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)is research proposes a modified metaheuristic optimization algorithm, named as improved stochastic fractal search (ISFS),
which is formed based on the integration of the quasiopposition-based learning (QOBL) and chaotic local search (CLS) schemes
into the original SFS algorithm for solving the optimal capacitor placement (OCP) in radial distribution networks (RDNs). )e
test problem involves the determination of the optimal number, location, and size of fixed and switched capacitors at different
loading conditions so that the network total yearly cost is minimized with simultaneous fulfillment of operating constraints. Also,
the hourly on/off scheduling plans of switched shunt capacitors (SCs) considering a modified cost objective function are obtained.
)e proposed ISFS algorithm has been tested on two IEEE 69-bus and 119-bus RDNs and a practical 152-bus RDN. For clarifying
the effectiveness and validation of the ISFS, the simulated results have been compared with those of other previously utilized
solution approaches in the literature as well as the original SFS. From result comparison, the proposed ISFS outperforms other
previous approaches regarding solution quality and statistical performance for the compared cases, especially in the complex and
large-scale networks. Notably, compared with the original SFS, the proposed ISFS shows a significantly better performance in all
the tested cases.

1. Introduction

Due to the rapidly increasing load demand, the electrical
distribution networks are facing excessive burdens, leading
to a reduced voltage at remote load points. More seriously,
the voltage drops can occur at the end of the radial distri-
bution feeder. Another noteworthy point is that, on average,
about 13% of the generated total power is wasted under
losses at the distribution level [1]. Accordingly, technical
solutions to preserve appropriate voltage levels along the
feeder as well as to mitigate distribution losses are extremely
necessary for improving power delivery efficiency.

Shunt capacitor banks (SCs) have been widely utilized to
compensate for reactive power in radial distribution net-
works (RDNs) with intent to acquire loss reduction, to
enhance the feeder voltage profile and overall power factor,
and to release available feeder capacity [2]. )e employment
of SCs helps in reducing the reactive power demand of
network which consequently decreases line current and
reactive power flow. To achieve the aforementioned benefits,
capacitor placement must be carefully calculated in RDNs.
Considering this problem, the parameters related to the
number, location, rating, and operation scheduling of SCs
need to be optimally determined so that the overall costs of
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SCs are minimized while fulfilling all the operational con-
straints. Notably, when examining an RDN with m buses
and n available capacitor ratings, the set of candidate so-
lutions will be (n+ 1)m, and thus evaluating (n+ 1)m solu-
tions is a challenging task, especially for a large-scale RDN.
Consequently, there is always a need to search for effective
optimization techniques to cope with the optimal capacitor
placement (OCP) problem.

Since, in nature, the OCP is a complex combinatorial
optimization problem, a huge number of optimization
methods have been proposed to solve it. Based on the lit-
erature, optimization methods utilized to cope with the
problem can be classified into four main groups including
analytical, numerical programming, heuristic, and meta-
heuristic-based optimization methods [3]. Recently, many
researchers have tried to employ metaheuristic-based
methods for finding the optimal location and rating of SCs
such as particle swarm optimization (PSO) algorithm [4, 5];
genetic algorithm (GA) [6, 7]; plant growth algorithm (PGA)
[1]; firefly algorithm (FFA) [8]; harmony search algorithm
(HAS) [9]; tabu search (TS) [10]; evolutionary algorithm
(EA) [11]; teaching learning-based optimization (TLBO)
[12]; bacterial foraging algorithm (BFA) [13]; gravitational
search algorithm (GSA) [14]; artificial bee colony algorithm
(ABC) [15]; cuckoo search optimization algorithm (CSA)
[16]; ant-colony optimization algorithm (ACO) [17]; flower
pollination algorithm (FPA) [18]; improved harmony al-
gorithm (IHA) [19]; Limaçon inspired spider monkey op-
timization algorithm (LSMO) [20]; spring search algorithm
(SSA) [21]; grasshopper optimization algorithm (GOA) [22];
improved variablesʼ inclusion and interchange algorithm
(IVII) [23]; crow search algorithm (CRS) [24]; modified
Gbest-guided artificial bee colony (MGABC) [25]; and fuzzy
heuristic-based methods [26–28]. )e common point in
metaheuristic-based techniques is the use of stochastic rules
to inquire about the search space, and thus they are capable
of local minima avoidance. As a result, these techniques can
solve the problem more effectively when compared to tra-
ditional search methods which require convexity, differen-
tiability, and continuity of the designed problem. However,
for complex large-scale instances, metaheuristic-based
techniques may reveal some major drawbacks such as not
being able to find an optimal solution and suffering from
long computational time if they are not modified with an
effective searching mechanism.

)e integration of SCs into RDNs will accomplish many
benefits if the number, location, and rating of SCs are op-
timally assigned. Previous research attempts in the literature
had been made to acquire these benefits by optimal SC
allocation for minimizing power losses [7, 9–13, 18, 20];
minimizing total cost [1, 8, 10, 11, 14, 16–18, 29]; maxi-
mizing annual net saving [26]; and enhancing network
voltage stability [14, 28]. )ese objectives can be formulated
as a single-objective function [7–10, 14, 16, 27, 29, 30] or as a
multiobjective framework [5, 6, 10–13, 17, 18, 26, 28, 31]. As
realized from the literature, most relevant studies just
considered with a predetermined number of SCs for in-
vestigations without proposing a specific strategy for de-
termining the optimal number of SCs. Although the

penetration of the number of the assumed capacitors may
lead to improved network overall performance as revealed in
previous reports, the final outcomes may not be optimum.
Taking this into account, we have proposed a newly effective
scheme for seeking the optimal number of SCs so that the
total annual cost is minimized.

Also, it is worth to mention that most of the previous
studies examined the OCP under peak loading condition
only without including daily continuous load variations,
causing undesirable voltage violation at some network buses,
particularly for light load levels. In addition, the occurrence
of reverse power flow in some situations may result in in-
creased power losses [16, 32]. Besides, only were a few
studies in the literature concerned about the switched SCs
for optimal placement and scheduling
[7, 16, 17, 19, 25, 26, 28, 30], while most previous studies
considered the OCP with fixed SCs only
[1, 6, 10–14, 18, 20, 31]. Selecting capacitors based on fixed
reactive power demand only is not suitable for practical and
economic viewpoint for which the continuous variation in
load demand leads to network voltage change, resulting in
reactive power demand change. )e proper installation of
fixed and switched SCs helps to encumber unwanted voltage
violations and achieve daily network loss minimization.

Another important aspect besides the allocation of SCs
is that on/off scheduling scheme of switched SCs according
to daily load cycles. However, just a handful of studies in
the literature discuss this scheduling scenario [22, 33].
Furthermore, the mentioned research studies solved daily
switched SCs on/off scheduling scenarios with the aim of
power loss minimization. But in our work, a modified
annual cost objective function is introduced for the optimal
dispatching schedule of switched SCs considering a
practical 24 h load profile. In order to deal with the
aforementioned crucial issues, it is imperative to search for
a novel powerful optimization algorithm. Stochastic fractal
search (SFS) developed by Salimi [34] behaves as a
promising robust algorithm, which is modeled based on the
growing phenomena of nature by applying the fractal
theory. In comparison with other metaheuristic-based al-
gorithms, its original version provided a better searching
performance [34]. Nevertheless, due to the stochastic na-
ture of the metaheuristic-based algorithm including SFS,
they suffer from premature convergence and local minima
problems. It is well known from the literature that the
quasiopposition-based learning (QOBL) can be considered
as an effective solution to be integrated into original
metaheuristic algorithms with the aim of avoiding the
situation of local minima.)e outstanding instances are the
combination of QOBL with DE [35], HS [36], TLBO [37],
GWO [38], SIMBO-Q [39], SOS [40], and antlion opti-
mizer (ALO) [41]. )anks to the QOBL scheme, the ca-
pability of the algorithm is enhanced to probe more
promising search regions, leading to a higher possibility to
obtain a better outcome. Another effective strategy in
addition to the QOBL, namely, chaotic local search (CLS),
can be applied to prevent being trapped at local minima.
)is incorporated strategy helps to locally probe the
neighborhood of “current best outcome,” which provides
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better exploitation of the search space. Different CLS
patterns had been incorporated in ALO [41], DE [42–44],
HS [45], PSO [46–48], ABC [49], and TLBO [50].

Motivated by the successful application of previous
studies to the mentioned strategies, the current research
integrated both QOBL and CLS strategies into the
framework of the original SFS with intent to enhance
computing performance. )is modified version is nomi-
nated as an improved SFS (ISFS) method.)e ISFS employs
QOBL for the purpose of group initialization and gener-
ation jumping, whereas CLS deals with the current best
group. Pertaining to the efficient and feasibility assessment
of the proposed ISFS, we adopted it to the poorly-
researched issues of OCP. Specifically, the proposed ISFS
algorithm was applied to determine the optimal number,
location, size and on/off scheduling plan of SCs with the
purpose of total annual cost minimization according to
daily load demand variations in the 69-, 119-, and 152-bus
RDNs. We also applied its original counterpart to solve the
problem for comparative purposes.

Our current research contains some highlighted con-
tributions as follows:

(1) An improved metaheuristic algorithm (ISFS) is
proposed for enhancing the performance and so-
lution quality of the OCP problem.

(2) A modified cost objective function is utilized to deal
with switched SCs on/off scheduling scenarios
considering a practical 24 h load profile.

(3) A newly effective framework for determining the
optimal quantity of SCs to achieve total annual cost
minimization by using the proposed ISFS is repre-
sented. More specifically, the outcome by this pro-
cedure is the inclusion of the optimum quantity,
location and rating of SCs as compared to only
optimum location, and rating of SCs from the
previously published research studies.

(4) A novel initialization process based on only a few
adjustments in the original solution algorithm is
applied for treating practical discrete capacitor sizes.

(5) )e proposed ISFS contributes to remarkably im-
prove the solution quality of the OCP problem for
the tested instances based on the comparison of the
obtained best results and the reported best-so-far
results in the literature.

)e rest of the paper is arranged as follows. Section 2
presents the mathematical models of the OCP problem. )e
formation of the proposed technique is described in detail in
Section 3. Next, Section 4 introduces the implementation of
the proposed ISFS to the OCP problem. Numerical results
and discussion are reported in Section 5. Finally, the con-
clusion is disclosed in Section 6.

2. Mathematical Problem Formulation

)e OCP is a constrained nonlinear optimization problem
and mathematically stated as follows:

Minimize: F(x, u) + Penalties,

subject to: g(x, u) � 0,

h(x, u) � 0,

(1)

in which F(x, u) denotes the objective function which needs
to be minimized (i.e., total annual cost); the term Penalties is
to penalize solutions violating constraints; g(x, u) and
h(x, u) are, respectively, the set of equality and inequality
constraints; x stands for the vector of state variables (i.e.,
voltage and line power flows); and u represents the vector of
control variables (i.e., reactive power of SCs).

2.1. Objective Function

(1) Conventional cost function:

COST � KP · Ploss · T + D · KI · nSC + KC · 

nSC

i�1
QSC,i

⎛⎝ ⎞⎠

+ Ko · nSC.

(2)

(2) Modified cost function:

MC � KP · 
24

i�1
Ploss,i · Ti + D · KI · nSC + KC · 

nSC

j�1
QSC,j

⎛⎝ ⎞⎠

+ Ko · nSC,

(3)

where KP, KI, KC, and Ko are, respectively, the costs for
average energy loss per kWh, capacitor installation, ca-
pacitor purchase per kVAr, and relevant operation. In this
work, these parameters are, respectively, chosen to be 0.06 $/
kWh, 1000 $/location, 3 $/kVAr, and 300 $/year/location.
Also, T and Ti are, respectively, the total investigation time
within a year (T� 8760 hours) and the investigation time in a
year of the ith time of a day (hours/year) in which the values
of Ti are given in Table 1 [51]; D is the factor of depreciation;
nSC is the considered number of capacitors; and QSC, i in-
dicates the discrete size of capacitor at the ith bus.

2.2. Power FlowFormulation. )e study aims to estimate the
optimal location and size of SCs in an RDN so that the total
annual cost is minimized. Figure 1 illustrates the single-line
diagram of a simple radial distribution feeder. Mathematical
equations for computing power flow are defined as follows
[52]:

Pi+1 � Pi − PDi+1 − Ri,i+1 ·
P
2
i + Q

2
i

Vi



2 , (4)

Qi+1 � Qi − QDi+1 − Xi,i+1 ·
P
2
i + Q

2
i

Vi



2 , (5)
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2

− 2 · Ri,i+1 · Pi + Xi,i+1 · Qi 

+ R
2
i,i+1

+ X
2
i,i+1

  ·
P
2
i + Q

2
i

Vi



2 ,

(6)

where Pi and Qi are, respectively, the active and reactive
power flowing out of bus i; PDi+1 andQDi+1 are the active and
reactive power demands at bus i+ 1, respectively; Ri,i+1 and
Xi,i+1 are the resistance and reactance of the distribution line
section connected between bus i and bus i+ 1; and |Vi| is
voltage magnitude of bus i. If the active and reactive power
balance equations in equations (4) and (5) are fulfilled, the
convergence of power flow will occur. Also, voltage mag-
nitudes at sending and receiving end buses must fulfill
equation (6). Newton–Raphson iterative algorithm em-
bedded in Matpower software tool [53] was applied for the
computation of power flow. )e active power loss (Pl) in the
line section connected between bus i and bus i+ 1 may be
stated as follows:

Pl(i, i + 1) � Ri,i+1 ·
P
2
i + Q

2
i

Vi



2 . (7)

)e total active power loss of the network (Ploss) may be
computed by summing up the losses of all the lines as
follows:

Ploss � 
n−1

i�0
Pl(i, i + 1). (8)

If a SC which has a size of QSC is connected to bus i, the
inductive load in that bus changes from QD,i to (QD,i–Qsc,i).

2.3. Constraints

2.3.1. Bus Voltage Constraint

Vi,min ≤Vi ≤Vi,max, i � 1, . . . , n, (9)

where Vi,min and Vi,max are the lower and upper limits of the
voltage magnitude at the ith bus and n is the total number of
buses of the network.

2.3.2. Line Current Constraint

Ik ≤ I
max
k , k � 1, . . . , nbr, (10)

where Ik represents the current in the kth line and Imax
k is the

maximum loading of the kth line.

2.3.3. Shunt Capacitor Rating Constraint

Q
min
SC,i ≤QSC,i ≤Q

max
SC,i , i � 2, . . . , N, (11)

where Qmin
SC,i and Qmax

SC,i are the minimum and maximum
reactive power limits, respectively, of SC at the ith bus.

2.3.4. Total Compensation Constraint



nSC

i�1
QSC,i ≤ 0.7∗

nl

j�1
QD,j, (12)

where nl is the number of load buses of the network.

2.3.5. System Power Factor Constraint

PFmin ≤PFoverall ≤ PFmax, (13)

where PFoverall is the network overall power factor and PFmin
and PFmax are the lower and upper limits of the network
power factor, respectively.

3. Formation of Proposed Technique

3.1. Overview of SFS. Stochastic fractal search (SFS) is a
relatively new metaheuristic optimization algorithm, which
is inspired by the growing phenomenon of nature [34]. It
uses the mathematical idea of well-known fractal theory for
imitating this phenomenon. Like other population-based
algorithms, SFS adopts a group of searching points, which is
randomly initialized into the search region, for seeking the
optimum solution. An X matrix defined as in equation (14)
represents the searching group. Each point is referred to as a
candidate solution to the designed optimization problem
and involves a specific fitness value. New points are created
by performing two phases, i.e., diffusion and update phases.
New points are assessed, in each phase, and updated
according to their fitness function values. In addition, the
best point in the group is also determined after the execution
per phase. )e searching phases of SFS can be generally
described as follows:

X �

x1,1 x1,2 . . . x1,D

x2,1 x2,1 . . . x2,D

⋮ ⋮ ⋱ ⋮

xNP,1 xNP,1 . . . xNP,D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

whereD is the dimension of the designed problem and NP is
the number of points in the group.

3.1.1. Diffusion Phase. To improve the probability of
achieving the global optimum and avoid being trapped in

Table 1: Average hourly daily load demand [51].

Time (hours) Load level (p.u.) Hours (year)
1, 7 0.64 730
2 0.6 365
3, 6 0.58 730
4, 5 0.56 730
8 0.76 365
9, 23 0.87 730
10 0.95 365
11, 13 0.99 730
12, 14, 15 1 1095
16 0.97 365
17, 18 0.96 730
19, 22 0.93 730
20, 21 0.92 730
24 0.72 365
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local optima, each point is forced to diffuse into its vicinity.
For creating new points, the diffusion process can be
mathematically modeled with the application of the
Gaussian distribution as the two following equations:

X
d
inew,1 � Gaussian μBP, σ(  + ε · Xbest − ε′ · Xi( , if rand()<W,

X
d
inew,2 � Gaussian μP, σ( , otherwise,

⎧⎪⎨

⎪⎩

(15)

where W is optional factor helping to choose the Gaussian
walks for solving the problem; Xd

inew is the newly amended
location of Xi at the dth diffusion; Xi and Xbest correspond to
the locations of the pointXi and the best point in the group; ε
and ε″ are the random numbers belonging to [0, 1];
μBP an d μP are parameters related to the Gaussian distri-
bution, in which μBP � BP an d μP � Pi; and the standard
deviation σ can be computed as

σ �
log(g)

g
· Xi − Xbest( 




, (16)

where g indicates the generation number.

3.1.2. Updating Phase. )e SFS uses two statistical proce-
dures for the updating phase. )e first statistical procedure
impacts on each point vector index while the influence of the
second one is on all points.

(1) )e first statistical procedure: first, all points are
ranked by using the following equation:

Pai �
rank Xi( 

NP
, (17)

where rank (Xi) manifests the rank of the searching
point Xi in the group. Considering each point Xi, the jth
component of Xi is only updated according to equation
(18), if the term Pai< ε (ε ∈ [0, 1]) is met. Otherwise, no
action is taken.

Xi
′(j) � Xj(j) − ε · Xh(j) − Xi(j)( , (18)

where Xi
′ implies the newly amended location of Xi

and Xj and Xh are points randomly picked in the
group.

(2) )e second statistical procedure: ranking all points
from the first procedure according to equation (17) is
firstly made. )e term Pai< ε is then checked. If the
term is met, the present location of Xi

′ will be
updated based on equation (19). Otherwise, there
will be no update on Xi

′.

Xi
″ � Xi
′ − ε · Xh

′ − Xbest( , if ε′ ≤ 0.5,

Xi
″ � Xi
′ + ε · Xh

′ − Xj
′ , if ε′ > 0.5,

⎧⎨

⎩ (19)

where Xi
″ points out the newly amended location of Xi

′ and
Xj
′ andXh

′ are points randomly picked among the points
from the first procedure. Obviously, Xi

′ will be replaced by
Xi
″, if its fitness value is better.

3.2. Quasiopposition-Based Learning (QOBL). )e theory of
opposition-based learning (OBL) was first proposed for
machine intelligence by Tizhoosh in 2005 [54]. )ree years
later, Rahnamayan et al. [55] successfully applied this theory
to the differential evolution algorithm, which became an
important prerequisite for further research studies on im-
proving the performance of soft computing techniques,
specifically in computation efficient and convergence speed.
)e strategy of OBL is to consider simultaneously existing
guess and its opposite guess so that a better approximation
for an existing candidate solution can be achieved.)e study
in [56] proved that a candidate solution with an OBL scheme
has a better chance of being closer to the global optimum
than that with random a scheme. Furthermore, the theory of
OBL has been further extended to QOBL [57], which ex-
poses that a quasiopposite point is more likely to be closer to
the global optimum than an opposite point. So, QOBL is
more capable of improving the convergence speed. Notably,
in very recent research studies, QOBL has been utilized to
enhance the performance of different metaheuristic algo-
rithms such as quasioppositional chaotic grey wolf optimizer
(QOCGWO) [58] and quasioppositional chaotic symbiotic
organism search (QOCSOS) [59].

0 1 n
P0, Q0

i–1 i + 1i
P1, Q1 Pi–1, Qi–1 Pi, Qi Pi+1, Qi+1 Pn, Qn

PD1, QD1 PDi–1, QDi–1 PDi, QDi PDi+1, QDi+1 PDn, QDn

Figure 1: Representation of a single-line radial feeder.

Complexity 5



Some mathematical definitions utilized in QOBL can be
described as follows.

3.2.1. Opposite Number and Opposite Point. Let r ∈ [a, b] be
a real number in a one-dimensional space, and then its
opposite number ro is defined by equation (20). Similarly, let
R� (r1, r2, . . ., rm) be a point in am-dimension space, where
r1, r2, . . . , rm ∈ R and ri ∈ [ai, bi]∀i ∈ 1, 2, . . . , m{ }. Its
opposite point Ro � (ro

1, ro
2, . . . , ro

m) may be defined by
equation (21):

r
o

� a + b − r, (20)

r
o
i � ai + bi − ri. (21)

3.2.2. Quasiopposite Number and Quasiopposite Point.
)e quasiopposite number rqo defined as the number be-
tween the center of the search space c and the opposite
number ro can be determined by equation (22). In the case of
m-dimension space, the quasiopposite point
Rqo � (r

qo
1 , r

qo
2 , . . . , r

qo
m ), where r

qo
1 , r

qo
2 , . . . , r

qo
m ∈ R and

r
qo

i ∈ [ai, bi]∀i ∈ 1, 2, . . . , m{ }, is expressed by equation
(23).

r
qo

� rand c, r
o

( , where c �
a + b

2
, (22)

r
qo

i � rand ci, r
o
i( , where ci �

ai + bi

2
. (23)

3.3. Implementation of QOBL. According to our literature
survey, QOBL has been commonly utilized to improve the
overall performance of population-based metaheuristic
search algorithms in two aspects, namely, population ini-
tialization and generation jumping. Regarding population
initialization, the initial group with NP points is randomly
generated within the search space. Afterward, quasiopposite
group Rqo is obtained using equation (23), and the NP fittest
points are selected as the initial group from the union of X
and Rqo. Following the evolutionary process of the algo-
rithm, a new candidate solution with a better fitness value
can be acquired thanks to QOBL-based generation jumping.
)e QOBL-based generation jumping is related to a pa-
rameter jr (named as jumping rate), which determines
whether to retain an existing candidate solution or jump
over to a quasiopposite solution.

)e initialization of quasiopposite group is illustrated by
the pseudocode in Algorithm 1.

3.4. Chaotic Local Search. In this study, the CLS strategy has
been further applied to the current best group of the pro-
posed ISFS with the intent to explore the region around the
current best solutions. )e chaotic variables obtained by
logistic map can be mapped back to the search space using
the following equation:

vi+1 � Xbest + cui+1 − 0.5(  Xj − Xk , (24)

where vi+1 is the newly generated point at the (i+ 1)th it-
eration; Xbest is the best point of the proposed ISFS; cui+1 is a
chaotic number between 0 and 1 at (i+ 1)th iteration; and Xj
and Xk are two points randomly picked up from the existing
best group. Notably, the initial value of the chaotic variable is
assigned by using a random function rand (0, 1) as suggested
by Xiang et al. [60]. In each iteration of CLS, the fitness value
is computed for the new point vi+1, and it is updated only if it
offers better fitness than the current best point. )e stopping
condition of CLS occurs when the K limit is reached.

)ere are many categories of chaotic maps reported in
the literature [42, 46–48]. In the current research, we have
adopted the well-known logistic map to generate a chaotic
number in CLS. )e mathematical formula of the logistic
map is described as follows:

cui+1 � μ · cui · 1 − cui( , (25)

where cui ∈ (0, 1)∀i ∈ 0, 1, 2, . . .{ } an d μ ∈ (0, 4]. )e pa-
rameter μ in equation (25) helps to control the behavior of
the logistic map as simulated in Figure 2. Observing Figure 2,
at the value μ � 4, the logistic function reveals overall chaotic
behavior and so we have chosen this value for the parameter
μ. Generation of chaotic numbers via the logistic map is
depicted in Figure 3.

3.5. Proposed ISFS. To establish the proposed ISFS algo-
rithm, two strategies, namely, QOBL and CLS, are integrated
into the structure of the original SFS algorithm. Pertaining to
the search process, ISFS adopts a randomly generated group
of points X. )en, the quasiopposite points Rqo of the initial
group are produced using the QOBL strategies. )e NP of
best points with corresponding best fitness values is elected
from the union of X and Rqo X∪Rqo{ } as an initial group.
Next, the two iterative procedures of diffusing and updating
of the SFS algorithm are performed. Afterward, the QOBL
strategy is applied again based on the jumping probability jr.
Finally, the CLS is activated to acquire the best point. )e
process repeats until the maximum number of generations is
reached (Algorithm 2).

4. Implementation of ISFS to OCP Problem

In this research, the proposed ISFS has been applied to the
OCP problem solving in two different scenarios. Specifically,
in scenario I, we have investigated the problem with a
traditional cost objective function like most previous studies
to make a performance comparison analysis. Meanwhile, for
the proposed scenario II, a modified cost objective function
considering a practical 24-hour load profile has been
adopted for investigations.

4.1. Initialization of Search Group. A group of NP points is
represented by a matrix X � [X1, X2, . . . , XNP]T, in which
each point Xd (d� 1, . . ., NP) represents a solution vector of
variables of locations and sizes of SCs. Considering the OCP
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problem, solution vectors for scenarios I and II are for-
mulated as in equations (26) and (27), respectively.

Xd � loSC,1, . . . , loSC,nSC
, QSC,1, . . . , QSC,nSC

 ; d � 1, . . . ,NP, (26)

Xd �
Q

1
SC,1, . . . , Q

1
SC,nSiC√√√√√√√√√√√√√√

kVArs in load level 1

. . . Q
i
SC,1, . . . , Q

i
SC,nSiC√√√√√√√√√√√√√√

kVArs in load level i

. . . Q
l
SC,1, . . . , Q

l
SC,nSiC√√√√√√√√√√√√√√

kVArs in load level l
 ; d � 1, . . . ,NP, (27)

where nSiC denotes the number of the switched SCs pre-
viously determined in scenario I and l implies the number of
load levels in a representative day as presented in Table 1. It
is noted that the dimension of the solution vector Xd for
examining scenario II will be defined as the product of nSiC
and l.

In the ISFS, each point of the group is randomly ini-
tialized. )e solution for the number of buses (loSC,i) is
initialized using equation (28).

loSC,i � round loSCmin ,i + rand(0, 1) · loSCmax ,i − loSCmin ,i  .

(28)

To treat the actual discrete capacitor size (QSC,i), we have
proposed a new initialization process as follows: considering

the actual discrete size of capacitor belongs to the range
[0, . . . , QSCmax] with an increase step of ΔQSC. )erefore,
the dimension of vector containing the discrete size values
will be Nmax � ((QSCmax/ΔQSC) + 1). Firstly, we sort the
discrete size values in ascending order and then we number
the arranged discrete sizes from IndCmin to IndCmax, which
corresponds to a range of values from 1 to Nmax. Clearly,
each component of discrete size vector can be determined
via an index IndSC. For ensuring randomization in the
initialization process of discrete size variable, equation (31)
below must be applied. After initialization with equation
(31), equation (32) can be used for estimating the actual
discrete capacitor size values (QSC,i). A group of relevant
mathematical equations can be listed as follows:

(1) for i� 1: NP
(2) for j� 1: D
(3) Ro

i,j � aj + bj − Xi,j; % Ro
i,j is opposite point of Xi,j

(4) cj � (aj + bj/2);
(5) if Ro

i,j < cj

(6) R
qo
i,j � cj + (Ro

i,j − cj) · rand(0, 1); % R
qo
i,j is quasiopposite point of Xi,j

(7) else
(8) R

qo
i,j � Ro

i,j + (cj − Ro
i,j) · rand(0, 1);

(9) end if
(10) end for
(11) end for

ALGORITHM 1: Pseudocode of QOBL.
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Figure 2: Bifurcation diagram of logistic map.
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(1) Define control parameters (D, NP, max_iter, MDN, jr, K);
(2) Initialize uniformly distributed random group X;

% ∗QOBL − based group initialization∗ %
(3) Execute Algorithm 1 to acquire quasiopposite group Rqo;
(4) Compute fitness value for the combined group Xc � X∪Rqo{ };
(5) Elect NP fittest points from Xc as initial group;
(6) Set the iteration counter iter� 1;
(7) while (iter<max_ter)

% ∗Diffusion process∗ %
(8) for i� 1: NP
(9) for j� 1: MDN
(10) New point Xd

inew is created via the Gaussian walk using equation (15);
(11) end for
(12) Compute fitness value for Xinew;
(13) Update Xd

inew if its fitness is better;
(14) end for
(15) Identify Xbest; % Xbest is the best point of group;

% ∗First updating process∗ %
(16) Rank all the points;
(17) Assign each point with a probability of Pai

;
(18) for i� 1: NP
(19) for j� 1: size (Xinew, 2)
(20) if rand (0, 1)>Pai

(21) Calculate new point Xinew′ according to equation (18);
(22) else
(23) Do nothing
(24) end if
(25) end for
(26) end for
(27) Compute fitness value for Xinew′;
(28) Update Xinew′ if its fitness value is better;
(29) Update Xbest;

% ∗Second updating procedure∗ %
(30) Rank all the points from the first process;
(31) Assign each point with a probability of Pai

;
(32) for i� 1: NP
(33) if rand (0, 1)>Pai

ALGORITHM 2: Continued.
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QSC � 0, . . . , QSCmax , (29)

IndSC � IndSCmin, . . . , IndSCmax 

� 1, . . . , Nmax ,
(30)

IndSC,i � round IndSCmin ,i + rand1

× IndSCmax ,i − IndSCmin ,i ],

i � 1, . . . , n,

(31)

QSC,i � QSC IndSC,i , (32)

where rand1 indicates a uniformly distributed random
number belonging to [0, 1]; IndSC,i is an index representing
the discrete size of the ith capacitor; and IndSCmin,i and
IndSCmax,i are, respectively, the lower and upper limits of the
index that deputizes the available discrete size value of the ith
capacitor.

4.2. Fitness Function Formulation. For scenario I, each point
in the initialized group is evaluated by using a fitness
function as defined in equation (33a); meanwhile, equation
(33b) is utilized to evaluate the points of the group when
considering scenario II.

FC � Cost + Penalties; in Scenario I, (33a)

FMC � MC + Penalties; in Scenario II, (33b)

in which
Penalties � λv + λpf + λi + λc,

λv � ζv · 
n

i�1
max 0, Vi


 − Vi,max  + 

n

i�1
max 0, Vi,min − Vi


 ⎡⎣ ⎤⎦,

λpf � ζpf · max 0, PFoverall − PFmax(  + max 0, PFmin − PFoverall(  ,

λi � ζ i · 

nbr

k�1
max 0, Ik − I

rated
k ⎡⎣ ⎤⎦,

λc � ζc · max 0, 

nSC

i�1
QC,i − 

nl

j�1
QD,j

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

where Cost and MC are, respectively, the traditional and
modified cost objective functions and Penalties is the penalty
function that is burdened to the objective function with
purpose to prevent a search point from the infeasible so-
lution region. Consequently, the optimal solution is estab-
lished when there are no constraints violated and the
objective function is minimized. )e terms ζv, ζpf, ζ i, and ζc

are, respectively, penalty factors for bus voltages, system

(34) Calculate new point Xinew″ using equation (19);
(35) Compute fitness value for Xinew″;
(36) Update Xinew″ if its fitness value is better;
(37) else
(38) Do nothing;
(39) end if
(40) end for
(41) Update Xbest;

% ∗QOBLbased generation jumping∗ %
(42) if rand (0, 1)< jr
(43) Execute QOBL using Algorithm 1 to acquire Rqo;
(44) Compute fitness value for R

qo
i,j ;

(45) Elect NP fittest points from the union X∪Rqo{ } as a current group;
(46) Identify Xbest;
(47) end if

% ∗Chaotic local search∗ %
(48) Randomly initialize chaotic variable cu0 � rand (0, 1);
(49) for i� 1: K
(50) Calculate cui+1 based on logistic map using equation (25);
(51) Select two random points from current group;
(52) Compute new point vi+1 using equation (24);
(53) Compute fitness value for vi+1;
(54) Update vi+1 it its fitness is better;
(55) end for
(56) iter� iter + 1;
(57) end while

ALGORITHM 2: Pseudocode of the proposed ISFS algorithm.
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overall power factor, branch currents, and SC penetration. In
this study, we set the penalty factors at 106 based on the
repeated trials.

In order to calculate the fitness value of each point, the
solutions of the power flow problem are needed, and
therefore Matpower toolbox 6.0 [53] is applied for the power
flow problem.

4.3. Overall Procedure. )e flowchart of the proposed ISFS
algorithm for dealing with the OCP problem is provided in
Figure 4.

4.4. Scheme for Daily Operation Scheduling of Switched
Capacitor. )e continuous variation of load demand causes
a change in bus voltage, leading to a change in reactive power
demand, and thus the solution of fixed reactive compen-
sation cannot meet this situation. Compensating variable
reactive power demand according to the daily load variation
can be implemented by employing switched capacitors. A
suitable choice of fixed and switched SCs enables us to
prevent unwanted voltage values and to mitigate the daily
network losses. In contrast, an inappropriate dispatching
plan of switched capacitors after the variation of load de-
mand may result in power loss increase and voltage limit
violation. For economic analysis, the network might suffer
from significant energy loss costs due to increased power
losses. )us, with the available load forecast data for the next
24-hour cycle, the on/off operations at each hour of the
following day can be estimated in anticipation of keeping
power losses at the lowest possible level so that the minimum
energy loss costs are achieved. In this scenario, we proposed
a modified cost function for investigating the on/off
scheduling plans of switched SCs with a practical 24-hour
load profile. Our proposed cost function includes the annual
energy loss cost, in which load level duration data as well as
the installation, operation, and maintenance costs of SCs are
provided in Table 1. )e variation of load demand within a
24-hour cycle is illustrated in Figure 5. )e scheme for the
daily on/off scheduling of the switched SCs is described in
Algorithm 3.

5. Numerical Results and Discussion

)e performance of the proposed ISFS algorithm was tested
on three IEEE benchmark RDNs including one medium-
scale 69-bus network and two large-scale 119- and 152-bus
networks with two examined scenarios. To evaluate the
effectiveness of the proposed ISFS algorithm, we also applied
the original SFS algorithm to solve the OCP problem for
result comparison. For each test scenario, both SFS and ISFS
were run for 50 independent trials to obtain the best out-
come.)e proposed method was implemented onMATLAB
R2016a platform installed on an Intel core i5-3337U,
1.80GHz processor, and 8GB RAM.

To assess the computing performance of the different
algorithms, we propose a new index named as enhancement
index—EI (%)—for estimating the improvement level of the

best solution reported from a new algorithm as compared
with the best solution found so far (best-so-far).

EI �
BSF − BC

BSF
· 100, (35)

where BSF ($/year) is the best-so-far cost reported and BC
($/year) is the best cost obtained by other algorithms.

(i) Read system data (bus data, line data) 
Choose parameters of ISFS: D, NP, 
MDN, max_iter, jr, K

Initialize randomly a group of points X (i)
(ii)

(ii)

(iii)
(iv)

(i)
(ii)

(iii)

(iv)

Execute QOBL strategy to obtain Rqo 
Calculate fitness values using equation (36) for Xc = {X U Rqo}
Elect NP fittest points from Xc as initial group 

Execute the diffusion procedure and update Xbest

Execute the first updating procedure and update Xbest 

Execute the second updating procedure and update Xbest 

rand () < jr

Execute the QOBL strategy to obtain Rqo 
Compute fitness values for the combined group
Elect NP fittest points from the combined group as 
current group
Identify Xbest

Execute the CLS strategy to acquire Xbestt 

iter = max_iter?

Print the optimal results

iter = iter + 1

Set iter = 1

Identify the best point Xbest

No

No

Yes

Yes

Figure 4: Flowchart of the proposed ISFS.
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Figure 5: Variation of daily load demand.
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5.1. Assumptions, Control Parameters, and Constraints.
)is study considers some assumptions for tackling the OCP
as follows.

)e test RDN is examined under balance operating
conditions. Constant active and reactive load model is used
for investigations. We neglect the effect of harmonics on the
test network.

Regarding the parameter setting, the SFS has three main
parameters, namely, the number of points NP; the maxi-
mum number of generations max_iter; and the maximum
number of diffusions MDN as well as one additional pa-
rameterW that needs to be predetermined.)ey can be fixed
depending on the complexity of the designed problems.
More specifically, the information for the setting of pa-
rameters for the SFS and the inequality constraints setting
for the OCP problem are given in Table 2. Besides the
mentioned algorithm parameters, the proposed ISFS algo-
rithm has two more parameters related to the integrated
enhancement tools, including jumping rate jr and local
search limit K. )ey also need to be estimated in advance for
the ISFS.

Notably, jr is known as an important parameter, con-
trolling the convergence speed of ISFS. With a higher value
of jr chosen, it provokes the algorithm to jump to a new
outcome at a faster speed, thus causing premature con-
vergence situation. Realizing this, a trial on the 119-bus
network with the location and size examination of the fixed
number of SCs of 9 was conducted with the intent to obtain a
proper jr value. For this experiment, we first fixed K at 1 and
then varied jr from 0.1 to 0.9 with a step of 0.1. )e ISFS was
run for 50 independent trials for each jr value. Figure 6
reveals mean fitness and standard deviation values for all 50

trials. Clearly, the proposed ISFS settled at the lowest mean
fitness value at jr � 0.3 with the smallest standard deviation.
)us, the jumping rate jr was set at 0.3 for all the test
scenarios of the paper.

For the next experiment, we also utilized the tested case
in the 119-bus network for selecting the value of the pa-
rameter K. Similarly, the parameter jr remained fixed at 0.3
and the value of K was varied from 2 to 30 for step 2. We
experimented with the ISFS by solving the test case for each
value of K for 50 separate trials. Mean fitness and standard
deviation results for all 50 trials are shown in Figure 7. From
the figure, it is observed that the ISFS is capable of finding
the minimum mean fitness value at five different K values,
i.e., K� 10, 16, 20, 26, 30. However, K� 20 results in
obtaining the smallest standard deviation. )erefore, we set
K at 20 for all investigations in this study.

5.2. IEEE 69-Bus Network. )e first test network is a me-
dium-scale standard 69-bus RDN including 69 buses and 68
branches with data given in [61]. )is network is operated at
a rated voltage level of 12.66 kV with 100MVA base. It
provides a total load demand of 3.8MW and 2.69MVAr.
Before SC placement, the network suffers from a total loss of
225 kW and 102.16 kVAr at 100% loading.

5.2.1. Scenario 1: Traditional Cost Objective Function.
Once the OCP problem is examined, a controversial issue is
that how many SCs connected will achieve an optimal level
of penetration pertaining to reactive compensation, meaning
that this penetration will lead to a minimum total annual
cost while satisfying all relevant constraints. )is has not

(1) Determine the optimum sites and sizes of the fixed and switched SCs by applying the proposed method for each of three loading
levels: 50, 75, and 100% of the base peak loads. )e obtained sites of the switched SCs are used for the following analysis;

(2) Read the load profiles from the forecasted data of the 24-hour load demand. Table 1 provides the detailed data of the forecasted
load demand;

(3) Perform a 24-hour load flow analysis by using the proposed load flow technique to compute the total annual cost for the
uncompensated case;

(4) Randomly initialize the switched SCs discrete sizes at the respective sites obtained from Step 1 by using equations (27) and
(29)–(32);

(5) Compute the fitness value for each candidate solution using equation (33b) and determine the fittest solution based on their
fitness values;

(6) while (iter<max_iter)
(7) Execute the diffusion process for new candidate solutions creation. Compute fitness value for new solutions by using

equation (33b) and update the best solution;
(8) Execute the first update procedure. Compute fitness values by using equation (33b) and update the best solution;
(9) Execute the second update procedure. Compute fitness values by using equation (33b) and update the best solution;
(10) if rand ()< jr
(11) Create the new solutions based on the QOBL strategy in Algorithm 1;
(12) Compute fitness values by using equation (33b) and update the best solution;
(13) end if
(14) Execute the CLS strategy to acquire the best solution;
(15) iter� iter + 1;
(16) end while
(17) )e optimum on/off operations of the switched SCs according to variable load demand with intent to total annual cost

minimization are achieved by the proposed ISFS.

ALGORITHM 3: Daily on/off scheduling for the switched SCs.
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been well addressed in previous studies when the considered
number of SCs is often assumed for test networks.

Our study has conducted an extensive experiment to
cope with this issue. By implementing the experiment for
this test instance, the change in the percentage of annual cost
saving induced by the different SC numbers as well as the
corresponding penetration level of these SC numbers is
shown in Figure 8 with the aid of the ISFS optimization
algorithm. From Figure 8, it can be observed that the
connection of two SCs with a total size of 1.4MVAr results
in the highest percentage of saving corresponding to the
minimum total cost as compared to the different numbers of
SC connection. )us, only 2 SC placements have been
considered for the 69-bus network.

)e optimal placements and reactive powers of SCs
along with the network performance indexes at different
load levels acquired by the ISFS are provided and compared
with IHA [19] as shown in Table 3. Fixed and switched
capacitors’ ratings and placements according to load

demand variation are given in Table 3 as well. It can be
observed from the table that in the 100% load level, the ISFS
suggests the optimal set of buses for SC installation is {20, 61}
and the corresponding optimal sizes of SCs on these buses
are {250, 1150} kVAr. Notably, the proposed ISFS algorithm
nominates the IHA [19] algorithm in terms of computa-
tional performance at all test load levels due to the gain of
lower annual costs.

)e obtained numerical results pertaining to the optimal
number of SCs by employing the proposed ISFS algorithm
are provided in Table 4, and they are compared with other
well-established optimization algorithms such as fuzzy GA
[26], DE [11], FA [8], PSO [4], heuristic method (HM) [62],
IHA [19], DSA [29], TLBO [12], and SFS for proving its
effectiveness and robustness. It can be seen from Table 4 that
in the 100% loading case, before optimal compensation, the
network has a total active power loss of 225.0006 kW, a
minimum bus voltage of 0.9092 p.u. at bus number 65, and
network overall power factor of 0.821 lagging. For cost

Table 2: Algorithm parameters and inequality constraint settings.

Item 69-bus test system 119-bus test system 152-bus test system
NP 10 15 30
Max_iter — — —
Scenario 1 50 500 100
Scenario 2 100 2000 500
MDN 2 5 2
W 0.75 0.5 0.5
Bus voltage limit 0.9≤ |Vi|≤ 1.05 0.9≤ |Vi|≤ 1.05 0.9≤ |Vi|≤ 1.05
Power factor limit 0.9≤PFoverall ≤ 1 0.9≤ PFoverall ≤ 1 0.9≤ PFoverall ≤ 1
Number of SCs to be connected 2∗ 13∗ 2∗
Actual capacitor size 0–1500 kVAr with an increment step of 50 kVAr
)e sign “∗” implies the optimal number of SCs to be chosen.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 jr

4.9105

4.911

4.9115

4.912

4.9125

4.913

Fi
tn

es
s f

un
ct

io
n 

m
ea

n 
va

lu
e (

$/
ye

ar
)

300

400

500

600

700

800

900

1000

1100

St
an

da
rd

 d
ev

ia
tio

n
Annual cost ($/year)
Standard deviation

X: 0.3
Y: 4.911e + 05

×105

Figure 6: Influence of the jumping rate parameter jr.
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analysis, total active power loss causes an annual energy loss
cost of $118,260.3. After SC placement by the proposed ISFS
method, the power loss is reduced to 147.7621 kW, the
minimum voltage is enhanced to 0.9289 p.u., and the net-
work overall power factor is corrected to 0.9453 lagging.
Besides, the total annual cost including SC installation,

operation, and maintenance costs declines to $85,903.75. So,
the net saving for this case is $32,356.5, i.e., 27.3% yearly
economic benefit can be accomplished by reactive power
compensation. Although yearly cost objective values yielded
by the proposed ISFS and original SFSmethods are the same,
the ISFS requires fewer number of iterations than the SFS to
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Figure 7: Impact for the local search limit parameter K with jr � 0.3.
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achieve this solution, as illustrated in Figure 9. Clearly, ISFS
shows a faster convergence speed as compared to SFS in this
case. Furthermore, most performance statistics obtained
from ISFS are better than those from SFS, except for the
average execution time. )e average execution time of ISFS
is longer than that of SFS due to the time for the extensive
search process of integrated enhancement strategies.
However, this reported time is the time for the entire search
procedure, i.e., execution time for all the predefined loops
for a comparative analysis. Indeed, ISFS finds the optimal
solution with much fewer iterations than SFS; thus, its time
to reach the best solution is faster than that of SFS.

Regarding performance comparison, the ISFS yields the
best yearly cost of $85903.75, which is the lowest cost among
the previously reported costs from fuzzy GA [26]
($92,179.5), DE [11] ($89,913.4), FA [8] ($86,210), PSO [4]
($90,108.5), HM [62] ($88,901.1), IHA [19] ($86,122.1), DSA
[29] ($88,123.2), and TLBO [12] ($87,781.56). For further
analysis, we utilized an EI to evaluate the improvement level
of the reported best solutions from the different methods in
comparison with the best-so-far solution. In this case, the
best-so-far solution is provided by the authors in [19] using
the IHA. As seen from Table 4, only our two ISFS and SFS
algorithms receive the EIs with positive values, whereas the

remaining algorithms get the negative EIs. )is means that
the final solutions obtained by ISFS and SFS are better than
the best-so-far solution from the IHA. A schematic view of
the comparison of the minimum annual costs obtained by
different algorithms is demonstrated in Figure 10. Notably,
the proposed ISFS algorithm is more robust than the IHA
due to the gain of smaller standard deviation and faster
average CPU time. Moreover, after SC allocation, the voltage
profiles at buses are significantly improved as shown in
Figure 11. Finally, Figure 12 portrays the current change in
lines before and after compensation. From Figure 12, it is
realized that the current magnitude on most lines is miti-
gated because of reactive power injection.

5.2.2. Scenario 2: Modified Cost Objective Function. To deal
with scenario 2, the obtained locations of switched SCs in
scenario 1 are retained and the corresponding sizes of these
switched SCs according to the load variations are determined
by implementing the proposed ISFS algorithm. Considering
scenario 2 in the 69-bus RDN, there are two switched ca-
pacitor locations at buses 20 and 61 yielded by the previous
scenario. )e simulation results of the on/off scheduling of
these switched SCs with the 24-hour load variation taking into
account achieved by the ISFS and SFS methods are presented

Table 3: Simulation results and comparison for 69-bus network at different loading conditions.

Items Uncompensated
Compensated

IHA [19] Proposed ISFS
50% load level

Site and installed kVAr — (61, 550) (61, 550)
Total kVAr — 550 550
Losses in kW 51.6064 36.0528 36.0528
Loss reduction (%) — 30.14 30.14
Minimum voltage (p.u.) 0.9566 0.9649 0.9649
PFoverall 0.8184 0.9218 0.9218
Annual cost ($/year) 27,124.29 22,319.36 22,319.36
Net saving ($/year) — 4,804.93 4,804.93
% saving — 17.71 17.71

75% load level
Site and installed kVAr — (61, 900) (20, 150); (61, 850)
Total kVAr — 900 1000
Losses in kW 121.0301 83.0542 80.80
Loss reduction (%) — 31.37 33.23
Minimum voltage (p.u.) 0.9335 0.9475 0.9473
PFoverall 0.8198 0.93 0.9405
Annual cost ($/year) 63,613.40 48,773.33 48,713.58
Net saving ($/year) — 14,840.07 14,899.81
% saving — 23.32 23.42

100% load level
Site and installed kVAr — (21, 350); (61, 1350) (20, 250); (61, 1150)
Total kVAr — 1700 1400
Losses in kW 225.0006 146.8779 147.7621
Loss reduction (%) — 34.72 34.33
Minimum voltage (p.u.) 0.9092 0.9322 0.9289
PFoverall 0.821 0.9656 0.9453
Annual cost ($/year) 118,260.3 86,939.05 85,903.75
Net saving ($/year) — 31,321.27 32,356.5
% saving — 26.48 27.36

Injected kVAr by proposed ISFS Fixed: (61, 550)
Switched: (20, 250); (61, 600)
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Figure 9: Convergence characteristics of annual cost for 69-bus network with 100% loading in scenario 1.
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in Table 5. It is seen that the ISFS’s optimum outcome is to
install two fixed SCs at buses 20 and 61 with respective sizes of
50 and 500 kVAr for compensating the reactive demand of
the base loads. Also, the switched SCs at the same buses
having respective sizes of 250 and 550 kVAr with a step of 50
kVAr are connected to compensate for the variable reactive
power demand of the load.

With the optimal compensation solution by the ISFS, the
total annual cost of the network has been reduced from
$164,792.27 to $119,263.96, leading to a saving percentage of
27.62%, which is higher than a value of 27.16% from the SFS.
In addition, Figure 13 portrays the convergence trajectories
of the ISFS and SFS methods for test scenario 2. It is quite
obvious from Figure 13 that the ISFS performs better than
the SFS regarding search quality and convergence speed.
Moreover, the comparison of network performances related
to minimum bus voltage and line power loss before and after
compensation with daily load variations is demonstrated in
Figures 14 and 15, respectively. From these figures, it is clear
that after optimal compensation, the overall performances of
the network are significantly improved, especially in the case
compensated by ISFS.

5.3. IEEE 119-Bus Network. )e second test network is the
standard IEEE large-scale RDN having 119 buses and 118
branches. )is network supplies for active and reactive power
demands of 22.709MWand 17.041MVAr, respectively, at the
base values of 100 MVA and 11 kV. It is observed that before
compensation, the network active and reactive power losses
are, respectively, 1298.091 kW and 978.736 kVAr. )e load
and line data of the test network are provided in [63].

5.3.1. Scenario 1: Traditional Cost Objective Function.
For determination of the optimum number of SCs in the
100% load level, the simulation results relating to the impact
of different SC numbers on the percentage in cost saving are

represented in Figure 16. As observed from the figure, there
are two trends for variations in the percentage of cost saving
with the number of SCs increasing from 1 to 17. Specifically,
an increase in the saving percentage is observed with the SC
number from 1 to 13; however, when the number of SCs is
changed from 14 to 17, a downward trend in the saving
percentage occurs. Obviously, the highest saving percentage
is achieved at the number of 13 SCs. In other words, 13 SC
placements result in the lowest total yearly cost as compared
to the remaining number of SCs. Hence, the number of 13
SCs are chosen for the 119-bus network.

Table 6 provides the obtained results of the optimum
number, locations, and sizes of SCs for different loading
conditions by the proposed ISFS and the result comparisons
with the other metaheuristic optimization algorithms. )e
relevant information on fixed and switched SCs is also given
in Table 6. Based on the result comparisons, it can be seen
that in all tested load levels, the ISFS acquires significantly
lower annual cost objective values than other metaheuristic
algorithms, showing the superior searching performance of
ISFS. Moreover, the optimum parameters of SCs for the
100% loading level obtained by the ISFS and other algo-
rithms can be found in Table 7. Specifically, the ISFS suggests
candidate buses for 13 SC placements including {70, 32, 54,
74, 111, 50, 59, 107, 24, 80, 109, 96, 42} with respective
ratings {700, 850, 450, 950, 1350, 1500, 450, 800, 400, 1200,
300, 850, 550} kVAr.

For further analysis on the performance of ISFS, the
simulated results for the connection cases of the fixed and
optimal SCs numbers to the 119-bus network, in the full load
level, are tabulated and compared with the previously re-
ported optimization algorithms such as ABC [15], APSO [5],
CSA [16], HSA [9], IHA [19], FPA [18], MGABC [25], and
the original SFS, as shown in Table 8. As realized from the
table that in the test case of the fixed number of 9 SCs, the
ISFS results in a significant improvement of network per-
formance after SCs connection. Compared with other al-
gorithms, the final solution by ISFS is appreciably better. It is
worth mentioning that with the connection of the optimal
SCs number, the performance of the network is even better
improved as compared to the fixed number of SCs. Par-
ticularly, after compensation by the optimal number of 13
SCs with the help of ISFS, the network losses are reduced
from 1298.09 kW to 812.5046 kW, overall power factor is
enhanced from 0.7998 to 0.9550, minimum bus voltage is
increased from 0.869 p.u. to 0.9076 p.u. and the total annual
cost is mitigated from $682,276.104 to $486,862.4 corre-
sponding to the saving percentage of 28.64%, which is the
highest among the compared results.

)e comparison of the minimum total annual costs
achieved by other solution methods is depicted in Figure 17.
In addition, the final solutions for the test cases obtained by
both the ISFS and SFS involve positive EIs, proving that the
solution quality yielded by the ISFS and SFS is better than
that of IHA [19], which is related to the best solution re-
ported so far for the network. Meanwhile, the remaining
algorithms do not contribute to improving the solution to
the test network because the negative EIs are obtained.
Notably, the EIs of solutions by ISFS are higher than those by
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SFS in both test cases, which means that the ISFS acquires
the solutions with better quality. Moreover, the statistical
results after 50 runs of the ISFS and SFS for the test cases
comprising of the average cost, best cost, worst cost, vari-
ance, standard deviation, and average CPU time are pre-
sented and compared with those of ABC [15], CSA [16], and
IHA [19] as shown in Table 8. In comparison with IHA [19]
in the 9 SCs case, although the average execution time of
both ISFS and SFS is longer, the best cost and standard
deviation obtained by them are remarkably lower. Also, to
achieve a desirable penetration of SCs, the ABC [15] and
CSA [16] require longer average execution time than the
ISFS and SFS. Furthermore, the convergence characteristics

of the ISFS and SFS algorithms for the determination of
locations and ratings of the optimal SCs number for the 119-
bus network are also depicted in Figure 18. From the figure,
it is clear that the ISFS has effective search mechanisms that
help to better explore promising search regions and to
approach the optimal solution in the last iterations;
meanwhile, the SFS’s search mechanisms seem to be inef-
fective in this case because the obtained final solution can be
further improved. Another noteworthy impact on network
performance is that with the presence of the optimal SC
number, the bus voltage profile and the current magnitude
of lines in the network are significantly improved as shown
in Figures 19 and 20, respectively.

5.3.2. Scenario 2: Modified Cost Objective Function. In this
scenario, the optimal placements of the switched SCs found in

Table 5: On/off scheduling of switched SCs by ISFS and SFS for 69-bus network in scenario 2.

Hour Load
level

Compensated by SFS Compensated by ISFS
Hours Load

level

Compensated by SFS Compensated by ISFS
kVAr, bus

#20
kVAr, bus

#61
kVAr, bus

#20
kVAr, bus

#61
kVAr, bus

#20
kVAr, bus

#61
kVAr, bus

#20
kVAr, bus

#61
1 0.64 250 550 400 400 13 0.99 400 800 250 1000
2 0.6 100 550 500 300 14 1 150 950 50 1000
3 0.58 150 600 50 550 15 1 150 950 50 1000
4 0.56 200 500 100 600 16 0.97 200 1050 500 600
5 0.56 200 500 100 600 17 0.96 450 700 400 850
6 0.58 150 600 50 550 18 0.96 450 700 400 850
7 0.64 250 550 400 400 19 0.93 200 1050 150 1100
8 0.76 350 600 300 600 20 0.92 300 850 200 1000
9 0.87 450 600 200 950 21 0.92 300 850 200 1000
10 0.95 300 700 500 550 22 0.93 200 1050 150 1100
11 0.99 400 800 250 1000 23 0.87 450 600 200 950
12 1 150 950 50 1000 24 0.72 250 500 350 550

Annual cost ($/year)
Uncompensated 164,792.27

Compensated by SFS 120,019.63 % saving 27.16
Compensated by ISFS 119,263.96 % saving 27.62
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scenario 1, namely, in buses {70, 32, 54, 74, 111, 50, 59, 107, 24,
80, 109, 96, 42}, are used for investigating the modified cost
objective function. )e on/off scheduling schemes of the
switched SCs for the 119-bus network with practical 24-hour
load pattern given in Tables 9 and 10 are optimized by using

the SFS and ISFS algorithms, respectively. To meet the daily
load variation, the ISFS offers a solution considering the
installation of fixed SCs at buses {70, 54, 74, 111, 50, 59, 107,
24, 80, 109, 96, 42} with the corresponding sizes of {350, 150,
400, 300, 250, 100, 200, 100, 300, 200, 50, 150} kVAr for base
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Figure 15: Minimum bus voltages of 69-bus network within 24-hour interval before and after compensation in scenario 2.
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Table 6: Simulation results and comparison for 119-bus network at different loading conditions in scenario 1.

Items Uncompensated
Compensated

FPA [18] IHA [19] APSO [5] MGABC [25] Proposed ISFS
50% load level

Site and
installed
kVAr

—
(40, 1100); (70,
750); (89, 500);
(118, 1000)

(39, 1200); (70,
900); (91, 600);
(118, 1000)

(39, 1100); (70,
350); (74, 500);
(86, 450); (118,

1000)

(33, 300); (35, 750); (45,
300); (46, 150); (49, 900);
(54, 450); (71, 750); (76,
150); (86, 750); (94, 300);
(101, 750); (110, 600);
(111, 450); (114, 150);

(115, 150)

(74, 650); (50, 1000);
(80, 350); (111, 900);

(96, 300)

Total kVAr — 3350 3700 3400 7200 3200
Losses in kW 297.1485 209.0868 206.8402 271.9746 197.03 209.5486
Loss
reduction
(%)

— 29.63 30.39 8.47 33.62 29.48

Minimum
voltage (p.u.) 0.9385 — 0.9552 0.9549 0.9574 0.9530

PFoverall 0.7997 0.915 0.9188 0.9091 0.99 0.9036
Annual cost
($/year) 156,181.2 129,126.02 129,695.2 163,049.89 147,358.96 129,238.76

Net saving
($/year) — 26,856.29 26,287.1 −6,868.62 8,822.23 26,942.50

% saving — 17.32 16.95 −4.39 5.64 17.25
75% load level

Site and
installed
kVAr

—

(40, 1500); (70,
750); (74, 600);
(89, 1500); (118,

1000)

(39, 1500); (70,
900); (74, 600);
(91, 1500);
(118, 1200)

(32, 900); (39,
1500); (70, 600);
(74, 750); (86,
700); (108, 750);

(118, 1100)

(33, 600); (35, 1200); (45,
300); (46, 150); (49,
1350); (54, 750); (71,
1050); (76, 300); (86,
1050); (94, 450); (101,
1200); (110, 900); (111,
600); (114, 150); (115,

150)

(24, 300); (50, 1150);
(74, 600); (59, 300);
(111, 950); (109, 700);
(42, 400); (54, 400);
(96, 550); (80, 750);

(70, 600)

Total kVAr — 5350 5700 6300 10200 6700
Losses in kW 697.32 488.83 473.1 551.9685 455.35 453.52
Loss
reduction
(%)

— 29.89 32.15 20.84 34.62 34.96

Minimum
voltage (p.u.) 0.9048 — 0.92 0.932 0.9347 0.9308

PFoverall 0.7997 0.914 0.9207 0.9308 0.988 0.9386
Annual cost
($/year) 366,515.4 286,780.9 280,261.4 325,954.68 299,631.96 278,692.88

Net saving
($/year) — 78,994.7 85,514.2 40,560.72 66,883.44 87,822.51

% saving — 21.75 23.53 11.06 18.24 23.96
100% load level

Site and
installed
kVAr

— 9 locations 9 locations 8 locations 15 locations 13 locations

Total kVAr 9250 9800 9000 13500 10350
Losses in kW 1298.09 853.1543 843.1459 858.89 833.46 812.5046
Loss
reduction
(%)

— 34.27 35.04 33.83 35.72 37.40

Minimum
voltage (p.u.) 0.869 — 0.902 0.9063 0.9086 0.9076

PFoverall 0.7998 0.9419 0.9488 0.92 0.988 0.9550
Annual cost
($/year) 682,276.104 500,245.6 497,737.5 501,392.6 514,866.5 486,862.4

Net saving
($/year) — 180,064.7 182,572.8 180,883.5 167,409.6 195,413.6
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load as well as the optimal locations and sizes of switched SCs
of {70, 32, 54, 74, 111, 50, 59, 107, 24, 80, 109, 96, 42} and{600,
900, 800, 500, 900, 1200, 550, 750, 550, 700, 850, 650, 400}
kVAr for variable load demand.

)e compensation solution of the ISFS leads to an annual
cost reduction from $950,263.63 to $670,661.70, which is
slightly lower than a reduced annual cost of $671,523.90
from the solution of the SFS. In addition, the convergence
trajectories of the ISFS and SFS when dealing with this
scenario are illustrated in Figure 21. Once again, the ISFS
shows a faster convergence rate than the SFS in this scenario.
Moreover, the improvements in the minimum bus voltage
and the line power loss at a 24-hour interval can be observed
in Figures 22 and 23, respectively.

5.4. Practical 152-Bus Network. To further evaluate the
performance of ISFS, another practical large-scale RDNwith
152 buses and 151 branches is examined. )is network
supplies a total power demand of 9.5893 + j ∗ 5.9429MVA
at the base voltage of 20 kV. In the initial condition, the
network involves a total power loss of
576.1616 + j ∗ 428.9281 kVA. )e load and line data of the
network are provided in [64].

5.4.1. Scenario 1: Traditional Objective Function. For this
network, in the full load level, the effect of the different
numbers of SCs on the cost saving percentage obtained by

implementing the proposed ISFS algorithm is depicted in
Figure 24. Observing this figure, it is clear that the penetration
of three SCs leads to the highest percentage in cost saving
among the penetration of the remaining number of SCs. In
order words, the minimum total annual cost is achieved with
the integration of three SC placements.)erefore, the number
of three SCs is considered as the optimal number of SCs for
the 152-bus network in the 100% loading.

By applying the proposed ISFS, the optimum locations,
and ratings of SCs for different loadings are given
in Table 11. In addition, the parameters of fixed and switched
SCs, losses, minimum bus voltage, overall power factor, total
yearly cost, net saving, and percentage in saving are ac-
quired. For the 100% loading, the ISFS assigns 3 SCs at buses
110, 116, and 147 with the same reactive power injection of
1500 kVAr.

For performance comparison analysis, the original SFS
has been also applied for solving the problem in the full load
case. )e simulation results including network performance
indexes and statistical analysis are tabulated in Table 12. It is
obvious that the ISFS and SFS achieve the same final solution
for this network. However, the ISFS is more robust than the
SFS due to the gain of a lower standard deviation. )e
average execution time of the ISFS is longer than the SFS
because of the extensive searching time of the integrated
strategies as analyzed before. Importantly, the proposed ISFS
requires fewer iterations than SFS to settle at the optimal
solution, which is 67 iterations as compared to 86 iterations

Table 6: Continued.

Items Uncompensated
Compensated

FPA [18] IHA [19] APSO [5] MGABC [25] Proposed ISFS
% saving — 26.67 27.04 26.51 24.53 28.64
Injected
kVAr by
proposed
ISFS

Fixed: (50, 1000); (74, 600); (80, 350); (96, 300); (111, 900)

Switched: (24, 400); (32,850); (42, 550); (50, 500); (54, 450); (59, 450); (70, 700); (74, 350); (80, 850); (96, 550); (107, 800);
(109, 700); (111, 450)

Table 7: Optimal locations and sizes of SCs for 119-bus network at 100% loading in scenario 1 by different methods.

Method Number of
SCs Locations and sizes in kVAr Total

kVAr

ABC [15] 11 32 (850); 35 (1050); 40 (1300); 50 (800); 70 (550); 73 (1300); 79 (1200); 105 (700); 106 (250); 109 (800);
110 (1200) 10,000

CSA [16] 8 32 (1500); 39 (1500); 40 (550); 70 (950); 74 (750); 86 (1050); 108 (1500); 118 (1200) 9000

HSA [9] 21
79 (714); 77 (170); 76 (192); 75 (509); 74 (272); 73 (432); 72 (386); 113 (974); 56 (375); 115 (493); 54
(377); 53 (425); 111 (641); 52 (753); 112 (793); 51 (349); 71 (513); 110 (281); 50 (165); 70 (626); 49

(488)
9928

APSO [5] 8 32 (1500); 39 (1500); 40 (550); 70 (950); 74 (750); 86 (1050); 108 (1500); 118 (1200) 9000
MGABC
[25] 15 33 (900); 35 (1500); 45 (450); 46 (450); 49 (1500); 54 (1050); 71 (1200); 76 (450); 86 (1350); 94 (750);

101 (1500); 110 (1350); 111 (750); 114 (150); 115 (150) 13,500

IHA [19] 9 39 (1500); 43 (1000); 70 (1000); 74 (1000); 86 (900); 91 (1500); 107 (850); 109 (850); 118 (1200) 9800
FPA [18] 9 32 (1500); 40 (1500); 70 (850); 74 (1100); 89 (1500); 104 (500); 109 (900); 112 (250); 118 (1150) 9250

SFS
9 42 (600); 50 (1500); 96 (900); 111 (1350); 80 (1250); 34 (1200); 74 (1450); 107 (1100); 58 (500) 9850

13 111 (1150); 54 (450); 109 (700); 42 (600); 33 (900); 80 (1200); 74 (900); 25 (350); 97 (850); 70 (800);
106 (800); 59 (450); 50 (1350) 10,500

ISFS
9 50 (1500); 74 (1450); 107 (1000); 80 (1200); 96 (900); 58 (550); 42 (600); 35 (1000); 111 (1450) 9650

13 70 (700); 32 (850); 54 (450); 74 (950); 111 (1350); 50 (1500); 59 (450); 107 (800); 24 (400); 80 (1200);
109 (300); 96 (850); 42(550) 10,350
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Figure 17: Comparison of minimum annual costs obtained by different methods for 119-bus network.
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Figure 18: Convergence characteristics of annual cost for 119-bus network with 100% loading in scenario 1.

0 20 40 60 80 100 120
Bus number

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Vo
lta

ge
 m

ag
ni

tu
de

 (p
.U

.)

Voltage profile

Uncompensated
Compensated by SFS
Compensated by ISFS

Figure 19: Bus voltage profile of 119-bus network with 100% loading in scenario 1.
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of SFS as shown in Figure 25. Moreover, the positive impacts
of three SC placements on bus voltage and line current are
shown in Figures 26 and 27, respectively.

5.4.2. Scenario 2: Modified Cost Objective Function. For
solving this scenario, the switched SC locations obtained

from scenario 1, namely, buses 110 and 116, are utilized.
)e results of the on/off scheduling plans of the switched
SCs according to reactive power demand variations ac-
quired by using the ISFS and SFS algorithms are disposed of
in Table 13. It can be seen from the table that the proposed
ISFS suggests the optimal locations and reactive powers of
fixed SCs {(110, 300); (116, 250)} for base load

0 20 40 60 80 100 120
Branch number

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Li
ne

 lo
ad

in
g 

(p
.u

.)

100% loading

Uncompensated
Compensated by SFS
Compensated by ISFS

Figure 20: Line current of 119-bus network with 100% loading in scenario 1.

Table 9: On/off scheduling of switched SCs by SFS for 119-bus network in scenario 2.

Hour Load
level

Bus
#70

Bus
#32

Bus
#54

Bus
#74

Bus
#111

Bus
#50

Bus
#59

Bus
#107

Bus
#24

Bus
#80

Bus
#109

Bus
#96

Bus
#42

1 0.64 350 400 400 600 350 500 300 650 300 550 600 250 200
2 0.6 450 150 450 600 550 400 250 550 300 300 300 400 400
3 0.58 350 150 550 300 450 450 200 250 250 500 500 550 400
4 0.56 200 200 400 450 450 500 300 550 400 400 250 400 200
5 0.56 200 200 400 450 450 500 300 550 400 400 250 400 200
6 0.58 350 150 550 300 450 450 200 250 250 500 500 550 400
7 0.64 350 400 400 600 350 500 300 650 300 550 600 250 200
8 0.76 450 600 250 500 600 700 400 500 450 250 700 400 600
9 0.87 450 800 600 750 800 450 400 600 350 550 600 500 550
10 0.95 550 450 750 850 850 850 350 650 300 500 800 500 650
11 0.99 900 400 600 750 350 800 300 900 350 900 1100 650 400
12 1 850 0 600 700 950 1050 200 300 100 500 800 450 300
13 0.99 900 400 600 750 350 800 300 900 350 900 1100 650 400
14 1 850 0 600 700 950 1050 200 300 100 500 800 450 300
15 1 850 0 600 700 950 1050 200 300 100 500 800 450 300
16 0.97 700 300 350 650 350 950 600 850 550 850 900 600 600
17 0.96 1050 300 850 450 650 700 300 600 400 750 1000 500 600
18 0.96 1050 300 850 450 650 700 300 600 400 750 1000 500 600
19 0.93 750 550 650 650 950 700 450 500 350 850 600 450 450
20 0.92 750 650 600 600 900 700 350 550 300 1000 600 400 400
21 0.92 750 650 600 600 900 700 350 550 300 1000 600 400 400
22 0.93 750 550 650 650 950 700 450 500 350 850 600 450 450
23 0.87 450 800 600 750 800 450 400 600 350 550 600 500 550
24 0.72 650 400 550 250 350 450 400 900 400 500 500 250 500

Annual cost ($/year) Uncompensated 950,263.63 13.1% saving 29.33Compensated by SFS 671,523.90

24 Complexity



compensation and the optimal parameters of switched SCs
{(110, 900); (116, 1050)} for compensating the variable load
demands. After compensation with the ISFS, the total
yearly cost is reduced to $331,586.05 as compared to a value
of $423,718.04 in the uncompensated case. Moreover, the
annual cost acquired by the ISFS is slightly more reduced
than that obtained by the SFS, which is $331,586.05 in

comparison with $331,586.65. In addition, the proposed
ISFS manifests superiority over the original SFS in terms of
convergence speed for solving this scenario as shown in
Figure 28. Finally, the positive changes related to the
minimum bus voltage and the power losses in lines fol-
lowed by the switching operation schemes from the ISFS
and SFS can be seen in Figures 29 and 30, respectively.

Table 10: On/off scheduling of switched SCs by ISFS for 119-bus network in scenario 2.

Hour Load
level

Bus
#70

Bus
#32

Bus
#54

Bus
#74

Bus
#111

Bus
#50

Bus
#59

Bus
#107

Bus
#24

Bus
#80

Bus
#109

Bus
#96

Bus
#42

1 0.64 500 450 650 550 400 250 300 350 300 350 700 300 350
2 0.6 350 550 150 550 600 650 350 300 650 300 200 50 400
3 0.58 350 400 200 500 500 550 200 450 300 450 350 400 250
4 0.56 350 400 350 400 350 550 350 350 250 300 550 400 150
5 0.56 350 400 350 400 350 550 350 350 250 300 550 400 150
6 0.58 350 400 200 500 500 550 200 450 300 450 350 400 250
7 0.64 500 450 650 550 400 250 300 350 300 350 700 300 350
8 0.76 650 400 600 450 300 500 450 700 150 750 650 450 400
9 0.87 900 450 800 600 600 550 400 300 250 500 1050 550 450
10 0.95 800 600 850 550 550 550 400 750 450 1000 750 400 400
11 0.99 800 450 850 900 1200 750 350 400 400 450 750 600 500
12 1 750 0 450 700 1100 1450 100 300 100 500 600 400 300
13 0.99 800 450 850 900 1200 750 350 400 400 450 750 600 500
14 1 750 0 450 700 1100 1450 100 300 100 500 600 400 300
15 1 750 0 450 700 1100 1450 100 300 100 500 600 400 300
16 0.97 850 800 600 750 650 550 650 950 450 600 550 400 450
17 0.96 800 900 800 500 1050 400 500 250 300 800 650 650 550
18 0.96 800 900 800 500 1050 400 500 250 300 800 650 650 550
19 0.93 950 450 500 500 750 1050 250 200 350 700 1000 700 500
20 0.92 850 400 750 650 900 850 350 550 250 400 750 650 450
21 0.92 850 400 750 650 900 850 350 550 250 400 750 650 450
22 0.93 950 450 500 500 750 1050 250 200 350 700 1000 700 500
23 0.87 900 450 800 600 600 550 400 300 250 500 1050 550 450
24 0.72 550 350 950 500 700 300 450 550 300 600 400 300 150

Annual cost ($/year) Uncompensated 950,263.63 % saving 29.42Compensated by SFS 670,661.70
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Figure 22: Power losses of 119-bus network within 24-hour in-
terval before and after compensation in scenario 2.
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Figure 23: Minimum bus voltages of 119-bus network within 24-hour interval before and after compensation in scenario 2.
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Table 11: Simulation results for 152-bus network at different loading conditions using proposed ISFS.

Items
Uncompensated in loading levels Compensated in loading levels
50% 75% 100% 50% 75% 100%

Site and installed kVAr — — — (147, 1500) (110, 1500); (147,
1500)

(110, 1500); (116, 1500); (147,
1500)

Total kVAr — — — 1500 3000 4500
Losses in kW 134.8582 313.3251 576.1617 104.7613 229.3269 410.1157
Loss reduction (%) — — — 22.31 26.80 28.81
Minimum voltage (p.u.) 0.9692 0.9531 0.9365 0.9746 0.964 0.9531
PFoverall 0.8487 0.8480 0.8473 0.9534 0.9767 0.985
Annual cost ($/year) 70,881.46 164,683.65 302,830.56 63,182.51 136,774.21 239,916.83
Net saving ($/year) — — — 7,698.95 27,909.44 62,913.73
% saving — — — 10.86 16.94 20.77
Injected kVAr by proposed
ISFS

Fixed: (147, 1500)
Switched: (110, 1500); (116, 1500)

Table 12: Result comparison of ISFS and SFS for 119-bus network at 100% loading in scenario 1.

Items Uncompensated
Compensated

Applied SFS Proposed ISFS
Site and installed kVAr — (110, 1500); (116, 1500); (147, 1500) (110, 1500); (116, 1500); (147, 1500)
Total kVAr — 4500 4500
Total losses (kW) 576.1617 410.1157 410.1157
Loss reduction (%) — 28.81 28.81
PFoverall 0.8473 0.985 0.985
Minimum voltage bus 35 35 35
Minimum voltage (p.u.) 0.9365 0.9531 0.9531
Annual cost ($/year) 302,830.56 239,916.83 239,916.83
Net saving ($/year) — 62,913.73 62,913.73
% saving — 20.77 20.77
Average CPU time (s) — 75.4 149.3
Best cost ($/year) — 239,916.83 239,916.83
Worst cost ($/year) — 239,924.65 239,923.00
Average cost ($/year) — 239,917.98 239,917.34
Variance — 3.3989 1.600
Standard deviation — 1.8251 1.2523
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Figure 25: Convergence characteristics of annual cost for 152-bus network with 100% loading in scenario 1.
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Figure 27: Line current of 152-bus network with 100% loading in scenario 1 after compensation.

Table 13: On/off scheduling of switched SCs by ISFS and SFS for 152-bus network.

Hour Load level
Compensated by SFS Compensated by ISFS

Hours Load level
Compensated by SFS Compensated by ISFS

kVAr, bus
#110

kVAr, bus
#116

kVAr, bus
#110

kVAr, bus
#116

kVAr, bus
#110

kVAr, bus
#116

kVAr, bus
#110

kVAr, bus
#116

1 0.64 550 600 900 250 13 0.99 1250 900 1000 1150
2 0.6 450 550 350 650 14 1 1050 750 1000 800
3 0.58 400 550 300 650 15 1 1050 750 1000 800
4 0.56 450 450 550 350 16 0.97 1150 950 900 1200
5 0.56 450 450 550 350 17 0.96 1200 900 1200 900
6 0.58 400 550 300 650 18 0.96 1200 900 1200 900
7 0.64 550 600 900 250 19 0.93 600 1400 1150 850
8 0.76 400 1100 950 550 20 0.92 1000 950 650 1300
9 0.87 1050 750 550 1250 21 0.92 1000 950 650 1300
10 0.95 750 1300 1200 850 22 0.93 600 1400 1150 850
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Table 13: Continued.

Hour Load level
Compensated by SFS Compensated by ISFS

Hours Load level
Compensated by SFS Compensated by ISFS

kVAr, bus
#110

kVAr, bus
#116

kVAr, bus
#110

kVAr, bus
#116

kVAr, bus
#110

kVAr, bus
#116

kVAr, bus
#110

kVAr, bus
#116

11 0.99 1250 900 1000 1150 23 0.87 1050 750 550 1250
12 1 1050 750 1000 800 24 0.72 400 950 350 1000

Annual cost ($/year)
Uncompensated 423,718.04

Compensated by SFS 331,586.65 % saving 21.74
Compensated by ISFS 331,586.05 % saving 21.74
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Figure 28: Convergence characteristics of annual cost for 152-bus network in scenario 2.
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Figure 29: Power losses of 152-bus network within 24-hour interval before and after compensation in scenario 2.
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6. Conclusion

In this research, experiments are performed for optimum
number, placement, and rating of SCs at different load
levels to minimize the traditional objective function of total
annual cost as well as for the on/off operation plans of
switched SCs according to practical 24-hour load pattern to
achieve the modified cost function minimization. )e
proposed ISFS algorithm is used as an effective optimi-
zation tool for extracting the optimal solution of the
problem while fulfilling all the operational constraints. )e
computational performance of ISFS has been verified on
three well-known RDNs including the 69, 119, and 152-bus
networks. )e experimented results reveal that the pro-
posed ISFS contributes to remarkably improve the solution
quality of the problem for the traditional cost function
investigation as compared to other reported optimization
algorithms. Notably, the proposed ISFS has been suc-
cessfully applied for examining a complex scenario of
capacitor switching operation with load variations.
Moreover, the ISFS also outperforms the SFS regarding
solution accuracy, convergence rate, and computational
robustness in all the compared cases, especially in large-
scale networks with high computing complexity. Conse-
quently, ISFS can be a very promising approach for coping
with the OCP problem.
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