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Load is the main external disturbance of a parallel robot manipulator. ,is disturbance will cause dynamic coupling among
different degrees of freedom and make heaps of model-based control methods difficult to apply. In order to compensate this
disturbance, it is crucial to obtain an accurate dynamic model of load. However, in practice, the load is always uncertain and its
dynamic parameters are arduous to know a priori. To cope with this problem, this paper proposes a novel and simple approach to
identify the dynamic parameters of load. Firstly, the dynamic model of the parallel robot manipulator with uncertain load is
established and the dynamic coupling caused by load is also analyzed.,en, according to the dynamic model, the excitation signal
is designed and a weak nonlinear dynamic model is derived. Furthermore, the identification model is presented and the
identification algorithm based on the extended Kalman filter is designed. Lastly, numerical simulation results, obtained using a
six-degree-of-freedom Gough–Stewart parallel manipulator, demonstrate the good estimation performance of the
proposed method.

1. Introduction

Parallel robot manipulator (PRM) entails the advantages of
higher precision, faster response, higher rigidity, and
stronger carrying capacity over serial robots and, hence, is
widely applied in many fields of industry [1, 2]. Currently,
the standard industrial control technique applied in PRMs is
PID control, which neglected the complex dynamic char-
acteristics of robots, so that it can hardly meet the re-
quirement of fast and accurate motion [3, 4]. During the past
decade, several model-based control methods, such as
computed torque control [5], dynamic feedforward control
[6], and modal control [7, 8], are used in controlling PRMs
because of the excellent control accuracy and dynamic
performance of these methods. However, these methods are
all based on the dynamic model to design, which makes the
control performance of these methods strongly depend on
the accurate knowledge of the dynamic model.

In practical applications, PRMs always have to hold an
uncertain load to work, and the dynamic parameters of load

are hard to know a priori and cannot be measured directly,
which makes several model-based control schemes unable to
be applied [9]. Take modal control as an example, the key of
the control strategy is the modal conversion matrix. ,e
calculation of modal conversion needs the system mass
matrix, but the uncertainty of the load will make the accurate
systemmass matrix impossible to obtain [10, 11]. Otherwise,
the uncertain load, which is a main external disturbance of
the system [12], has a significant impact on system dynamic
performance; it will cause dynamic coupling among different
degrees of freedom (DOFs) [13, 14]. ,us, in order to
achieve the high-performance control of the system, the
uncertain load disturbance is necessary to be estimated and
compensated.

In parameter identification, three kinds of methods have
been proposed to estimate the robot dynamic parameters.
,e first method is using computer-aided design (CAD)
techniques to obtain the dynamic parameters of robots. ,e
3-dimensional (3D) model of robots generally provided by
the robot manufacturer and the parameters, such as the
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inertia tensor and centroid position, can be solved by any
CAD software based on these models. However, the pa-
rameters obtained from the CAD techniques are not
identical to the real robot because of the manufacturing and
assembling error. In addition, for the PRMs with uncertain
load, it is difficult to build a 3D model for load, which is
usually not provided by the manufacturer and is made up of
many complex parts. To avoid this problem, the method of
the physical experiment is used to perform the determi-
nation of the dynamic parameter. ,is method can better
estimate the mass, centroid position, and inertia tensor of
the part. However, the necessity of disassembling the robot
and measuring by special devices limits the application of
this method. Moreover, this method is inappropriate for the
measurement of large-sized parts, such as aircraft and
submarine, which are common types of loads and are
generally too big to be measured and too complex to be
disassembled. ,e last method is the theoretical identifica-
tion method, which can obtain better identification result,
and does not require disassembly of robots and special
devices for measurement compared to the above two
methods. Until now, many identification algorithms have
been presented to estimate the parameters of robots [15],
such as the least squares method [16, 17], Kalman filtering
method [18–20], maximum-likelihood method [21, 22]. In
addition, among these identification algorithms, the most
used method is the least squares method [23]. However,
most of the research objects of these methods are serial
manipulators, while for parallel manipulators, there is little
research at present.

Compared to the serial manipulator, the research on
parameter identification of PRMs started late, and too little
work has been devoted to the load parameters identification.
Chen derived the estimation equation in a linear form of
identified parameters based on a new structured Boltz-
mann–Hamel–d’Alembert approach and used the least
square method to identify the parameters [24]. Tian pro-
posed an inertial parameter identification method based on
sinusoidal vibrations of a six-degree-of-freedom parallel
manipulator and used the least square method to identify the
parameters [25]. Briot and Gautier used total least squares to
identify the parallel robot dynamic parameters [26]. Wu
et al. investigated the dynamic parameter identification of a
redundantly actuated parallel manipulator and proposed a
two-step identification approach based on the least squares
method to identify the dynamic parameters of the system
[27]. ,anh used the direct pattern search technique to do
the dynamics identification for a redundant 3-(P) RRR
manipulator [28].

Normally, the methods to identify the parameters of the
PRM adopt the methods of the least squares method and the
weighted least squares method. However, the least square
method is not suitable for the identification of parallel
manipulators. ,e main reasons are as follows:

(1) ,e LMS needs to establish an inverse dynamic
model that is linear with respect to the dynamic
parameters. However, due to the complex and
coupled dynamics of the parallel manipulators, it is

still not easy to rewrite the dynamic equation into a
linear form that is suitable for using the parameter
identification algorithm [29].

(2) ,e LSM is sensitive to measurement noise. How-
ever, parallel manipulators are generally driven by
hydraulic pressure, and the noise of driving force,
displacement, speed, and acceleration is relatively
large, which seriously limits the identification ac-
curacy and convergence speed of the method
[30, 31].

(3) For the LSM, the observation matrix in the inverse
dynamic model requires the value of displacement,
speed, and acceleration in the task space. Since the
displacement and speed of each leg of the parallel
mechanism are relatively easy to measure, the dis-
placement in the task space can be obtained by the
positive kinematics solution, and the speed in the
task space can be solved by the speed Jacobian
matrix. But, for acceleration, it is not easy to be
directly measured.

,is paper proposed a method to identify the load of a
parallel robot manipulator. Compared with the traditional
least square method, the proposed identification approach
does not require linearization of the dynamic model and
optimization of the excitation trajectory, which are two
complex problems to solve. Under the specific signals, the
dynamic equation derived by the Newton–Euler method can
be simplified and the simplified dynamic equation has two
advantages: (1) this equation is weakly nonlinear with re-
spect to the dynamic parameters of load and (2) the pa-
rameters to be identified are independent of each other in the
equation and there is no product form. According to the
simplified model, we designed the excitation trajectory,
which has a simple form and can excite the dynamic pa-
rameters of the load. Importantly, the EKF algorithm is
applied to estimate the load parameters, which is not sen-
sitive to measurement noise and without acceleration
measurements in the process of identification.

,e organization of this paper is as follows. In Section 2,
the dynamic model of PRM with uncertain load is estab-
lished and the influence of load disturbance for the system is
also analyzed. Section 3 presents the design of excitation
trajectory and the process of load parameters identification
based on the EKF algorithm. Section 4 shows the numerical
simulation for verifying the proposed method. Finally, the
main conclusions of this paper are presented in Section 5.

2. Mathematical Modeling

,e parallel manipulator studied in this paper is a six-de-
gree-of-freedom Gough–Stewart parallel manipulator, as
shown in Figure 1(a). ,is manipulator is mainly composed
of two platforms and six driving legs. ,e lower platform
fixed on the ground is named static platform and the upper
platform used to carry loads is named moving platform. ,e
driving leg is the actuator to drive the moving platform to
realize translation and rotation. In order to facilitate the

2 Complexity



analysis of the parallel manipulator, the coordinate system is
established and shown in Figure 1(b). ,e static coordinate
system OB − XBYBZB is fixed on the static platform and the
origin OB is in the center of the lower platform. ,e moving
coordinate OA − XAYAZA is fixed on the upper platform
and the origin O is in the center of the upper platform. Not
only is OA the centroid point of the upper platform, but also
it is the control point C of the system. GP is the centroid
point of load. ai and bi are the upper and lower hinge points,
respectively.

2.1. Kinematics Modeling. According to the space geometry
theory, the length vector of the six legs can be expressed by

L � L1, . . . , L6  � R · A + p + p0 − B, (1)

where A is the coordinate matrix of six lower hinges in the
static coordinate. B is the coordinate matrix of six upper
hinges in the moving coordinate. R denotes the transfor-
mation matrix from the static coordinate to the moving
coordinate. p � x y z 

T is a translation displacement
vector. x, y and z are the displacement of platform mass
center along the x-axis, y-axis, and z-axis, respectively. p0 is
the initial height matrix composed of six initial height
vectors, and each vector is 0 0 h0 

T. h0 is the initial height
when the upper platform motion table in the middle
position.

By differentiating equation (1), one obtains

_L �
dL
dt

� _p + _R · RT
· R · A � _p + ω × RAA. (2)

,e matrix form of equation (2) is

_L � LT
n R · A × Ln( 

T
  · _q � Jv _q, (3)

where Jv is velocity Jacobian matrix between the velocity of
the upper platform and the leg velocity. Ln is the unit di-
rection vector matrix of the six legs’ direction and
Ln � [L1/|L1|, . . . , L6/|L6|]. _q � _q � [ _p, ω]T is the upper
platform velocity, in which ω � ωx ωy ωz 

T
is the an-

gular velocity of the moving platform and _L is the leg ve-
locity. Importantly, matrix J is the key to derive the dynamic
equation of joint space.

In addition, kinematic analysis of the load is also re-
quired, such as centroid position and acceleration. Let the
load eccentric position along three axes of the moving co-
ordinate system be Δx, Δy, and Δz. ,e load eccentric
position along three axes of the static coordinate can be
expressed as

lx � c q5( c q6( Δx + s q4( s q5( c q6( c q4( s q6(  Δy

+ c q4( s q5( c q6(  + s q4( s q6(  Δz,

ly � c q5( s q6( Δx + s q4( s q5( s q6(  + c q4( c q6(  Δy

+ c q4( s q5( s q6(  − s q4( c q6(  Δz,

lz � −s q5( Δx + s q4( c q5( Δy + c q4( c q5( Δz,

(4)

where c () and s () are abbreviations for the trigonometric
functions cosine and sine; q4, q5, and q6 are the three Euler
angles of the system; and lx, ly, and lz are the load eccentric
position along three main axes. From equation (4), it is easy
to know that the lx, ly, and lz are related to the Euler anglers
of the upper platform.
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Figure 1: Schematic of the Stewart robot. (a) Simplified structure. (b) Mathematical representation.
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Let the load centroid acceleration in the static coordinate
be €pl � €xa€ya€za 

T. According to the rigid body dynamics
theory, the relation between the load centroid acceleration
and the upper platform centroid acceleration can be
expressed by

€xa � €x + lz _ωy − ly _ωz, €ya � €y + lz _ωx − lx _ωz, €za

� €z + ly _ωx − lx _ωy. (5)

,e relationship between €pl and €p is shown in Figure 2.
Note that the OC − XCYCZC coordinate system in Figure 1 is
not the same as the OB − XBYBZB coordinate system in
Figure 2. ,e origin of the OC − XCYCZC coordinate system
is always coincident with the origin of the moving coor-
dinate system, and the axes are always in the same direction
as the axes in the static coordinate system. OC − XCYCZC

coordinate system is the coordinate system used to establish
the dynamic equation. In addition, Gp is the position of the
load center of mass.

2.2.DynamicModeling. First, we analyze the load dynamics.
Based on Newton’s second law and angular momentum
theory, inertia force and moment of load can be described:

fL � ml
€pl � ml

€p − mlQ _ω, (6)

TL �
B
IL _ω − mlQ€p , (7)

where ml is the mass of load; BIL is the inertia tensor of load
in the static coordinate system; and Q is the antisymmetric
matrix composed of each element of the eccentric vector of
the center of mass loaded in the static coordinate system and
is as follows:

Q �

0 −lz ly

lz 0 −lx

−ly lx 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

Based on the Newton–Euler method, the dynamic model
in task space can be obtained:


6

i�1
ei · fi � fL + mp

€p + mp + ml g, (9)
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i�1
R · ai(  × ei · fi(  � TL +

BIP _ω + ω ×
BIL +

BIP ω,

(10)

where fi is the force of hydraulic cylinder of ith leg; ei is the
unit direction vector of the ith legs; fL is inertia force of load;
TL is inertia moment of load; mp is the mass of moving
platform; and BIP is the inertia tensor of moving platform in
the static coordinate system. In addition, the third term on
the right of equation (9) is the gravity of the system. ,e
second term on the right of equation (9) represents the
inertia force of the moving platform and the second term on
the right of equation (10) represents the inertia force of the
moving platform. Moreover, the third term on the right of
equation (10) is Coriolis/centrifugal forces.

From equations (9) and (10), it can be obtained that

τ � M(q) · €q + H( _q, q) · _q + G, (11)

where τ is the driving force vector in the task space; H( _q, q)

is the centrifugal/Coriolis term; G is the gravity term; and
M(q) is the mass of the system.

,e relationship between the driving force vector in the
task space and the driving force vector in the joint space can
be expressed by

τ � JTf . (12)

From equations (11) and (12), the dynamic model of the
robot in joint space can be rewritten as

f � ML(l) · €l + HL(l, _l) · _l + GL, (13)

where ML(l) is the system mass matrix in joint space,
HL(l, _l) is the centrifugal/Coriolis term in joint space, GL is
the gravity term in joint space, and

ML(l) � J−1TM(q)J−1
,

HL(l, _l) � J− 1T M(q) _J
− 1

+ H( _q, q)J−1
 ,

GL � J− 1TGq.

(14)

,e impact of the centrifugal/Coriolis term is small,
which can be ignored, and equation (13) can be rewritten as

f � ML(l) · €l + GL. (15)

2.3. Dynamic Effects of Load. Before establishing the iden-
tification model and designing the excitation trajectory, it is
necessary to analyze the impact of the load on the dynamics
of the manipulator. Analyzing the dynamic equation (11),
the equation mainly includes three items, Coriolis/cen-
tripetal force, gravity force, and inertial force. ,e load will
affect the value of the Coriolis force/centripetal force, but
this item of parallel manipulator is generally small and
generally ignored. ,e gravity term is only related to the
mass of the system. For parallel manipulators, the mass of
the load is usually a constant value and can be easily
measured, so it is not necessary to identify the load mass.
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Figure 2: Kinematic relationship.
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,erefore, we mainly analyze the effect of load on the inertial
force of the system.

,e inertial forces and torques of the system are as
follows:

fI,x � ma€x + mp€x + mplz _ωy − mply _ωz,

fI,y � ma€y + mp€y − mplz _ωx + mplx _ωz,

fI,z � ma€z + mp€z + mply _ωx + mplx _ωy,

MI,rx �
B
Ip,xx +

B
Il,xx  _ωx − mplz€y + mply€z − mplxly _ωy − mplxlz _ωz −

B
Il,xy _ωy −

B
Il,xz _ωz −

B
Ip,xy _ωy −

B
Ip,xz _ωz,

MI,ry �
B
Ip,yy +

B
Il,yy  _ωy + mplz€x − mplx€z − mplylz _ωz − mplxly _ωx −

B
Il,xy _ωx −

B
Il,yz _ωz −

B
Ip,xy _ωx −

B
Ip,yz _ωz,

MI,rz �
B
Ip,zz +

B
Il,zz  _ωz − mply€x + mplx€y − mplxlz _ωx − mplylz _ωy −

B
Il,xz _ωx −

B
Il,yz _ωy −

B
Ip,xz _ωx −

B
Ip,yz _ωy,

(16)

where BIp,xx, BIp,yy, and BIp,zz are the moments of inertia of
moving platform in the static coordinate system, and BIp,xx,
BIp,xx, and BIp,xx are the products of inertia of moving
platform in the static coordinate system; BIp,xx, BIp,yy, and
BIp,zz are the moments of inertia of load in the static co-
ordinate system, and BIl,xx, BIl,xx and BIl,xx are the products
of inertia of load in the static coordinate system.

Equation (16) is the inertial force equation of the PM
with load. ,e equation shows that the load dynamic pa-
rameters, such as mass, inertia tensor, and position of load
centroid have an effect on the inertial force or moment of the
system. Analyzing equation (16), we can see that the inertial

force or moment on a certain degree of freedom is not only
determined by the acceleration on that degree of freedom,
but also determined by the acceleration on the other degrees
of freedom. So the PM with load has strong dynamic
coupling characteristics among the six degrees of freedom.
In addition, it is easy to know that the dynamic coupling is
mainly caused by load.

Equation (16) can be rewritten as

FI � M(q)€q . (17)

,e mass matrix of equation (17) can be expressed by

M(q) �

m 0 0 0 mplz −mply

0 m 0 −mplz 0 mplx

0 0 m mply −mplx 0

0 −mplz mply
BIl,xx + BIp,xx −BIp,xy − BIl,xy − mplxly −BIp,xz − BIl,xz − mplxlz

mplz 0 −mplx −BIp,xy − BIl,xy − mplxly
BIl,yy + BIp,yy −BIp,yz − BIl,yz − mplylz

−mply mplx 0 −BIp,xz − BIl,xz − mplxlz −BIp,yz − BIl,yz − mplylz
BIl,zz + BIp,zz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

,e off-diagonal elements in M(q) are the cause of the
dynamic coupling among the six DOFs. Extracting these
nondiagonal elements, the coupled mass matrix Mc(q) can
be obtained:

MC(q) �
03×3 L3×3

J3×3 K3×3
  �

0 0 0 0 mplz −mply

0 0 0 −mplz 0 mplx

0 0 0 mply −mplx 0

0 −mplz mply 0 −BIp,xy − BIl,xy − mplxly −BIp,xz − BIl,xz − mplxlz

mplz 0 −mplx −BIp,xy − BIl,xy − mplxly 0 −BIp,yz − BIl,yz − mplylz

−mply mplx 0 −BIp,xz − BIl,xz − mplxlz −BIp,yz − BIl,yz − mplylz 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(19)

where 03×3 is third-order zero matrix and L3×3, J3×3, andK3×3
are the third-order submatrix of MC(q). First, analyze the

submatrix L. ,e nonzero elements in the matrix L are the
coefficients of angular acceleration in the inertial force
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equation. ,us, the element value in this matrix can be used
to measure the dynamic coupling influence of rotational
motion on the translational motion. ,e larger the element
value, the stronger the coupling effect. For example, if the
matrix is a zero matrix, the coefficients representing the
angular acceleration in the inertial force term are all zero,
indicating that the rotational motion does not affect the
translational motion. In the same way, the matrix L is
composed of the coefficients of each translational acceler-
ation in the moment of inertia, which represents the in-
fluence of translational motion on rotational motion. It can
be seen from equation (19) that the elements in J and L are
only related to the load, and the value of each nonzero el-
ement is determined by the load mass and the position of the
centroid, so it is important to know their values a priori.
Matrix K describes the dynamic coupling between the three
rotational degrees of freedom and the nondiagonal elements
in the matrix K are mainly determined by the load dynamic
parameters.

In summary, the load has a greater impact on the dy-
namics of the system, especially the inertial force of the load.
,erefore, the dynamic identification of the load is very
important.

3. Identification Process

In order to eliminate the influence of the load on the dy-
namic characteristics of the parallel manipulator and ensure
the application of some advanced model-based control
strategies, it is necessary to identify the parameters of the
dynamic model of the load. Since the mass of the load is
generally easier to determine, this paper only studies the
parameter identification of the position of the centroid and
the inertia tensor of the load. ,e inertia tensor and the
position of the center of mass used in equation (11) are
referred to as the dynamic parameters in the static coor-
dinate system.

,e inertia tensor of load is a 3∗ 3 matrix and can be
expressed by

BIL � R ·
AIL · RT

, (20)

where AIL is the inertial tensor of load in moving coordinate
system.

,e position of the center of mass is a column vector and
its equation is

Bb � R ·
Ab, (21)

where Ab � Δx Δy Δz 
T is Bb � lx ly lz 

T
.

From equations (20) and (21), it is easy to know that the
dynamic parameters are not constant and they change with
the excitation trajectory of three rotational DOFs. However,
the parameter identification of variables is very difficult and
the corresponding real-time identification algorithm needs
to be designed. To cope with this problem, the inertia tensor
and the position of the center of mass relative to the moving
coordinate system are selected as a base parameters set
because these two parameters are constant and not affected
by the trajectory of excitation, which can reduce the diffi-
culty of identification.

3.1. Excitation Trajectory. Although there is no variable in
the basic parameters set, the equation of inertial force/
moment with regard to the identified parameters is not
simple. In equation (16), the identification parameters are
coupled with each other, which is impossible to separate. In
order to reduce the coupling degree of the identified pa-
rameters in the dynamic equation, it is necessary to sim-
plify the dynamic equation with regard to the identified
parameters. When the given signal is a translational degree
of freedom signal with a small amplitude, the coupling
amplitude of each rotational degree of freedom is relatively
small, and the system can be regarded as a small transla-
tional movement near the zero position, and the rotation
matrix R can be treated as the identity matrix. In addition,
when the given signal is a rotation signal with a small
amplitude (less than 1 degree), the rotation matrix can also
be regarded as the identity matrix. When the rotation
matrix R is the identity matrix, formula (16) can be sim-
plified to formula

fI,x(t) � ma€x(t) + mp€x(t) + mpΔz _ωy(t),

fI,y(t) � ma€y(t) + mp€y(t) − mpΔz(t) _ωx,

fI,z(t) � ma€z(t) + mp€z(t),

MI,rx(t) �
A

Ip,xx +
A

Il,xx(t) + mpΔz(t)
2

  _ωx(t) − mpΔz(t)y(t),

MI,ry(t) �
A

Ip,yy +
A

Il,yy(t) + mpΔz(t)
2

  _ωy(t) + mpΔz(t)€x(t),

MI,rz(t) �
A

Ip,zz +
A

Il,zz(t)  _ωz(t).

(22)

,e identified parameters in equation (22) are AIl,xx,
AIl,yy, AIl,zz, and Δz. In order to obtain sufficient infor-
mation on these parameters, the exciting trajectory should
be well designed.

Equation (3) requires that the amplitude of the given
excitation signal on rotational direction should be small
enough. Because when the rotation degree of freedom
excitation signal is applied, the simplified model will
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have a large modeling error relative to the original
model. Due to the dynamic coupling characteristics
between Dx and Ry, the motion on Dx and Ry both can
excite dynamic parameters AIl,yy and Δz. For these two
parameters, the dx direction is selected to apply an ex-
citation signal because the translation signal satisfies
equation (6) better than the rotation signal. Similarly, the
dx direction is selected to apply an excitation signal to
excite dynamic parameters AIl,xx and Δz. Since the last
dynamic parameter AIl,zz only exits in the equation of
MI,rz, the Rz direction is selected to apply an excitation
signal to excite dynamic parameter AIl,zz. Note that the
amplitude of the excitation signal on Rz direction should
satisfy the condition of equation (22).

,e excitation trajectory of the system is as follows:

dx � 0.2 · sin(πt),

dy � 0.2 · sin(πt),

rz � 0.2 · sin(πt).

(23)

It can be seen from the above equation that the excitation
signals of the system are two translational signals, one ro-
tational signal, and the rotational signal with a small am-
plitude, so it satisfies the system dynamics equation (22).
Note that the excitation signal in the rotation direction
cannot be too small; otherwise, the dynamic characteristics
of the system cannot be well excited.

3.2. EKF Identification Process. Select the state variable of the
system: angular velocity in Rx, Ry, and Rz directions, centroid
eccentricity z, and load moment of inertia AIl,xx, AIl,yy, AIl,zz.

,e state vector of the system is

x � vrx(t) vry(t) vrz(t) z(t) AIl,xx (t)
A

Il,yy(t)
A

Il,zz(t) 
T
.

(24)

Establish the system differential equation as follows:

_vrx(t) �
mpz(t)fI,y(t) + mMI,rx(t)

m AIp,xx + AIl,xx(t) + mpz(t)
2

   − m
2
pz(t)

2,

_vry(t) �
mpz(t)fI,x(t) − mMI,ry(t)

m
2
pz(t)

2
− m

A
Ip,yy +

A
Il,yy(t)  + mpz(t)

2
 

,

_vrz(t) �
MI,rz(t)

AIp,zz + AIl,zz(t)
,

_z(t) � 0,

A _Il,xx(t) � 0

A _Il,yy(t) � 0,

A _Il,zz(k) � 0.

(25)

,e discrete form of formula (25) is as follows:

_vrx(k) �
mpz(k − 1)fI,y(k − 1) + mMI,rx(k − 1)

m AIp,yy + AIl,yy(t)(k − 1) + mpz(k − 1)
2

   − m
2
pz(k − 1)

2,

_vry(k) �
mpz(k − 1)fI,x(k − 1) − mMI,ry(k − 1)

m
2
pz(k − 1)

2
− m

A
Ip,xx +

A
Il,xx(t)(k − 1) + mpz(k − 1)

2
  

,

_vrz(k) �
MI,rz(k − 1)

AIp,zz + AIl,zz(t)(k − 1)
,

_z(k) � 0,

_Ipc,xx(k) � 0,

Ipc,yy(k) � 0,

_Ipc,zz(k) � 0.

(26)

,e derivative of the state vector is as follows:

_xk � _vrx(k) _vry(k) _vrz(k) _z(k) A _Il,xx (k)
A _Il,yy(k)

A _Il,zz(k) 
T
.

(27)

From formulas (26) and (27), the state equation of the
system is

xk � _xk−1Δt + xk−1 + Wk−1. (28)

,e observed values of the system are the angular ve-
locities in the directions of the three degrees of freedom of
Rx, Ry, and Rz, and the observation equation is as follows:

zrx(k) � vrx(k) + Vrx(k),

zry(k) � vry(k) + Vry(k),

zrz(k) � vrz(k) + Vrz(k).

(29)

,e observation vector and the observation noise vector
are as follows:

zk � zrx(k) zrx(k) zrx(k) 
T
,

Vk � Vrx(k) Vrx(k) Vrx(k) 
T
.

(30)

Equations (28) and (29) are the state space equation and
observation equation of the system, respectively, which are
written as

xk � f xk−1(  + Wk−1,

zk � Hxk + Vk−1,
 (31)

where H � E3×3 04×3  is the observation matrix of the
system.

Equation (31) is the system model that needs to be
identified. ,e extended Kalman filter algorithm is used to
estimate the parameters of the model. ,e extended Kalman
filter algorithm is mainly divided into two parts, the time
update part and the measurement update part.,e two parts
are introduced separately below.

3.2.1. Time Update. ,e main purpose of the time update
equation is to calculate the next prior estimate vector on the
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basis of the last optimal estimate vector and also to update
the prior error covariance matrix. ,e time update (pre-
diction) equation is

x
−
k � f xk−1( ,

P
−
k � Jk−1Pk−1J

T
k−1 + Qk−1.

(32)

When the system performs state transition, there will be
state transition noise, which is Gaussian white noise, and its
covariance matrix is Q in the time update equation.

J is the Jacobian matrix of the system, which is obtained
by the partial derivative of the state function f on the state
vector x. ,e expression of the Jacobian matrix of the
identification model in this paper is as follows

:

J �

zf1

zx1

zf1

zx2
. . .

zf1

zx7

zf2

zx1

zf2

zx2
. . .

zf2

zx7

⋮ ⋮ ⋱ ⋮

zf7

zx1

zf7

zx2
. . .

zf7

zx7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

E3×3 N

04×3 E4×4

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (33)

N is the submatrix of J, and its expression is as follows:

N �

j11 j12 0 0

j21 0 j22 0

0 0 0 j34

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (34)

where

j11 �
ΔtfI,x(k − 1)mp

m
2
pz(k − 1)

2
− m

A
Ip,xx +

A
Il,xx(t)(k − 1) + m

2
pz

2
(k − 1) 

,

−
Δt 2m

2
pz(k − 1) − 2mmpz(k − 1)  mpz(k − 1)fI,x(k − 1) − mMI,ry(k − 1) 

m
2
pz

2
(k − 1) − m

A
Ip,xx +

A
Il,xx(t)(k − 1) + mpz

2
(k − 1)  

2 ,

j12 �
m mpz(k − 1)fI,x(k − 1) − mMI,ry(k − 1) 

m
2
pz

2
(k − 1) − m

A
Ip,xx +

A
Il,xx(t)(k − 1) + mpz

2
(k − 1)  

2
⎛⎜⎝ ⎞⎟⎠Δt,

j21 �
fI,y(k − 1)mpΔt

m AIp,yy + AIl,yy(t) + mpz(k − 1)
2

   − m
2
pz(k − 1)

2

−
2mmpz(k − 1) − 2m

2
pz(k − 1)  mpz(k − 1)fI,y(k − 1) + mMI,rx(k − 1) Δt

m
A

Ip,yy +
A

Il,yy(t)(k − 1) + mpz(k − 1)
2

   − m
2
pz(k − 1)

2
 

2 ,

j22 �
m mpz(k − 1)fI,y(k − 1) + mMI,rx(k − 1) Δt

m
A

Ip,yy +
A

Il,yy(k − 1) + mpz(k − 1)
2

   − m
2
pz(k − 1)

2
 

2,

j34 �
MI,rz(k − 1)

A
Ip,zz +

A
Il,zz(k − 1) 

2
⎛⎜⎝ ⎞⎟⎠Δt.

(35)
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3.2.2. Measurement Update. ,e a priori estimated value
and the actual value of the system are not necessarily equal,
so the a priori estimated value needs to be corrected by the
measured value. ,e main purpose of the measurement
update equation is to find the optimal estimated value of the
current iteration of the system. Update the Kalman gain, the
optimal estimate of the system, and the posterior error
covariance. ,e measurement update equation is

Kk � P
−
k H

T HP−
k H

T
+ Rk 

−1
,

xk � x
−
k + Kk zk − Hx

−
k( ,

Pk � I − KkH( P
−
k .

(36)

In the equation, K is the Kalman gain and P is the
posterior error covariance matrix. ,e system will produce
measurement noise during measurement.,is noise is white
noise. R in the measurement update equation is the co-
variance matrix of the measurement noise. Now, we sum-
marize the EKF identification algorithm for the parallel
robot manipulator as shown in Algorithm 1.

4. Numerical Simulations

In this section, the simulation analysis is carried out in
MATLAB/Simulink. For the simulation model, the me-
chanical model is built using Multibody and the sampling
time is set to 1ms. Moreover, the main parameters of the
Stewart robot with uncertain load are shown in Table 1.

Corresponding simulation strategies are designed for load
dynamics parameter identification, as shown in Figure 3.

First, a specific excitation signal is used to excite the
dynamic characteristics of the load. ,en, the displacement,
velocity, and output force of each leg were collected.
According to the kinematic analysis of the parallel manip-
ulator, the displacement, velocity, and force in the DOF
space can be obtained by the kinematic positive solution or
the velocity Jacobian matrix transformation of these mea-
sured values. Finally, the displacement, velocity, and force in
the DOF space are input into the estimator and the estimator
can calculate the dynamic parameters of the load based on
the previously designed identification algorithm.

According to Figure 4, the corresponding simulation
system was built in MATLAB/Simulink, as shown in

Figure 4. ,e first is a signal generator block used to
generate a target trajectory. ,e second is the kinematics
block and its main function is to convert the task space
signal to the joint space signal and calculate the speed
Jacobian matrix. ,e third is the PID controller block. ,e
fourth is the hydraulic system block. ,e fifth is the
mechanical model of the Stewart parallel mechanism. ,e
sixth is the EKF estimator.

In the simulation, the initial estimated value of the
state variables is all 0 and the initial error covariance
matrix is diag 1 1 1 1 10 500 500( . Moreover, the
value of the dynamic parameters to be identified is shown
in Table 2.

,e identification results of load dynamics parameters
are shown in Figure 4.

It can be seen from Figure 5 that the proposed method in
this paper can estimate the dynamic parameters of loads. It
can be seen from Figure 5(a) that this identification method
has a high estimation accuracy for centroid eccentricity
along the z-axis direction, and the identification of Δz curve
in the figure almost overlaps with the real value.
Figures 5(b)–5(d) are identification curves of load dynamics
parameters AIl,xx, AIl,yy, and AIl,zz, respectively. Although
there is a certain error between the values of the three inertial
parameters and the real values, the error is not large.

Table 3 shows the true value Xr, identification value Xid,
and relative error er of the load dynamic parameters ob-
tained by the proposed method. ,e relative error er is
defined as

er �
Xr − Xid

Xr

× 100%. (37)

Algorithm extended Kalman filter algorithm
(1) Initialize the estimated value of the state variable and the error covariance matrix
(2) Repeat
(3) Calculate prior state estimates, x−

k � f(xk−1)

(4) Calculate the Jacobian matrix, Jk−1
(5) Calculate the prior error covariance, P−

k � Jk−1Pk−1J
T
k−1 + Qk−1

(6) Calculate Kalman gain, Kk � P−
KHT(HP−

KHT + Rk)− 1

(7) Update the posterior state estimate, xk � x−
K + Kk(zk − Hx−

K)

(8) Update posterior error covariance, Pk � (I − KkH)P−
K

(9) Output the best estimate of this iteration
(10) Until Simulation stopped
(11) End

ALGORITHM 1: Identification algorithm.

Table 1: Main parameters of the Stewart robot with load.

Parameters Value
Radius of upper/lower platform (m) 0.4/0.6
Initial length of the linear hydraulic cylinder (m) 0.8741
Min/max stroke of the hydraulic cylinder (m) −0.3/0.3
Mass of load (kg) 500
Mass of upper platform (kg) 100
Moment of inertia of the upper platform
(kg·m2) diag (25, 25, 44)
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Table 2: Load dynamics parameters to be identified.

Symbol Parameters Value Unit
Δz Centroid position 0.3 m
diag AIl,xx

AIl,yy
AIl,zz  Moment of inertia of load (kg·m2) diag (25, 25, 25) kg·m2
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Figure 5: Continued.
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5. Conclusion

,e proposed method has been successfully applied to a six-
degree-of-freedom Gough–Stewart parallel manipulator for
load dynamic parameters estimation. ,e identification al-
gorithm is simple and easy to implement. Compared with
the traditional least square method, the proposed identifi-
cation approach does not require linearization of the dy-
namic model and optimization of the excitation trajectory.
Moreover, this method is not sensitive tomeasurement noise
and without acceleration measurements in the process of
identification.

Note that the method proposed in this paper is an offline
identification method. How to study a load real-time
identification algorithm not limited to trajectory needs
further study.
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