
Retraction
Retracted: Heuristic Sensing: An Uncertainty Exploration
Method in Imperfect Information Games

Complexity

Received 19 December 2023; Accepted 19 December 2023; Published 20 December 2023

Copyright © 2023 Complexity.Tis is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tis article has been retracted by Hindawi following an
investigation undertaken by the publisher [1]. Tis in-
vestigation has uncovered evidence of one or more of the
following indicators of systematic manipulation of the
publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research

reported
(3) Discrepancies between the availability of data and

the research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Manipulated or compromised peer review

Te presence of these indicators undermines our con-
fdence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice
is intended solely to alert readers that the content of this
article is unreliable. We have not investigated whether au-
thors were aware of or involved in the systematic manip-
ulation of the publication process.

Wiley and Hindawi regret that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our own Research Integrity and Re-
search Publishing teams and anonymous and named ex-
ternal researchers and research integrity experts for
contributing to this investigation.

Te corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] Z. Guo, X. Wang, S. Qi, T. Qian, and J. Zhang, “Heuristic
Sensing: An Uncertainty Exploration Method in Imperfect
Information Games,” Complexity, vol. 2020, Article ID
8815770, 9 pages, 2020.

Hindawi
Complexity
Volume 2023, Article ID 9879785, 1 page
https://doi.org/10.1155/2023/9879785

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9879785

RE
TR
AC
TE
DResearch Article

Heuristic Sensing: An Uncertainty Exploration Method in
Imperfect Information Games

Zhenyang Guo ,1 Xuan Wang ,1 Shuhan Qi ,1,2 Tao Qian ,1 and Jiajia Zhang 1,2

1Harbin University of Technology Shenzhen, Shenzhen 518055, China
2Pingan-Hitsz Intelligence Finance Research Center, Shenzhen 518055, China

Correspondence should be addressed to Jiajia Zhang; zhangjiajia@hit.edu.cn

Received 26 August 2020; Revised 6 October 2020; Accepted 9 October 2020; Published 24 October 2020

Academic Editor: Zhihan Lv

Copyright © 2020 ZhenyangGuo et al.(is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Imperfect information games have served as benchmarks andmilestones in fields of artificial intelligence (AI) and game theory for
decades. Sensing and exploiting information to effectively describe the game environment is of critical importance for game
solving, besides computing or approximating an optimal strategy. Reconnaissance blind chess (RBC), a new variant of chess, is a
quintessential game of imperfect information where the player’s actions are definitely unobserved by the opponent. (is
characteristic of RBC exponentially expands the scale of the information set and extremely invokes uncertainty of the game
environment. In this paper, we introduce a novel sense method, Heuristic Search of Uncertainty Control (HSUC), to significantly
reduce the uncertainty of real-time information set.(e key idea of HSUC is to consider the whole uncertainty of the environment
rather than predicting the opponents’ strategy. Furthermore, we realize a practical framework for RBC game that incorporates our
HSUC method with Monte Carlo Tree Search (MCTS). In the experiments, HSUC has shown better effectiveness and robustness
than comparison opponents in information sensing. It is worth mentioning that our RBC game agent has won the first place in
terms of uncertainty management in NeurIPS 2019 RBC tournament.

1. Introduction

Game theory is the mathematical study of interaction among
independent, self-interested players, providing a very simple
but powerful paradigm to capture decision problem. (e
classical category divides games into perfect information
games (PIGs) and imperfect information games (IIGs). In
PIGs, players can obtain complete information of game
environment. However, pervasively existing in real world,
players cannot sense complete or reliable information of
games. IIGs address these cases and model strategic inter-
actions among agents with only partial or unreliable in-
formation. (us, the exploitation of imperfect information
of IIGs is one of the most critical challenges for game solving
since how well players understand the game environment
greatly influences the effectiveness of their strategies.

In this paper, we focus on a recently introduced IIG,
reconnaissance blind chess for research of imperfect infor-
mation exploitation. Reconnaissance blind chess is actually a

family of games, and we only focus on one variant, which we
will refer to as RBC for simplicity [1]. RBC was designed
intentionally to add a certain amount of uncertainty by
adjusting some rules of chess and adding an explicit sense step.

Furthermore, we utilize the algorithm of MCTS in this
paper. Monte Carlo (MC) method has been used extensively
in PIGs [2] and IIGs [3] which uses random simulations to
approximate the true value of states in IIGs. Furthermore,
Upper Confidence Bound for Trees (UCT) is the most
popular MCTS algorithm, using upper confidence bounds, a
formula trying to settle the exploitation-exploration di-
lemma, as a tree policy for selection and expansion [4]. UCT
converges to Minimax, the optimal algorithm used for two-
player zero-sum games [5], given enough time and memory.
However, the reality is that time and memory are limited.
Hence, one severe challenge of the MCTS+UCTstructure is
the contradiction between the accuracy of states’ estimation
and limited simulation time both of which are critical for a
competitive game program.

Hindawi
Complexity
Volume 2020, Article ID 8815770, 9 pages
https://doi.org/10.1155/2020/8815770

mailto:zhangjiajia@hit.edu.cn
https://orcid.org/0000-0003-3313-5596
https://orcid.org/0000-0002-3512-0649
https://orcid.org/0000-0002-6903-145X
https://orcid.org/0000-0001-9206-4674
https://orcid.org/0000-0001-6611-2046
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8815770

RE
TR
AC
TE
D

(e contribution of this paper is twofold. First, we in-
troduce a novel sense method, HSUC, to effectively exploit
and manage the uncertainty of the game environment. Our
method is no longer entirely dependent on the accuracy of
opponents’ actions prediction which severely relies on
plenty of simulation time. Instead of that, the key idea of
HSUC is focusing on reducing the whole uncertainty of the
environment, which is characterized by real-time infor-
mation set in the game solving process. Second, we realize a
practical framework for RBC game that incorporates HSUC
with MCTS+UCT. NeurIPS 2019 tournament contains a
final win rate rank and several ranks of different indicators.
Our agent constructed with this framework has ranked the
7th in the final rank and won the first rank in terms of
uncertainty management in particular.

2. Environment and Preliminaries

In this part, we will briefly introduce the rules of RBC,
explain why RBC is a problem worth studying, and point out
the difficulty of research. And then, we provide some pre-
liminaries for later discussion.

2.1. Environment: RBC and Its Challenges. (e major dif-
ference between RBC and standard chess is that RBC players
are not informed of the opponent’s actions in the process of
the game. For managing this hidden information, an ad-
ditional step called “sense” is embedded prior to the move
step. During the sense step, a player selects a square of the
chessboard and learns all pieces and their types within the
square, and that action is invisible to another player. (is
step is the most important way for the player to obtain real
information about the opponent. (at means players should
consider their sense strategies to choose a region to review an
unknown part of the board. In addition, some changes have
been made to other rules, for example, the player wins by
capturing the opponent’s king, but, in chess, a win occurs
when the King is in under attack or in “check” and every
possible move by the King will also put it in check. Since
the player cannot see the opponent’s chess pieces, some
invalid actions may occur when the player moves. For de-
tails, please check the description of the website (https://rbc.
jhuapl.edu/gameRules). (e game tree of RBC is shown in
Figure 1.

(e past decades have witnessed rapid progress in the
ability of AI systems to play increasingly complex games,
such as go of PIGs [6] and poker of IIGs [7]. Not long ago,
Brown et al. proposed poker agent Pluribus to solve the
problem of multiplayer poker [8]. But RBC, as an IIG, is even
more complex in certain aspects than multiplayer poker. We
will discuss challenges in RBC in the following two aspects:
the game size and the number of possible states in the in-
formation set.

Generally speaking, the game size can be measured by
the number of states that players may encounter in the game.
A practical method to measure the game size proposed by
Shannon in 1950 [9] is widely adopted. According to the
method, the game size of Lim 2-P Poker (Lim 2-P Poker

refers to Limit Heads-Up Texas Hold’em) is 1013, the game
size of chess is 1043, and that of RBC is 10139 [10]. Table 1 lists
the number of states for several representative games and it
denotes that RBC can approximately achieve a level similar
to No-Limit Poker and go in terms of game size.

IIGs’ complexity can be measured by another metric: the
average number of possible states in the information sets. In
RBC, this metric represents how difficult it is to evaluate a
given perceived state. Poor sense strategy may lead to an
exponential growth of the scale of information sets.(us, the
key property of RBC is the information asymmetry, that is,
the uncertainty about the opponent’s information. Table 2
shows that Jared Markowitz et al. [10] have calculated that
the approximate average number of states of real-time in-
formation set in RBC is 1.3 × 1068, which is even larger than
Six-Player-No-Limit Poker.

2.2. Preliminaries

2.2.1. Extensive-Form Games. Sequential games are nor-
mally formalized as extensive-form games in which one or
more agents or players perform sequential interactions. (e
extensive-form game can be described as a conceptual mode
of six-tuple 〈P, H, Z, Am(h), σc(h, a), up(z)〉:

(1) P: the set of players.

× ×

Sense and move

Black turn

White turn

Sense

Move
(b8, c6)(d7, d5)(c7, c5)

(e2, e4)

Figure 1: Game tree of RBC. One turn in RBC containing two
phases cannot be observed by the opponent: sense and move. In the
sense phase, a sense square (area in the red box) is chosen based on
sense strategy firstly. (en, positions in the sense square of the
chessboard are checked and conflicting states are removed from the
information set based on sense result. After sense, a move is se-
lected based on the move strategy. Move action (c7, c5) means that
moving the piece of pawn from positions c7 to c5 and (b8, c6)
means moving the knight in b8 to c6.

2 Complexity

https://rbc.jhuapl.edu/gameRules
https://rbc.jhuapl.edu/gameRules

RE
TR
AC
TE
D

(2) H: a finite set H of sequences, the possible histories
of actions, such that the empty sequence is in H and
every prefix of a sequence in H is also in H.

(3) Z: the set of all terminal states, corresponding to all
leaf nodes in the game tree.

(4) A(h): the set of legal actions from state h(h ∉ z),
corresponding to all edges starting from node h in
the game tree.

(5) σc(h, a): the probability that chance will take action
a ∉ A(h) from state h.

(6) up(z): the payoff for player p if the game ends in state
z(z ∈ Z).

We can further define the notations in RBC based on the
mode as follows.

(e behavior of players in RBC is similar to that of chess,
except that an additional sense step is added before the move
step. (us, each player’s strategy in one turn contains two
phases, sense and move.

In each turn, player i chooses actions (a sense action and
a move action), by its strategy σi � (σi

s, σi
m), σi

s is player i’s
sense strategy, and σi

m is move strategy.
Furthermore, action set A(h) in RBC is generated from

the set of legal sense actions As(h) and the set of legal move
actions Am(h), A(h) � Am(h) × As(h). Specifically, a sense
action as � s ∈ As(h) locates a 3∗ 3 area centered on s to be
sensed.

2.2.2. Information Set. For IIGs, information set Ip for each
player p is a partition of Hp. For any information set I ∈ Ip,
any two states h, j ∈ I are indistinguishable to player p.
Figure 2 uses RBC to give an example of information set.

In a game tree, Ip is a set of decision nodes of player p,
which meets the following two conditions:

(1) Each decision node in Ip is the decision node of
player p

(2) When the game reaches a decision node in Ip, player
p knows that it is in Ip but does not know which
decision node of Ip it encounters

3. Heuristic Search of Uncertainty Control

A heuristic method is an approach for problem solving or
self-discovery, which is not guaranteed to be optimal, per-
fect, or rational, but sufficient for reaching a feasible solu-
tion. While finding an optimal solution is impossible or
impractical, heuristic methods can be used to speed up the
process of finding a satisfactory solution. Heuristic search
refers to a search strategy that attempts to optimize a
problem by iteratively improving the solution based on a
given heuristic function or a cost measure [11].

(e heart of heuristic search methods is the idea of
“continual researching” where a sound local search proce-
dure is invoked whenever the agent must act without
retaining any memory about how or why to reach the
current state [12]. Our method for RBC game can be seen as
a kind of heuristic search methods, using some measure
function for better information exploitation. For solving
RBC game, we divide the problem into two subproblems:
how to control the explosive growth in scale of information
sets and how to choose the most beneficial move action
under imperfect information during the game. (ese two
parts make up our heuristic search strategy.

3.1. Heuristic Search for Sense Strategy in RBC Game. (e
characteristic of RBC brings several difficulties to heuristic
search in game solving. Firstly, since we cannot definitely
know the opponent’s knowledge and strategy, unreliable
information may lead to an incorrect search direction.
Secondly, how to control the growth of game states in in-
formation sets is another challenge. In order to ensure that
the subsequent search is performed correctly, we must retain
all possible states of the opponent as the current information
set and cannot casually abandon any state. In addition, the
player has a variety of action options.(ese two aspects have
led to an information set of space rapid explosion and
brought difficulty to storage.

Considering the above difficulties, we propose a novel
sense method, HSUC, to prevent scale of real-time infor-
mation set from exponential growth. Although RBC rules
provide some extra information, such as notification of sense
results, move results, and whether the player captures pieces,
which can be employed to help reduce the uncertainty,
HSUC is the major method to exploit all hints of RBC in our
game system.

In this section, we will discuss how HSUC works to
minimize the scale of the information set in RBC. An ideal
way is to predict the opponent’s next move action (sf, st)

and then take sense action ast
to get the sense result. A

practical method for predicting opponents’ actions is to
absorb the idea of self-play, which is to use our own strategy
to simulate the opponents’ actions. Whenever we act sense
action, we obtain the opponent’s most likely action for every

Table 1: Approximate size of games.

Game Size
Lim 2-P Poker 1013
Chess 1043
RBC 10139
No-Lim Poker 10162
Go (19×19) 10170

Table 2: Approximate means the number of possible opponents’
states in an information set.

Game Game states
Heads-Up No-Limit 1083
Chess 1
RBC 1.3 × 1068
Six-Player-No-Limit 6.4 × 1014
Go (19×19) 1

Complexity 3

RE
TR
AC
TE
D

remaining situation after the previous turn by move action
selection strategy.

Unfortunately, the above approach is prone to bias. First
of all, the initial premise of self-prediction is that the op-
ponents adopt similar strategies to ours. When dealing with
some specific agents, such as random ormore powerful ones,
sense actions will be severely misled which causes crashed
performance of the whole system. Moreover, since the in-
formation set contains more than one state, plenty of
sampling is required during the game tree search in order to
guarantee the accuracy of state value evaluation.

HSUC focuses on estimating and reducing the whole un-
certainty of the environment. Specifically in RBC, HSUC tries to
find out the best sense square to minimize the number of
possible states in real-time information set. Considering the
game tree given in Figure 1, after the white player moves, the
black player expands the game tree to form its real-time in-
formation set, which is the foundation of the next phase’s
strategy. To describe sense actions, the information set in the
k-th turn is described as Ik: Ik � h0, h1, . . . , hn􏼈 􏼉, |Ik| � n is the
number of possible states in Ik. Each sense action reveals a 3∗ 3
sense square and helps eliminate some impossible states from Ik.
For example, if the sense action reveals no piece in the sense
square, all states with pieces in the sense square can be deter-
mined as “impossible states” and removed from Ik. LetAs(Ik) �

a0, a1, . . . , at􏼈 􏼉 and Ik(ai) denote the reduced information set
by taking sense action ai. (en, Ik(ai)⊆ Ik, mi � |Ik(ai)|.
Employing gk � ((|Ik| − |Ik+1|)/|Ik|) � 1 − (mi/n) as the
representative decay radio of sense action ai, the target of
heuristic search can be formalized as

ai � arg max
ai∈As Ik()

gk � arg max
ai∈As Ik()

1 −
mi

n
􏼒 􏼓. (1)

Here, gk is employed to trace the tendency of game
uncertainty. In this sense, the goal is to choose a sense action
to maximize gk for each turn of the game. However, there is
no guarantee that the exact value of gk can be found under the
condition of imperfect information. So what should be done is
to design a proper heuristic function H to evaluate gk.

Firstly, we introduce how to evaluate the sense action’s
efficiency. Let Di(h1, h2) indicate whether sense action ai can
distinguish between states h1 and h2 in Ik. As long as one of
the 9 positions in the 3∗ 3 sense square is different (existence
or types of pieces), Di is set to 1; otherwise, it is set to 0.
Figure 3 shows a specific example.(e formula description is
as follows:

Di h1, h2(􏼁 � max
s1∈h1 ai(),s2∈h2 ai()

L s1, s2(􏼁, (2)

where s1 and s2 are the corresponding position in h1’s and
h2’s sense squares of ai. L(s1, s2) is defined as

L s1, s2(􏼁 �
1, Ps1
≠Ps2

,

0, otherwise,
􏼨 (3)

where Ps1
and Ps2

mean the pieces in positions s1 and s2.
In this sense, Di(h1, h2) � 0 means states h1 and h2

cannot be distinguished by sense action ai. Let HDi
be the

maximum subset of the current information set which
contains the largest number of indistinguishable states given
the sense action ai. HDi

satisfies the following three
constraints:

(1) HDi
⊆ I.

(2) ∀h1, h2 ∈ HDi
, Di(h1, h2) � 0.

(3) ∀hi ∈ HDi
, 􏽐hj∈HDi

Di(hi, hj)> 0.

We define that

C ai, I(􏼁 � HDi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (4)

Note that, in some cases, there may exist more than one
maximum subset and the indistinguishable states they
contain are different, but values of C(ai, I) are the same. In
this way, given sense action ai and current real-time in-
formation set Ik, the sense efficiency can be described by the
following heuristic function:

H ai, Ik(􏼁 � n − C ai, Ik(􏼁 � n − C ai, I(􏼁. (5)

Information set
of black player

State nState 2State 1

(a2, a3) (b2, b3) (b2, b4)

Root node of
white player

Figure 2: An example of the information set in RBC game.(e root node is a white turn node. After the white player moves, the black player
faces many indistinguishable possible states that are created by the opponent’s unknown move; e.g., (a2, a3) and (b2, b3, are all possible
move actions. (ese indistinguishable states in the dotted box form an information set of the black player.

4 Complexity

RE
TR
AC
TE
D

By using the heuristic function H(ai, Ik) to evaluate gk,
sense action can be searched in As(Ik) as follows:

a � arg max
ai∈As Ik()

H ai, Ik(􏼁. (6)

By now, we have presented the details of HSUC method
which adopts a heuristic searching approach tominimize the
information sets’ scale. (e whole algorithm is shown in
Algorithm 1.

3.2. Foundation of the RBCGame System. In this section, we
will introduce the framework of our RBC game system
incorporating the HSUC method. As shown in Figure 4, our
architecture contains two main parts, HSUC for sense
strategy and MCTS for move strategy.

When it is our turn in the RBC game, for example, at step
t, firstly, we keep an information set of step (t− 1) which
contains all possible board states formed by our last move
action. (en, we simulate all legal opponent’s move actions
on these board states to form the initial information set of
step t. Generally, the scale of the information set will increase
rapidly at the rate of dozens of times in this stage. And then,
we apply our sense action provided by the HSUC algorithm.
Powerful sense strategies will effectively eliminate impos-
sible states as many as possible to get a reduced information
set. At last, each remaining state will be solved as a root node
by MCTS method and all of the returned solutions will be
counted and the move strategy is determined by the statistics
result. MCTS consists of four steps per iteration generally:
selection, expansion, simulation, and backpropagation [13].
To control the iteration time, we use Stockfish to speed up

S1 S2

Figure 3: An example of evaluating sense efficiency. (e two chess boards above denote two different states h1 and h2in the current
information set. As shown in the shaded part of the figure, when sense action ai is adopted, a difference between the upper right corners s1
and s2 appear. In this case, L(s1, s2) � 1 and Di(h1, h2) is set to value 1.

Input: Information set of agent in turn k: Ik, (e set of legal sense actions: As

Output: Sense action: as

(1) for each hj in Ik do
(2) Perform every legal move action for hj to get successors
(3) end for
(4) Combine all successors to update Ik

(5) Let T � 0, as � None
(6) for each ai in As do
(7) for each two states (h1, h2) in Ik do
(8) Calculate Di(h1, h2) using formula (2)
(9) end for
(10) Find HDi

and calculate C(ai, Ik) using formula (4)
(11) Calculate H(ai, Ik) using formula (5)
(12) if T<H(ai, Ik) then
(13) as � ai

(14) T � H(ai, Ik)

(15) end if
(16) end for
(17) return as.

ALGORITHM 1: HSUC algorithm.

Complexity 5

RE
TR
AC
TE
D

the termination of iterations and we constrain the depth of
iterations based on the remaining time.

4. Experiments

In this section, we evaluate the effectiveness of HSUC and
the RBC game-solving framework mentioned in the pre-
vious section. During the experiment setting, we choose one
agent from the NeurIPS 2019 tournament, Strangefish
(https://github.com/ginop/reconchess-strangefish), as a
comparison baseline. Strangefish ranks the first place in the
tournament, which makes the comparison in the

experiments much more convincing. We conduct two ex-
periments to verify the effectiveness of our proposed sense
method HSUC (Section 4.1) and the performance of the
overall RBCGame System (Section 4.2).(e experiments are
based on the package provided by the tournament’s orga-
nizer, and the agents we implement all comply with the
competition rules and restrictions.

4.1. Performance of HSUC in RBC Sense Phase. To illustrate
the growth rate of the number of states in RBC’s information
set and the importance of a good sense method in solving

18

Strangefish
HSUC

16

Random
No sense

14

12

10

8

6

4

2

2 4 6 8 10 12
Time

lo
g

(N
)

Figure 5: Result of different sense strategies. N is the number of states in the information set of RBC.

Our last move

Step t – 1 infomation set

......

Opponent’s
possible moves

Step t initial infomation set

Sense based on HSUC algorithm

Reduced infomation set

Solve move strategy
by MCTS method

Sense strategy

Move strategy

Figure 4: Architecture of our RBC game.

6 Complexity

https://github.com/ginop/reconchess-strangefish

RE
TR
AC
TE
D

IIGs like RBC, we conducted a comparative experiment of
different sense methods firstly. In the experiment, agents
with different sense methods play against the same opponent
agent. During the game, the number of states in the real-time
information sets after each sense action of each agent is
tracked to obtain the experiment result.

As shown in Figure 5, the number of states in the
information set of RBC increases exponentially without
sense, and the problem of the exponential explosion of
information sets can only be slightly alleviated with ran-
dom sense actions. HSUC from our system and the sense
method of Strangefish both perform better than the other
two sense methods. We can conclude that the use of good
sense methods can greatly reduce the scale of information
set in RBC game.

(e second experiment aims to verify the empirical ad-
vantages of HSUC. We let our RBC game system with HSUC
compete with the baseline system at the platform of the
NeurIPS 2019 tournament for 10 batches of games to obtain a
statistical result. Each batch contains 24 rounds of games and
each agent plays 12 rounds as black and 12 as white.

A robust sense method should satisfy the requests of
efficiency and stability at the same time. First, decay ratio gk

mentioned in Section 3.1 is used to describe efficiency. (e
higher decay ratio denotes the method can reduce more
impossible states by sensing. Second, the performance of the
sense method should not fluctuate too much when facing
opponents from different levels, which can be evaluated by
the average scale of real-time information sets. (e average
scale of real-time information sets of turn j is Nj, which is
calculated as follows:

avgN
j

� 􏽘
T

i�1

N
j

i

T
, (7)

where N
j
i denotes the average number of states of turn j in

batch i and T is the total number of batches. We use the same
experimental settings as above for the experiments.

(e sense strategy of the Strangefish system is employed
by scoring each move action to predict for sense area. (e
Strangefish method picks up the move with the highest score
as the most likely action of the opponent and selects sense
area based on the move action. It is similar to the method we
introduce in Section 3.1.

(e specific implementation of the experiment is to
employ another agent as the opponent of our agent with
HSUC and Strangefish, respectively, to collect data for
calculating the indicator gk for efficiency and avgNj for
stability during the game.

In Figure 6, we compare HSUC and the sense method of
Strangefish by the decay ratio gk. Figure 6(a) shows the result
of playing against Random bot and Figure 6(b) is about the
result of playing against Trout (another bot using Stockfish
which performs better than random in the tournament). It
can be seen that HSUC maintains a better performance
against different bots than sense method of Strangefish.
Moreover, HSUC shows more obvious advantages when
playing against agents with a higher degree of randomness
by reducing no less than 90% of uncertainty. (e effective
decay of uncertainty will bring great advantage to follow-up
and can avoid the risk of failure due to timeout in game
which is suffered by the agents maintaining a large number
of states in the real-time information sets.

Figure 7 shows the average scale avgNj of the real-time
information sets of HSUC and Strangefish. (e curves in the
figure obviously indicate that our method performs better on
managing scale of information sets than the method of the
Strangefish against both of the rivals. In Figure 7(b), the
maximal average scale of information sets of Strangefish even

1.0

0.8

0.6

0.4

0.2

0.0
2 4 6 8 10 12 14 16 18 20 22 24

Round

HSUC
Strangefish

g k
: d

ec
ay

 ra
tio

(a)

1.0

0.8

0.6

0.4

0.2

0.0
2 4 6 8 10 12 14 16 18 20 22 24

Round

HSUC
Strangefish

g k
: d

ec
ay

 ra
tio

(b)

Figure 6: Efficiency of HSUC compared with sense method of Strangefish. Curves show the decay ratio gk of the game during our agent with
HSUC and Strangefish playing against different bots, respectively. (e curve of our agent is higher than Strangefish in a large margin, which
means that HSUC can maintain an obviously higher decay ratio of game uncertainty than Strangefish. (a) Against Random bot. (b) Against
Trout bot.

Complexity 7

RE
TR
AC
TE
D

reached 6000 while that of HSUC is about 1000. (e number
of states of HSUC fluctuates smoothly while that of
Strangefish fluctuates violently. Besides, considering Figure 6,
we can conclude that the performance of HSUC is pretty
stable for each turn and against different opponents from
different levels.

By the way, the result of the NeurIPS 2019 tournament
can also be a reference for the effectiveness of the sense
method. As shown in Table 3, our sense method performs
best on uncertainty management rank (https://slideslive.
com/38923177/reconnaissance-blind-chess-
competition).

4.2. Performance of Our RBC Game System in NeurIPS 2019
Tournament. In the NeurIPS 2019 tournament, each agent
will fight against all the other opponents in turn by 24
rounds, and each agent begins with a cumulative 15-minute
clock to make all their actions including sense and move.
Our agent A_bot, constructed with HSUC for sensing in-
formation and MCTS+UCT for move selection which in-
corporates new evaluation function Stockfish, achieves good
result against many competitive opponents (such as agents
from Microsoft and Google). For more details, please check
here (https://rbc.jhuapl.edu/tournaments/26).

5. Conclusion

(is paper introduces a novel method of uncertainty
management in IIGs called HSUC. HSUC adopts a heuristic
search process to guide sense actions to reduce the envi-
ronment uncertainty of IIGs like RBC by minimizing the
number of possible states in the real-time information sets.
(at is, HSUC can help agents to well understand the en-
vironment under imperfect information which enhances the
effectiveness of game strategies. Furthermore, a viable RBC
game system is realized by combining HSUC for sensing
information and MCTS+UCT for selecting move actions.
(e experiments about HSUC and the RBC game system
show that the scale of information sets is reduced effectively
and efficiently through our method, providing convincing
verification for the superiority of our method in terms of the
uncertainty management in IIGs. In the future, we will
conduct further research on factors affecting the uncertainty
of the game environment and enrich the methods family of
uncertainty management in IIGs.

Data Availability

(e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

(e authors declare that they have no conflicts of interest
regarding this paper.

Acknowledgments

(e authors thank all the researchers in this field. (is re-
search was supported by Pingan-Hitsz Intelligence Finance
Research Center, Key Technology Program of Shenzhen,
China (no. JSGG20170823152809704), Key Technology

Table 3: Uncertainty management rank.

Bot name Institution Median state space size
HSUC HIT (OUR) 12
Oracle JHU/APL 13
Wbernar5 JHU 18
La Salle Bot La Salle University 19
MBot SRC/Leela Chess Dev 574
Random JHU/APL 50k+

3000

2500

2000

1500

1000

500

0
2 4 6 8 10 12 14 16 18 20 22 24

Round

HSUC
Strangefish

av
gN

j: a
ve

ra
ge

 sc
al

e

(a)

6000

5000

4000

3000

2000

1000

0
2 4 6 8 10 12 14 16 18 20 22 24

Round

HSUC
Strangefish

av
gN

j: a
ve

ra
ge

 sc
al

e

(b)

Figure 7: Stability of HSUC compared with the sense method of Strangefish. Curves show the average scale avgNj of game during our agent
and Strangefish playing against different bots, respectively.(e curve of HSUC is lower and smoother than Strangefish plainly, which means
that HSUC can control the scale of information sets more stably than Strangefish. (a) Against Random bot. (b) Against Trout bot.

8 Complexity

https://slideslive.com/38923177/reconnaissance-blind-chess-competition
https://slideslive.com/38923177/reconnaissance-blind-chess-competition
https://slideslive.com/38923177/reconnaissance-blind-chess-competition
https://rbc.jhuapl.edu/tournaments/26

RE
TR
AC
TE
D

Program of Shenzhen, China (no. JSGG20170824163239586),
and Basic Research Project of Shenzhen, China (no.
JCYJ20180507183624136).

References

[1] J. Newman, C. L. Richardson, and S. M. Kain, “Reconnais-
sance blind multi-chess: an experimentation platform for ISR
sensor fusion and resource management,”in Signal Process-
ing, Sensor/Information Fusion, and Target Recognition
XXV, International Society for Optics and Photonics. SPIE,
pp. 62–81, Bellingham, WA, USA, 2016.

[2] R. Coulom, “Efficient selectivity and backup operators in
monte-carlo tree search,” inComputers and Games, pp. 72–83,
Springer Berlin Heidelberg, Berlin, Germany, 2007.

[3] M. Sustr, V. Kovarik, and V. Lisy, “Monte Carlo continual
resolving for online strategy computation in imperfect in-
formation games,” 2018, https://arxiv.org/pdf/1812.07351.pdf.

[4] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo
planning,” in Machine Learning: ECML 2006, pp. 282–293,
Springer Berlin Heidelberg, Berlin, Germany, 2006.

[5] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta
pruning,” Artificial Intelligence, vol. 6, no. 4, pp. 293–326,
1975.

[6] D. Silver, A. Huang, C. J. Maddison et al., “Mastering the game
of Go with deep neural networks and tree search,” Nature,
vol. 529, no. 7587, pp. 484–489, 2016.

[7] N. Brown and T. Sandholm, “Superhuman ai for heads-up no-
limit poker: libratus beats top professionals,” Science, vol. 359,
no. 6374, pp. 418–424, 2018.

[8] N. Brown and T. Sandholm, “Superhuman AI for multiplayer
poker,” Science, vol. 365, no. 6456, pp. 885–890, 2019.

[9] C. E. Shannon, “XXII. programming a computer for playing
chess,” 8e London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, vol. 41, no. 314, pp. 256–275,
1950.

[10] J. Markowitz, R. W. Gardner, and A. J. Llorens, “On the
complexity of reconnaissance blind chess,” 2018, https://arxiv.
org/abs/1811.03119v2.

[11] J. J. Lu and M. Zhang, Heuristic Search, Springer, New York,
NY, USA, 2013.

[12] M. Moravč́ık, M. Schmid, N Burch et al., “Deepstack: expert-
level artificial intelligence in heads-up no-limit poker,” Science
(New York, N.Y.), vol. 356, no. 6337, pp. 508–513, 2017.

[13] C. B. Browne, E. Powley, D. Whitehouse et al., “A survey of
Monte Carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1,
pp. 1–43, 2012.

Complexity 9

https://arxiv.org/pdf/1812.07351.pdf
https://arxiv.org/abs/1811.03119v2
https://arxiv.org/abs/1811.03119v2

