape and s-shape
picking path is established, and the validity of the model is
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verified by a simulation experiment. *is paper also as-
sesses whether the return-shape picking path strategy is
better than the s-shape picking path strategy when the
relevant parameters of the V-type layout and picking path
are constant.

To improve the current rapid development of the
logistics industry, this study will help improve the effi-
ciency of storage centre selection, reduce the time cost,
and improve the vitality of the logistics industry. For
consumers, this type of improvement can reduce waiting
times and improve service satisfaction. From a national
economy viewpoint, the results of this study can help
accelerate the efficiency of goods turnover and reduce
warehousing occupancy rates, thus promoting economic
development.

3. V-Type Warehouse Layout Area
Utilization Model

3.1. V-Type Layout Area Utilization Model Construction.
Figure 2 shows a schematic diagram of a V-type storage
layout.

Assumptions. *e warehouse has a rectangular shape. In this
paper, we study only layouts on a plane and ignore the
influence of height on warehouse layout. *e warehouse has
a single input/output (I/O) point located in the lower middle
area of the warehouse. *e aisles and passages have equal
widths. Warehouse congestion is not considered. *e

symbols used in the model are defined as follows: S1 rep-
resents the storage area of the lower half; S2 represents the
storage area of the upper half; l1 represents the aisle width; l2
represents the shelf width; represents the width of the
warehouse; α represents the angle of the warehouse ramp; α0
represents the right half of the diagonal angle of the
warehouse; a represents half the length of the warehouse;
and R represents the effective utilized area.

Due to the symmetry of the warehouse, only the right
half of the warehouse is taken as an example. *e oblique-
angled aisles in the V-type layout mainly include two cases:
(1) those greater than 0 degrees but less than the right-half
diagonal angle and (2) those greater than the right-half
diagonal angle but less than π/2. When the angles equal 0 or
π/2, the V-type layout becomes a traditional warehouse
layout, as shown in Figure 3.

When 0.01≤ α≤ α0, the number of aisles in the right-half
area is rounded down:

n �
a

l1 + l2
 . (1)

*e bottom length of the first trapezoid is

r0 � r − 2l1 − l1 � r − 3l1. (2)

And its bottom side is defined as

r1 � r0 −
l2

2 tan((π/2) − α)
. (3)

I/O

Figure 1: V-type layout return-shape picking path strategies for a given classification storage strategy.
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*erefore, the area of the first trapezoid is

Sf �
1
2

r0 + r1( ∗
l2

2
�
1
4

r − 3l1 + r0 −
l2

2 tan((π/2) − α)
 l2.

(4)

*e last shelf is a single row of shelves whose rectangular
area is

Sb �
1
2

r − 2l1( ∗
l2

2
. (5)

*e remaining shelf area is

Sr � (n − 1)∗ r − 2l1( ∗ l2  − (n − 1)∗
l1

cos α
∗ l2 .

(6)

*e area of all the shelves is as follows:

S � Sf + Sb + Sr � l2 ∗
(8n − 2)∗ r + l1∗(2 − 16n) − l2 ∗ (cot α)− 1 + 2r0

8
− (n − 1)∗

l1

cos α
 . (7)

*us, the effective area utilization is

a a

S1

S2

α α

r

l1

l1 l2
l2/2

Figure 2: V-type storage layout diagram.

a
α0

α

r1r0

l1

l1
r

l1
l1 l2

l2/2

Figure 3: A diagram with a diagonal angle greater than 0 degrees and less than the right-half diagonal angle.
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R �
S

Sl

�
l2 ∗ (8n − 2)∗ r + l1 ∗ (2 − 16n) − l2 ∗ (cot α)− 1 + 2r0 /8  − (n − 1)∗ l1/ cos α(  

a∗ r
. (8)

When α0 ≤ α≤ π/2, as shown in Figure 4, the number of
aisles in the right-half area is

n �
a

l1 + l2
 . (9)

We round down the number of aisles that exist over the
length f0:

n′ �
f0 − l2/2( 

l1 + l2
  �

2f0 − l2

2 l1 + l2( 
 . (10)

*e bottom length of the first trapezoid is

r0 � r − 2l1 − l1 � r − 3l1. (11)

And its upper edge is

r1 � r0 −
l2

2 tan((π/2) − α)
� r0 −

l2

2 cot α
� r − 3l1 −

l2

2 cot α
.

(12)

*erefore, the area of the first trapezoid is

Sf �
1
2

r0 + r1( ∗
l2

2
�
1
4

2r − 6l1 −
l2

2 cot α
 l2. (13)

*e area being traversed is

Sf � n∗ l2
l1

cos α
. (14)

*e area of the remaining trapezoidal part is

Sr � n∗ r − 2l1( l2 − n∗ l2
l1

cos α
� n′l2 r − l1 2 −

1
cos α

  .

(15)

*e area of the last rectangle is

Sb �
r − 2l1( l2

2
. (16)

*e lower half area is

S � Sf + Sb + Sr � l2 r 1 + n′(  −
5
2

+ 2n′ −
1

cos α
n′ l1 −

l2

8 cot α
 .

(17)

*erefore, the area utilization rate is

R �
S

Sl

�
l2 r 1 + n′(  − (5/2) + 2n′ − (1/cos α)n′( l1 − l2/8 cot α(  

ar
.

(18)

3.2. Area Model Validation. In this part, a simulation ex-
ample is made for verifying the area utilization model.
*erefore, some assumptions need to be made about the

parameters of the storage environment. *e width of the
warehouse is set to r� 300, and the half length of the
warehouse is set to a� 300.*e error between the model and
the simulation is validated for aisle and shelf widths of
l1 � l2 � 1, l1 � l2 � 1.5, and l1 � l2 � 1.8. *e calculations
indicated that the error margin was between plus or minus
1%, as shown in Figure 5.

When the angle of the main picking aisle is 0 or π/2, the
V-type layout becomes a traditional storage layout and the
area utilization rate reaches its highest level of approximately
0.485. When the angle of the main picking aisle is π/4, the
effective area utilization rate of the V-type storage layout
reaches its lowest level of 0.483. *e difference between the
highest and lowest utilization rates is approximately 0.002.
*us, when the V-type layout design, warehouse area uti-
lization, and storage area layout utilization rate remain the
same, the error margin is small. In this case, the warehouse
layout can be ignored.

4. V-Type Layout Picking Path Random Model

4.1. ABC Classification of the V-Type Layout. *e quantity
and variety of goods in stock are large. Due to the limited
resources in various aspects of the enterprise, ABC classi-
fication of the goods in stock can improve the selection
efficiency according to the frequency of goods entering and
leaving the warehouse.

Based on the design principle of setting the closest
import and export for Class A articles, two straight lines are
used to intercept the storage area of the Class A articles based
on the V-type warehouse layout characteristics. It is im-
portant to confirm that the distances between the import and
export from the furthest edge position of the Class A articles
are equal (as in line segments BC � BD + DE in Figure 6).
When the positions are equal, the slope k1 and the intercept
c1 of the first straight line can be determined as shown in the
following example:

BF + FC � BD + DE,

BF + FC � BD + DH − EH,

BF � BD − EH,

EH � BD − BF,

tan β �
CH
EH

�
DF

BD − BF
�

l

(l/cos α) − l∗ tan α
, l � l1 + l2.

(19)
Using this formula, we can find the slope of the line,

k1 � tan[(π/2) + arctan β], because the two segments are
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symmetrical about the slanted channel. *e second segment,
k2, can be obtained from the angle of the slanted channel.
For c1 and c2, according to the area occupied by the category

of objects, one can find the intercept of the two straight lines
c1 and c2:

PA �
SA

S
�

(1/2)∗ C∗ C/− k1(  − (1/2)∗ C tan α/ tan α − k1( ( ∗ − C/k1(  − C/ k1 − 2 tan α( ( ( 

ab
. (20)

Using this formula, c1 and c2 can be determined.
*e intercepts of the Class B and Class C articles can be

determined similarly.

4.2. Picking Path Random Model Assumptions and Symbolic
Description. Based on the cargo flow volume, the picked
objects are classified intoM categories based on the distances

from the warehouse entry point to the nearest object in
descending order. *e corresponding positions of the goods
are obtained in sequence. Each type of cargo is randomly
placed. Figure 7 shows the goods divided into conventional
A, B, and C (fast, medium, and slow) classes.

*e following assumptions are added to the previous
conditions for the V-type layout: (1) the storage space is

a

l1

l1 l1 l2
l2/2

α0
α

r1r0 rrn

f1f0

S2

S1

Figure 4: *e diagonal angle is greater than the right-half diagonal angle and less than π/2 in the schematic.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.49

0.485

0.48

0.475

0.47

0.465

0.46

Figure 5: *e V-type storage layout area utilization model changes based on the angle change in the utilization map.
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calculated based on shelf length; shelf height is not con-
sidered; (2) when picking in an aisle, goods can be picked
from both sides of the aisle and the distance between the two
sides is ignored when picking the goods; (3) the selected

items are random and independent of each other; (4) in the
given order, the probability of picking each item for each
type of goods is the same; (5) the same items are randomly
assigned to a space, and each item is stored in only one space;

�e shaded section represents the
storage area for Class A goods

f(x) = k2x + c2

f(x) = k1x + c1

α
A

B

F

β H

E

D

C

Figure 6: ABC classification diagram of V-type layout.

l1

l1l1l2

S2

S1

b

I/O α0
α

a

Figure 7: V-type layout diagram for a class-based storage strategy.

Complexity 7



(6) within a channel, the lengths of the shelves holding each
item for a specific category of articles is evenly distributed;
and (7) the oblique and normal aisles have equal widths. *e
symbols used in the model are defined as follows: l1 indicates
the aisle width; l2 represents the width of a shelf; b indicates
the width of the warehouse; α indicates the angle of the
warehouse ramp; α0 represents the right half of the ware-
house diagonal angle; and a represents half the length of the
warehouse.

4.3. Return-Shape Picking Path Model Construction.
When 0.01≤ α≤ α0, the oblique aisle runs through all the
picking aisles in the right half of the area; thus, the number of
picking aisles in Areas 1 and 2 is the same, that is,
n � n1 � n2. *e number of channels in the right half is then
rounded down as follows:

n �
a − 0.5 l1 + l2( 

l1 + l2
 . (21)

When α0 ≤ α≤ (π/2),

n1 �
f0 − l2/2( 

l1 + l2
  �

2f0 − l2

2 l1 + l2( 
 ,

n2 �
a − 0.5 l1 + l2( 

l1 + l2
 .

(22)

Category A items in zones 1 and 2 account for an aisle
length of j:

m1aj � max 0, min a, c1b + l1 + l2( ∗ (j − 0.5)((

∗ tan
π
2

+ arctan cos(α)  − l1 + l2( 

∗ (j − 0.5)∗ tan(α), j � 1, 2, . . . , n1,

m2aj � max 0, min l1 + l2( ∗ (j − 0.5)∗ tan(α), l1 + l2( 

∗ (j − 0.5)∗ tan(α)− 2 tan(α)∗ l1 + l2( ∗ (j − 0.5)(

− tan
π
2

+ arctan(cos(α)) ∗ l1 + l2( 

∗ (j − 0.5) + c2b, j � 1, . . . , n2.

(23)

Category C items in zones 1 and 2 account for an aisle
length of j:

m1cj � a − m1bj − m1aj − l1 + l2( ∗ (j − 0.5)∗ tan(α),

m2cj � a − m2bj − m2aj − l1 + l2( ∗ (j − 0.5)∗ tan(α),

maj � m1aj + m2aj,

mbj � m1bj + m2bj,

mcj � m1cj + m2cj.

(24)
*e probability of picking items of type A/B/C within

aisle j is as follows:

paj � pa

maj


n1+n2
j�1 maj

,

pbj � pb

mbj


n1+n2
j�1 mbj

,

pcj � pc

mcj


n1+n2
j�1 mcj

.

(25)

For any aisle j in the right half of the area, the categories
of the items to be selected on the shelves for categories A, B,
and C obey a binomial distribution b(K;T), assuming that
the type of item to be sorted in aisle j is Tj. *e probability
p

(K)
aj that there are K types of goods in theT types of goods in

the A/B/C type storage area of aisle j is as follows:

p
(K)
aj � C

K
T 1 − paj 

T− K
paj 

K
, K � 0, 1, . . . , T; 1≤ j≤ n1 + n2,

p
(K)
bj � C

K
T 1 − pbj 

T− K
pbj 

K
, K � 0, 1, . . . , T; 1≤ j≤ n1 + n2,

p
(K)
cj � C

K
T 1 − pcj 

T− K
pcj 

K
, K � 0, 1, . . . , T; 1≤ j≤ n1 + n2.

(26)

Assume that there are K types of orders in aisle j that
need to select Class A items and that the items in the Type A
item storage region in aisle j are evenly distributed. *e
maximum distance that needs to be walked in the aisle to
pick a Type A item is expected to be d

(K)
aj ; thus,

d
(K)
aj � E max ξa1, ξa2, . . . , ξaK( ( . (27)

*e distribution function of max(ξa1, ξa2, . . . , ξaK) is

F(x) � p max ξa1, ξa2, . . . , ξaK( <x  �
xK

mK
aj

0≤x≤maj .

(28)

*erefore,

E max ξa1, ξa2, . . . , ξak( (  � 
maj

0
xd

xK

mK
aj

⎛⎝ ⎞⎠ �
K

K + 1
maj,

d
(K)
aj �

K

K + 1
maj.

(29)

Based on formula (27), formulas (28) and (29) show that
when sorting T types of goods at a time, the aisle j picking
walking distance is

daj(T) � E d
K
aj  � 

T

K�0
p

(K)
aj d

(K)
aj , j � 1, 2, . . . , n. (30)

*e probability of stocking in aisle j is

pj �
paj + pbj + pcj

pa + pb + pc

. (31)

Because the number of aisles in the areas above and
below the slant aisle differs and the storage area in the right
half is divided into two picking areas, region 1 and region 2,
the desired picking distances for main aisle 1 and aisle 2
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must be determined separately. From the above relation, we
know that Rfar must be obtained, and the probability of using
the farthest access aisle j1far in region 1 when picking T kinds
of articles is denoted as p1j1far/T, which yields

p1j1far
� p1j1far

 
T
,

p1j1far
� 

j1far

j1�1
p1j1

⎛⎝ ⎞⎠

T− 1

∗ p1j1far
 ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

j1far � 1, 2≤ j1far ≤ n1.

(32)

*e farthest expected passage for picking goods is

j1far � E j1far(  � 

n1

j1far�1
j1far

p1j1far


n1
j�1p1j

. (33)

In summary, the farthest path from which goods can be
picked up is

R1far � j1far − 0.5( 
l1 + l2( 

cos(α)
. (34)

In this case, Rfar is required, and the probability of
picking T items from the farthest access aisle j2far in area 2 is
p2j2far/T, which gives

p2j2far
� p2j2far

 
T
, j2far � 1,

p2j2far
� 

j2far

j2�1
p2j2

⎛⎝ ⎞⎠

T− 1

∗ p2j2far
 , 2≤ j2far ≤ n1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(35)

*erefore, the farthest expected passage for picking
goods is

j2far � E j2far(  � 

n2

j2far�1
j2far ∗

p2j2far


n2
j�1p2j

. (36)

In summary, the farthest path from which goods can be
picked up is

R2far � j2far − 0.5( 
l1 + l2( 

cos(α)
. (37)

From type 1, type 5, type 9, and type 12, we can obtain
the return path strategy of the selected walking distance as
follows:

Dreturn(T) � 2∗max R1far, R2far( ( 

+ 
n

j�1
daj(T) + 

n

j�1
dbj(T) + 

n

j�1
dcj(T).

(38)

5. Simulation Verification

To verify the effect of picking a random model of V-type
warehouse layout in obtaining an optimal classification
storage strategy, the model simulation results must
be compared with those of the return-shape picking
path model. According to different goods-ordering

frequencies and storage space allocations, we construct
five cases; the specific data are shown in Table 1. With
reference to the actual data for a distribution centre, it is
assumed that a � 300, b � 300, and α � π/4 for the
warehouse and that the width of the picking passageways
and shelves is 2. In this case, there is one order with 8
order items to be picked. *e differences between the
return-shape picking path model, and the simulation
results are shown separately.

5.1. Simulation Validation of the Return-Shape Picking Path
Random Model. According to the known conditions, the
results of the randommodel and the simulation results of the
return-shape path picking model under the above five cases
are obtained as shown in Table 2 and Figure 8.

*e abscissa in Figure 8 shows the five classification
cases, and the ordinate shows the picking path length. *e
comparison leads to the following conclusions: the model
and simulation results are generally consistent, and the
maximum error is approximately 7%. *e model accords
with the simulation results, and the model is effective.
Additionally, the V-type distribution centre return-shape
picking walking distances for the types A, B, and C storage
areas varied among the different areas. *e area pro-
portion of the type A storage area was smallest, that of type
B was second smallest, and the proportion of the type C
storage area was the largest. *e shorter the picking
distance is, the higher the operational efficiency of the
storage centre is.

5.2. Comparison of Two Picking Strategies. *e warehousing
centre adopts two different picking strategies, return-
shape picking and S-shape picking, and obtains the
random model and simulation results for these two
strategies under the same conditions and constraints to
perform comparative analysis. *e results are shown in
Table 3 and Figure 9 (the authors obtained the data for the
S-shape picking route based on the same method. Only
the results are used in this article; no specific descriptions
are given).

*rough the model and the comparative simulation
result analysis in the centre of the V-type storage layout of
warehouse, the ABC classification, storage strategy, and
return-shape and S-shape picking route stochastic models,
the largest order-picking walking distance is approximately
15%, while the smallest is approximately 3%. In the simu-
lation results of the two types of picking routes, the largest
picking walking distance was 26% and the smallest was
approximately 2%. *rough comparative analysis, we found
that both the model results and simulation results clearly
show that the walking distance of the return-shape picking
strategy is shorter. It can be concluded that compared with
the S-shape picking strategy, the return-shape picking
strategy has better applicability in V-type storage centres
with an ABC classified-storage strategy. *is strategy can
improve the operational efficiency of the storage centre to
some extent.
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Table 1: Various types of goods-ordering frequencies and storage area ratios.

Order frequency/space allocation Class A Class B Class C
Situation 1 33.33/33.33 33.33/33.33 33.33/33.33
Situation 2 45/30 30/30 25/40
Situation 3 60/25 25/30 15/45
Situation 4 75/20 20/30 5/50
Situation 5 85/15 10/30 5/55

Table 2: Comparison of the random model and simulation results for return-shape picking paths.

Walking distance Situation 1 Situation 2 Situation 3 Situation 4 Situation 5
Model 1817.4 1590.7 1268.8 799.6122 608.5995
Simulation 1799.3 1682.2 1198.346 765.364 653.324
Absolute error 18.1 − 91.5 70.454 34.2482 − 44.7245
Relative error 0.009959 − 0.05752 0.055528 0.042831 − 0.07349
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Figure 8: Comparison of the return-shape picking random model results and the simulation results.

Table 3: Comparison of the random model results for two picking paths.

Walking distance Situation 1 Situation 2 Situation 3 Situation 4 Situation 5
Return-shape picking model 1817.4 1590.7 1268.8 799.6122 608.5995
S-shape picking model 1951.7 1731.8 1402.5 925.0627 805.178
Absolute error − 134.3 − 141.1 − 133.7 − 125.451 − 196.579
Relative error − 0.0739 − 0.0887 − 0.10538 − 0.15689 − 0.323
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Figure 9: Comparison of the random model results of two types of pickup paths.
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6. Conclusion

Based on the storage area ratio and the picking probability
for goods classified as A, B, and C, this paper divided a
storage centre using a V-type layout into three types of
storage areas. By segmenting the storage areas of both
layouts along a straight line, the layouts were divided into
sets of areas sized proportionally to meet the requirements
for ABC classification. By equalizing the boundary picking
paths in the region, the slope and intercept of the cross
section are obtained. *ese results provide a foundation for
future model construction and research. For storage centres
with V-type layouts, a random model of return-shape and
S-shape picking paths is established, and the validity of the
model is verified through simulations. When determining
the relevant parameters of the V-type layout and picking
orders, we found that the return-shape picking path strategy
is superior to the S-shape picking path strategy.

*is paper uses the theory and mathematical model of
storage picking to study the V-type storage layout, but the
paper still has some deficiencies. First, other new storage
layouts (such as leaf and chevron layouts) are not considered
in this paper. Second, this paper finds that for a V-type
layout, the return pattern picking path strategy is superior to
the s-shaped picking path; however, other path strategies
(such as the ergodic picking path strategy, midpoint return
picking path strategy, optimal route-picking strategy, etc.)
were not studied and verified in this paper. *ese remain to
be investigated in future studies.
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