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+e current paper studies guaranteed cost time-varying formation tracking design and analysis problems of high-order swarm
systems subject to intermittent communications. Different from the existing work of the time-varying formation control, the time-
varying formation tracking can be achieved while certain performance can be guaranteed, and the impacts of the intermittent
communications and switching topologies are considered. First, a new intermittent time-varying formation tracking control
protocol with a global performance index is proposed, where not only the formation regulation performances but also the control
energy expenditures are involved. +e codesign of the gain matrix with the performance index is achieved to compromise the
formation regulation performances against control energy expenditures, and the guaranteed cost is determined to restrain the
upper bound of the performance index. +en, guaranteed cost time-varying formation tracking design and analysis criteria are
given, where the matrix variable of the linear matrix inequality conditions is used to design the gain matrix and to determine the
guaranteed cost. Finally, a simulation example is provided to illustrate the effectiveness of the theoretical results.

1. Introduction

As one of the most important topics of the distributed
cooperative control of swarm systems, formation control has
aroused many attentions from researchers in recent years
[1–7]. Distributed formation control means to design for-
mation control protocol using only local information such
that a team of autonomous agents forms and maintains the
expected geometrical shape. Recently, due to the rapid
development of the consensus theory, many scholars in-
vestigated the formation control problem via consensus-
based approaches [8–14]. +e core idea of the consensus-
based formation control is to drive the agents to the desired
states such that they can keep the specified difference from
the virtual agreement states, which can be determined by the
consensus control. Formation can be categorized into
leaderless formation and formation tracking according to
the different communication topology structure. For the
leaderless one, each agent plays equal roles to determine the
formation shape cooperatively. However, for the formation

tracking, the followers should form the expected formation
and track the leader, which determines the swarm property
of the whole swarm systems.

A basic problem of the consensus-based formation
control is the time-invariant formation control, where the
expected formation shape is fixed. In this case, the relative
position between any two agents will not change when the
formation is formed. Time-invariant formation control/
formation tracking can be regarded as the directed extension
of the consensus/consensus tracking, and it was widely
investigated in recent years [15–19]. However, due to the
complicated task requirements and task updates, time-
varying formation tracking is often needed in many ap-
plications, such as cooperative attack task, obstacle avoid-
ance, and resource exploration. Compared with the time-
invariant formation, time-varying formation tracking is
more challenging since it should consider the impacts of the
derivate of the formation function and the formation
changes in time. For second-order swarm systems with
switching topologies, the time-varying formation tracking
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control was studied [20]. Wang et al. [21] investigated the
robust time-varying formation design problems for second-
order swarm systems with external disturbances where a
new distributed extended state observer was constructed to
compensate the influence of the disturbances. For general
high-order swarm systems, time-varying formation tracking
control and adaptive time-varying formation control were
addressed [22, 23], respectively.

In many practical applications, the communication
among agents may not always be continuous due to some
communication faults including congestion of communi-
cation channels, packet losses, and sensing device failures.
+ese communication faults can be modeled as intermittent
communication where each agent can exchange its infor-
mation to its neighbors over connected communication time
units, but the interaction among agents will disappear in
disconnected communication time units. Consensus of
second-order swarm systems with intermittent communi-
cations was studied in [24]. Considering the impact of time
delays and intermittent communications, Fattahi and Afshar
[25] investigated the adaptive consensus control problem for
high-order swarm systems. Sun and Wang [26] addressed
the consensus problem for high-order swarm systems with
Lipschitz nonlinear dynamics and intermittent communi-
cations where an interesting sampling time unit approach
was proposed to transfer the intermittent consensus control
problems to asymptotical stability problems of the swarm
systems with input delays. In [24–26], the communication
topology was fixed over connected communication time
units. However, many swarm systems suffer switching to-
pologies due to the changes of communication channels
among agents as shown in [27–29] where the intermittent
communications were not considered. It should be noted
that it is difficult to deal with the intermittent communi-
cations and the switching topologies over connected com-
munication time units simultaneously, and they were not
considered in time-varying formation tracking problems,
which form one of the motivations of the current paper.

Note that the abovementioned works only studied the
formation achievement strategy without considering the
performance constraints. However, it makes much sense to
investigate the time-varying formation tracking control
method with optimal/suboptimal performance indexes since
there exist many resource limitations, and the control
protocol should be optimized in real-world applications. In
this sense, it is challenging to design a proper formation
control protocol such that the time-varying formation
tracking can be achieved, while the associated performance
is guaranteed. For consensus control of swarm systems,
there are some interesting works that address the optimal/
suboptimal control problems. In [30], the optimal consensus
algorithmwas proposed with global performance indexes for
first-order swarm systems where it was shown that the
complete graph is needed to realize the global optimization
of consensus. To relax the topology from the complete graph
to the connected undirected graph, guaranteed cost con-
sensus was achieved with different conditions in [31–33].
However, there are rare works that consider the time-
varying formation tracking with guaranteed cost

performance analysis, and it is interesting to investigate how
the formation variance affects the guaranteed cost of swarm
systems, which also motivates the study of the current paper.

Guaranteed cost time-varying formation tracking
problems for high-order swarm systems with intermittent
communications and switching topologies are addressed in
the current paper. First, an intermittent time-varying for-
mation tracking control protocol containing the switching
topologies is constructed with the corresponding perfor-
mance index. +en, the dynamics of the whole closed-loop
system is decomposed into two parts by a nonsingular
transformation and an orthonormal transformation suc-
cessively, which can convert the formation tracking problem
of the swarm system to the asymptotical stability problem of
the reduced-order system.+e stability of the reduced-order
system is analyzed, respectively, in the connected commu-
nication time units and the disconnected communication
time units to obtain the exponential condition of the
asymptotical stability. Sufficient conditions of guaranteed
cost time-varying formation tracking design and analysis are
derived in the form of linear matrix inequality, and the
guaranteed cost is determined to restrain the upper bound of
the performance index.

Compared with the relative works about the formation
control, the contributions of the current paper are twofold.
First, the guaranteed cost time-varying formation tracking
control problem is addressed, which can ensure that swarm
systems can not only achieve the time-varying formation
tracking but also satisfy the guaranteed cost constraints; that
is, the compromise design between the formation regulation
performance and the control energy expenditure should be
realized with respect to the proposed performance index,
and the guaranteed cost is determined to describe the upper
bound of the performance index. However, the results on the
time-varying formation control in [20–23] did not consider
the impact of the guaranteed cost constraints. Second, the
communication constraints of both intermittent commu-
nications and switching topologies are introduced into the
design process of the guaranteed cost time-varying forma-
tion tracking, which contains two challenging problems.+e
first one is that the swarm stability of the whole swarm
systems should be analyzed in the connected communica-
tion time units and the disconnected communication time
units, respectively. In this case, the stability analysis methods
in [20–23] are invalid, and the divergent property of the
whole system is tackled in the disconnected communication
time units by proposing the new method. +e second one is
that the impact of the intermittent communications should
be considered for the guaranteed cost performance analysis.
In this sense, the performance index becomes a piecewise
continuous integral function and is difficult to be addressed
when deriving the main results of the current paper.

+e rest of the current paper is shown in the following
sections orderly. Section 2 formulates the problem model
where the basic concepts of the communication topology are
introduced and the formation tracking control protocol is
proposed. In Section 3, guaranteed cost time-varying for-
mation tracking design and analysis criteria are given, re-
spectively, and the guaranteed cost is determined. Section 4
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presents a numerical simulation to illustrate the correctness
of the proposed theorems. In Section 5, the main results of
the current paper are summarized. +roughout the whole
paper, N and N+ are used to stand for the natural numbers
and positive natural numbers, respectively. R represents the
real matrices with proper dimensions. ⊗ is the Kronecker
product, and ∗ is the symmetric terms in the matrix. +e
positive definite and symmetric matrix is denoted by
PT � P> 0.

2. Problem Description

2.1. Model the Switching Communication Topology. Each
communication topology in the switching topology set, Ga �

G1
a,G2

a, . . . ,Gj
a  (j≥ 2) is modeled as the directed graph

Ga, where the node set is represented by
G � n1, n2, . . . , nN , and the edge set is denoted by
E � (nm, nk): nm, nk ∈ G . Let κ(t): [0, +∞)⟶
1, 2, . . . , j  be the switching signal; then, the edge weighting

a
κ(t)
mk is positive if the edge (nk, nm), nm, nk ∈ G, exists from nk

to nm, and a
κ(t)
mk is zero otherwise. Define the neighboring set

and the indegree of the node nm as
Nκ(t)

m � nk ∈ G: (nk, nm) ∈ E  and dκ(t)
mm � deg(nm) �


k∈Nκ(t)

m
a
κ(t)
mk , respectively. +e Laplacian matrix is defined as

Lκ(t) � [l
κ(t)
mk ]N×N with l

κ(t)
mk � dκ(t)

mm − a
κ(t)
mk . Note that the

switching instants tsi (si ∈ N) of the switching topology set
should satisfy tsi+1 − tsi >Td > 0 with Td the dwell time. It is
assumed that there is no self-loop for all nodes. A directed
path from node nm to node nk is a sequence of edges in the
form of (nm, ni), (ni, nj), . . . , (ns, nk) . +e directed graph is
said to have a spanning tree if a directed path exists from the
root node to any other nodes. To address the formation
tracking problems, it is supposed that each communication
topology in the switching topology set has a spanning tree
with the leader locating at the root node. More details for the
basic concept of graph theory can be found in [34].

2.2. Design the Intermittent Formation Tracking Protocol.

Consider a group of N agents, where agent 1 is the leader,
and the other N − 1 agents are the homogenous followers.
+e dynamics model of the leader-follower swarm system is
described as follows:

_x1(t) � Ax1(t),

_xm(t) � Axm(t) + Bum(t),
 (1)

where m ∈ 2, 3, . . . , N{ }, A ∈ Rp×p, B ∈ Rp×q, xm(t) is the
state, and um(t) is the control signal of agent m. Notice that
the leader lies on the root node of the spanning tree and
receives no information from followers. It is supposed that
the leader’s control input is zero, and the communication
between neighboring followers is undirected.

Since the swarm system (1) is subjected to the inter-
mittent communications and the switching topologies, their
effects should be analyzed before moving on. It is assumed
that a sequence of uniformly bounded time units [t2i, t2i+2) �

[t2i, t2i+1)∪ [t2i+1, t2i+2) (i ∈ N) exists such that
t2i � t12i < t22i < · · · < t

si

2i � t2i+1<t2i+1 + σi � t2i+2, where si and
σi are integers. Let t0 � 0 and 0< θmin ≤ θi � t2i+2 − t2i ≤ θmax.
Define the communication failure rate as
εi � (t2i+2 − t2i+1)/(t2i+2 − t2i) with 0< εi ≤ εmax < 1. In gen-
eral, one can find that the communication channel between
neighboring agents is smooth, and the communication to-
pology may be switched in time units [t2i, t2i+1), but all the
communication channels will be disappeared in time units
[t2i+1, t2i+2). Hence, the communication is intermittent for
the swarm system (1). Moreover, it should be pointed out
that 0<Td ≤ t

si

2i − t
si− 1
2i ≤Td, where Td is bounded and Td is

called the minimum dwell time, and the communication
topology switches at time instant t

si

2i.
Let a piecewise continuous differentiable function hm(t)

(m � 2, 3, . . . , N) represent the expected time-varying for-
mation structure formed by the followers; then, a new
guaranteed cost formation tracking control protocol with
the associated performance index is proposed as

um(t) �

Kl 

k∈Nκ(t)
m ,k≠ 1

a
κ(t)
mk xk(t) − hk(t) − xm(t) + hm(t)( 

+ Kla
κ(t)
m1 x1(t) − xm(t) + hm(t)( ,

t ∈ t2i, t2i+1 ,

0, t ∈ t2i+1, t2i+2 ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Jc � 
+∞

i�0


t2i+1

t2i

Jh(t) + Ju(t)( dt + 
t2i+2

t2i+1

Jh(t)dt ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where m ∈ 2, 3, . . . , N{ },

Jh(t) � 
N

m�1


k∈Nκ(t)
m

a
δ(t)
mk xk(t) − hk(t) − xm(t) + hm(t)( 

T
Q xk(t) − hk(t) − xm(t) + hm(t)( ,

Ju(t) � 
N

m�2
u

T
m(t)Rum(t).

(3)
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i ∈ N, Q � QT > 0, R � RT > 0, and Kl is denoting the
control gain matrix. Jc is the performance index repre-
senting the total of the formation regulation performance
and the control energy expenditure.

For swarm systems subjected to intermittent commu-
nications and switching topologies, the definition of the
guaranteed cost formation tracking control is given as
follows.

Definition 1. For any given bounded initial states xm(0) −

hm(0) (m � 2, 3, · · · , N), the swarm system (1) is said to be
guaranteed cost formation tracking achievable if there exists
a gain matrix Kl such that limt⟶+∞ (xm(t)−

hm(t) − x1(t)) � 0 (m � 2, 3, · · · , N) and Jc ≤Cost, where
Cost is called the guaranteed cost.

+e current paper mainly focuses on the guaranteed cost
formation tracking design problems, in which the gain
matrix is designed, and the guaranteed cost is determined.
Moreover, for the given gain matrix, the guaranteed cost
formation tracking analysis criterion is derived.

Remark 1. Protocol (2) consists of two parts. +e first one is
the intermittent control input, which is constructed by the
state and formation errors between neighboring followers
and those between the leader and the followers over the time
units [t2i, t2i+1) and is set as zero in the time units
[t2i+1, t2i+2), i ∈ N. With the intermittent control input and
the switching neighboring sets and edge weightings, pro-
tocol (2) is piecewise continuous, which will lead to the
piecewise continuous right hand sides of the closed-loop

system in the system stability analysis and is challenging to
be dealt with. +e second one is the performance index,
which describes the total cost of the guaranteed cost for-
mation tracking design. +e weighting matrices Q and R

represent the proportion of the formation regulation per-
formance and the control energy expenditure in the per-
formance index, respectively, which will be taken into
consideration in the gain matrix design. Note that the
performance index Jc is a piecewise continuous integral
function due to the intermittent control input. Moreover,
different from the guaranteed cost consensus, the guaran-
teed cost formation tracking can drive the swarm system to
form an expected formation structure, while the guaranteed
cost can be satisfied. Note that the expected formation
structure can be time-varying and can be designed as much
as required if it can satisfy the formation feasibility condition
as shown in +eorem 1 in the following content.

3. Main Results

In this section, first, the formation tracking problem of the
swarm system (1) is converted to the asymptotical stability
problem of a reduced-order subsystem via nonsingular
transformation. +en, guaranteed cost formation tracking
design and analysis criteria are derived, and the guaranteed
cost is determined to show the upper bound of the per-
formance index.

Denote φm(t) � xm(t) − hm(t), and one can obtain from
(1) and (2) that

_φm(t) �

A φm(t) + hm(t)(  + BKl 

k∈Nκ(t)
m

a
κ(t)
mk φk(t) − φm(t)( 

+BKla
κ(t)
m1 x1(t) − φm(t)(  − _hm(t),

t ∈ t2i, t2i+1 ,

A φm(t) + hm(t)(  − _hm(t), t ∈ t2i+1, t2i+2 .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

Since no formation is required to be formed by the
leader, one can define the auxiliary variable h1(t) ≡ 0 and set
φ1(t) � x1(t) − h1(t). Let φ(t) � [φT

1 (t),φT
2 (t), · · · ,φT

N(t)]T,

x(t) � [xT
1 (t), xT

2 (t), . . . , xT
N(t)]T, and h(t) � [hT

1 (t), hT
2 (t)

, . . . , hT
N(t)]T, then equation (4) can be represented by the

compact form as

_φ(t) �
IN ⊗A( (φ(t) + h(t)) − L

κ(t) ⊗BKl φ(t) − IN ⊗ Ip  _h(t), t ∈ t2i, t2i+1 ,

IN ⊗A( (φ(t) + h(t)) − IN ⊗ Ip  _h(t), t ∈ t2i+1, t2i+2 ,

⎧⎪⎨

⎪⎩
(5)
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where the structure of Lκ(t) is shown as follows:

L
κ(t)

�
0 0

L
κ(t)
f + Λκ(t)

l − Γκ(t)
l

⎡⎣ ⎤⎦,

Λκ(t)
l � diag a

κ(t)
21 , a

κ(t)
31 , . . . , a

κ(t)
N1 ,

Γκ(t)
l � a

κ(t)
21 , a

κ(t)
31 , . . . , a

κ(t)
N1 

T
,

(6)

and L
κ(t)
f represents the Laplacian matrix of followers.

In the sequel, by nonsingular transformation, the closed-
loop system (5) will be decomposed into two subsystems.
First, define the following nonsingular matrix:

U
κ(t)

�
1 0

1N− 1 IN− 1
 , (7)

such that

U
κ(t)

 
− 1
⊗ Ip φ(t) � x

T
1 (t), φT

2 (t), . . . , φT
N(t) 

T
, (8)

with φm(t) � φm(t) − x1(t), m � 2, 3, . . . , N, and

U
κ(t)

 
− 1

L
κ(t)

U
κ(t)

�
0 0

0 L
κ(t)
f + Λκ(t)

l

⎡⎣ ⎤⎦, (9)

where the fact Λκ(t)
l 1N− 1 � Γκ(t)

l is utilized.
+en, the block L

κ(t)
f + Λκ(t)

l is diagonalized. For each
communication topology in the switching topology set, since
there at least exists a spanning tree with the leader locating at
the root node and the communication channels among
followers are undirected and connected, the eigenvalue 0 of
L
κ(t)
f is simple and the block L

κ(t)
f + Λκ(t)

l is positive definite
and symmetric. In this sense, there exists an orthonormal
matrix Wκ(t) such that

W
κ(t)

 
T

L
κ(t)
f + Λκ(t)

l W
κ(t)

� D
κ(t)
f � diag λκ(t)

2 , λκ(t)
3 , . . . , λκ(t)

N ,

(10)

where λκ(t)
m (m � 2, 3, · · · , N) are the eigenvalues of L

κ(t)
f with

the order 0< λκ(t)
2 ≤ λ

κ(t)
3 ≤ · · · ≤ λκ(t)

N . Denote φ(t) �

[φT
2 (t), φT

3 (t), . . . , φT
N(t)]T and ((Wκ(t))T ⊗ Ip)φ(t) � ϕ(t) �

[ϕT
2 (t), ϕT

3 (t), . . . , ϕT
N(t)]T; then, equation (5)fd5 is con-

verted to the following two subdynamics:

_x1(t) � Ax1(t), (11)

_ϕ(t) �

IN− 1 ⊗A(  ϕ(t) + W
κ(t)

 
T
0, IN− 1  U

κ(t)
 

− 1
⊗ Ip h(t) 

− D
κ(t)
f ⊗BKl ϕ(t) − W

κ(t)
 

T
0, IN− 1  U

κ(t)
 

− 1
⊗ Ip  _h(t),

t ∈ t2i, t2i+1 ,

IN− 1 ⊗A(  ϕ(t) + W
κ(t)

 
T
0, IN− 1  U

κ(t)
 

− 1
⊗ Ip h(t) 

− W
κ(t)

 
T
0, IN− 1  U

κ(t)
 

− 1
⊗ Ip  _h(t),

t ∈ t2i+1, t2i+2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Because Uκ(t) is nonsingular and Wκ(t) is orthonormal,
one can derive that the swarm system (1) with control
protocol (2) achieves the time-varying formation tracking if
subdynamics (12) is asymptotical stable; that is,
limt⟶+∞ϕ(t) � 0.

Let λmin � min λs
2: ∀s ∈ 1, 2, · · · , j   and

λmax � max λs
N: ∀s ∈ 1, 2, . . . , j  ; then, the following the-

orem gives the guaranteed cost formation tracking criterion
for the swarm system (1) with protocol (2).

Theorem 1. Swarm system (1) is guaranteed cost formation
tracking achievable by protocol (2) with Kl � λ− 1

mincBTP− 1/2,
if μ(1 − εmax)>ϖεmaxe

ϖεmaxθmax , _hm(t) � Ahm(t), m �

2, 3, . . . , N, and there exist c> 0 and P � PT > 0 such that

Θϖ �
AP + PA

T
− ϖP 2λmaxPQ

∗ − 2λmaxQ

⎡⎣ ⎤⎦< 0,

Θμ �

AP + PA
T

+ μP − cBB
T 2λmaxPQ λmaxλ

− 1
mincBR/2

∗ − 2λmaxQ 0

∗ ∗ − R

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0.

(13)

In this case, the guaranteed cost is

Cost � (x(0) − h(0))
T N − 1 − 1T

N− 1

− 1N− 1 IN− 1

⎡⎣ ⎤⎦⊗P
− 1⎛⎝ ⎞⎠(x(0) − h(0)).

(14)
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Proof. Construct Lyapunov functional candidate as follows:

V(t) � ϕT
(t) IN− 1 ⊗P

− 1
 ϕ(t). (15)

For t ∈ [t2i, t2i+1), i ∈ N, taking the time derivate of V(t)

with respect to the trajectories of equation (12) gives

V(t) � ϕT
(t) IN− 1 ⊗ P

− 1
A + A

T
P

− 1
  − D

κ(t)
f ⊗ P

− 1
BKu + K

T
u B

T
P

− 1
  ϕ(t)

+2ϕT
(t) W

κ(t)
 

T
0, IN− 1  U

κ(t)
 

− 1
⊗P

− 1
A h(t)

− 2ϕT
(t) W

κ(t)
 

T
0, IN− 1  U

κ(t)
 

− 1
⊗P

− 1
  _h(t).

(16)

Define an auxiliary variable

Ξ(t) � Ah2(t) − _h2(t) 
T
, Ah3(t) − _h3(t) 

T
, · · · , AhN(t) − _hN(t) 

T
 

T

. (17)

+en, one can find that Ξ(t) � 0, if _hm(t) � Ahm(t),
m � 2, 3, · · · , N. Based on the above fact, it can be obtained
that

V(t) � ϕT
(t) IN− 1 ⊗ P

− 1
A + A

T
P

− 1
  − D

κ(t)
f ⊗ P

− 1
BKu + K

T
u B

T
P

− 1
  ϕ(t). (18)

Let Ku � λ− 1
mincBTP− 1/2; then, one can show that

_V(t) + μV(t) � 
N

m�2
ϕT

i (t) P
− 1

A + A
T
P

− 1
+ μP

− 1
− λκ(t)

m λ− 1
mincP

− 1
BB

T
P

− 1
 ϕi(t). (19)

It can be derived by pre- and postmultiplying
AP + PAT + μP − cBBT < 0 with P− 1 that

P
− 1

A + A
T
P

− 1
+ μP

− 1
− cP

− 1
BB

T
P

− 1 < 0. (20)

Since λκ(t)
m λ− 1

min ≥ 1, m � 2, 3, · · · , N, one can deduce that
_V(t)< − μV(t). (21)

For t ∈ [t2i+1, t2i+2), i ∈ N, taking the time derivate of
V(t) along equation (12) yields

V(t) � ϕT
(t) IN− 1 ⊗ P

− 1
A + A

T
P

− 1
  ϕ(t)

+ 2ϕT
(t) W

κ(t)
 

T
0, IN− 1  U

κ(t)
 

− 1
⊗P

− 1
A h(t)

− 2ϕT
(t) W

κ(t)
 

T
0, IN− 1  U

κ(t)
 

− 1
⊗P

− 1
  _h(t).

(22)

Due to _hm(t) � Ahm(t), m � 2, 3, · · · , N, one can derive
by similar analysis that

_V(t) − ϖV(t) � 
N

m�2
ϕT

i (t) P
− 1

A + A
T
P

− 1
− ϖP− 1

 ϕi(t).

(23)

Note that P− 1A + ATP− 1 − ϖP− 1 < 0 can be obtained by
pre- and postmultiplying AP + PAT − ϖP< 0 with P− 1;
then, it holds that

_V(t)<ϖV(t). (24)

For t ∈ [t0, t2), i.e., i � 0, one has

V t2( < e
ϖ t2− t1( )V t1( < e

ϖ t2− t1( )e
− μ t1− t0( )V t0(  � e

− μ− (μ+ϖ)ε0( )θ0V(0).

(25)

In virtue of μ(1 − εmax)>ϖεmaxe
ϖεmaxθmax and the fact that

eϖεmaxθmax > 1, it can be deduced that − (μ − (μ + ϖ)ε0)θ0 < 0.
+en, one can obtain for ∀i ∈ N that

V tr+1( <V(0)e
− 

r

d�0 μ− (μ+ϖ)εd( )θd . (26)
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Hence, one can show that for ∀t> 0, there exists a v ∈ N+

such that t2k < t≤ t2k+2. In this case, one has

V(t)≤ e
ϖθmaxV tv( ≤ e

ϖθmaxV(0)e
− 

v− 1

s�0
φs ≤ e
ϖθmaxV(0)e

− v μ− (μ+ϖ)εmax( )θmin

≤ e
ϖθmaxV(0)e

− μ− (μ+ϖ)εmax( )θmin( )/θmax( )t
.

(27)

From (27), it can be concluded that subdynamics (12) is
asymptotical stable; that is, limt⟶+∞ϕ(t) � 0. +erefore,
one can find that the formation tracking can be achieved for
the swarm system (1) with protocol (2).

In the next content, the guaranteed cost formation
tracking achievability is discussed with the performance
index Jc. From (2), one can deduce that

Jh(t) � 2φT
(t) L

κ(t)
f + Λκ(t)

l ⊗Q φ(t),

Ju(t) � φT
(t) L

κ(t)
f + Λκ(t)

l 
2
⊗K

T
l RKl φ(t).

(28)

Due to ϕ(t) � ((Wκ(t))T ⊗ Ip)φ(t) and
Ku � λ− 1

mincBTP− 1/2, one can obtain that

Jc ≤ 
+∞

i�0


N

m�2


t2i+1

t2i

1
4
λ2maxλ

− 2
minc

2ϕT
m(t) P

− 1
BRB

T
P

− 1
 ϕm(t)dt + 

+∞

i�0


N

m�2


t2i+2

t2i

2λmaxϕ
T
m(t)Qϕm(t)dt. (29)

According to (19), (23), and (29), it can be derived that

Jc ≤ 

+∞

i�0


N

m�2


t2i+1

t2i

1
4
λ2maxλ

− 2
minc

2ϕT
m(t) P

− 1
BRB

T
P

− 1
 ϕm(t)dt

+ 
+∞

i�0


N

m�2


t2i+1

t2i

ϕT
m(t) P

− 1
A + A

T
P

− 1
+ μP

− 1
− λκ(t)

m λ− 1
mincP

− 1
BB

T
P

− 1
 ϕm(t)dt

+ 
+∞

i�0


N

m�2


t2i+2

t2i+1

ϕT
m(t) P

− 1
A + A

T
P

− 1
− ϖP− 1

 ϕm(t)

+ 

+∞

i�0


N

m�2


t2i+2

t2i

2λmaxϕ
T
m(t)Qϕm(t)dt

− 
+∞

i�0


t2i+1

t2i

( _V(t) + μV(t))dt + 
t2i+2

t2i+1

( _V(t) − ϖV(t))dt .

(30)

By λκ(t)
m λ− 1

min ≥ 1, Θϖ < 0, Θμ < 0, and Schur complement,
it holds as i⟶ +∞ that

Jc ≤V(0) − 
+∞

i�0


t2i+1

t2i

μV(t)dt − 
t2i+2

t2i+1

ϖV(t)dt . (31)

Utilizing the mean value theorem of integrals gives

Jc ≤V(0) − 
+∞

i�0
μV t2i+1(  t2i+1 − t2i(  − ϖV t2i+2(  t2i+2 − t2i+1( ( 

� V(0) − 
+∞

i�0
μ 1 − εi( V t2i+1(  − ϖεiV t2i+2( ( θi

≤V(0) − 

+∞

i�0
μ 1 − εi(  − ϖεie

ϖεiθi V t2i+1( θi.

(32)

By μ(1 − εmax)>ϖεmaxe
ϖεmaxθmax , one can deduce that

Jc ≤V(0) � ϕT
(0) IN− 1 ⊗P

− 1
 ϕ(0). (33)

Since ϕ(0) � ((Wκ(t))T ⊗ Ip)φ(0), one can find that

ϕT
(0) IN− 1 ⊗P

− 1
 ϕ(0) � φT

(0) W
κ(t)

W
κ(t)

 
T
⊗P

− 1
 φ(0).

(34)

+en, due to φ(0) � ([0, IN− 1](Uκ(t))− 1 ⊗ Ip)φ(0), it
follows from (33) that

Cost � V(0) � φT
(0)

N − 1 − 1 T
N− 1

− 1N− 1 IN− 1

⎡⎣ ⎤⎦⊗P
− 1⎛⎝ ⎞⎠φ(0).

(35)

+is completes the proof of +eorem 1. □

Remark 2. Note that the condition _hm(t) � Ahm(t) in
+eorem 1 is called the formation feasibility condition,
which indicates whether an expected formation is feasible or
not to be achieved by swarm systems. It should be pointed
out that not all formation can be achieved due to the
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dynamic constraint of the agent. For time-varying forma-
tion, the formation function derivate _hm(t) affects the
feasibility of the formation, whose constraint is shown in the
condition _hm(t) � Ahm(t). It can be found that the con-
dition is associated with the dynamic matrix A of each agent.
However, if _hm(t) ≡ 0, which means that the formation is
time-invariant, then the formation feasibility becomes
Ahm � 0, which can be found in [19].

Remark 3. Due to the jointed effect of the intermittent
communication and the switching topology, the right hand
side of the closed-loop system becomes piecewise contin-
uous. Besides, from the proof of +eorem 1, it can be found
that the system stability analysis is divided into two parts due
to the jointed effect of the intermittent communication and
the switching topology. On the one hand, for time units
[t2i, t2i+1), i ∈ N, it can be concluded that the Lyapunov
functional candidate is decreased exponentially by a rate
faster than μ. On the other hand, the value of the Lyapunov
functional candidate may be increased along a rate less than
ϖ in time units [t2i+1, t2i+2). By combining these two aspects
of the stability analysis, it can be shown that the Lyapunov
functional candidate converges with the rate
(μ − (μ + ϖ)εmax)θmin/θmax exponentially according to the

condition μ(1 − εmax)>ϖεmaxe
ϖεmaxθmax . Note that if the

guaranteed cost performance is not considered, then the
condition μ(1 − εmax)>ϖεmax can guarantee the stability of
subdynamics (12). +e condition
μ(1 − εmax)>ϖεmaxe

ϖεmaxθmax ensures that the performance
index Jc can be upper bounded by the guaranteed cost Cost.
Generally speaking, the condition
μ(1 − εmax)>ϖεmaxe

ϖεmaxθmax can always guarantee
μ(1 − εmax)>ϖεmax since eϖεmaxθmax > 1 for positive ϖ, εmax,
and θmax.

+eorem 1 provides the criterion of the guaranteed cost
formation tracking design where the gain matrix Kl is de-
termined. However, if Kl is given, then it is interesting to
analyze whether Kl is feasible to solve the guaranteed cost
formation tracking problems. Set P � P− 1 and use the
convex property of linear matrix inequalities, then the
following theorem gives the sufficient conditions of the
guaranteed cost formation tracking analysis for given Kl.

Theorem 2. For any given Kl, the swarm system (1) with
protocol (2) achieves guaranteed cost formation tracking if
Ku � λ− 1

mincBTP− 1/2 _hm(t) � Ahm(t), m � 2, 3, · · · , N, and
there exists a matrix P � P

T > 0 such that

PA + A
T
P − ϖP + 2λmaxQ< 0,

PA + A
T
P + μP − λmin PBKl + K

T
l B

T
P  2λminQ λminK

T
l R

∗ − 2λminQ 0

∗ ∗ − R

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

PA + A
T
P + μP − λmax PBKl + K

T
l B

T
P  2λmaxQ λmaxK

T
l R

∗ − 2λmaxQ 0

∗ ∗ − R

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0.

(36)

In this case, the guaranteed cost is

Cost � (x(0) − h(0))
T N − 1 − 1 T

N− 1

− 1N− 1 IN− 1

⎡⎣ ⎤⎦⊗P
− 1⎛⎝ ⎞⎠(x(0) − h(0)).

(37)

Remark 4. +e formation design in [20–23] only took care
about how to design a proper gain matrix such that the
expected formation can be achieved, but they did not
consider the guaranteed cost performance when designing
the formation control protocol. In contrast, the current
paper constructs a performance index to describe the total
cost, where the weighting matrices between the formation
regulation performance and the control energy expenditure
are denoted by Q and R. In this case, weighting matrices Q

and R are introduced into the design procedure of the gain
matrix, which can assure that not only the formation
tracking can be achieved but also the performance index can
be constrained by the guaranteed cost. By adjusting the

relative value of Q and R, the compromise design between
the formation regulation performance and the control en-
ergy expenditure can be achieved. Moreover, the guaranteed
costs obtained in +eorems 1 and 2 are associated with the
initial states and formations and the interactionmatrix. Note
that the initial states and formations are often available in
applications and the interaction matrix is related to a time-
invariant star graph, which can be obtained when the
number of agents is determined. Furthermore, in the gain
matrix design, the eigenvalues λmin and λmax are needed,
which is difficult to be calculated. Fortunately, λmin can be
obtained via the method in [35], and λmax can be estimated
by Gersgorin’s disc theorem in [36].

Remark 5. Swarm system with the leaderless structure de-
scribes the dynamics of each agent, where each agent plays
the equal role of the collaborative behavior. However, the
swarm system with the leader-following structure describes
the dynamics of the leader with no control input and that of
the follower. Different from the formation design of
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leaderless swarm systems, the guaranteed cost formation
tracking problem of leader-follower swarm systems owns
two interesting features. First, although the communication
topology among followers is undirected and connected, the
Laplacian matrix of the whole system is asymmetric due to
the existence of the leader. In this sense, a nonsingular
transformation and an orthonormal transformation are
adopted successively to diagonalize the block L

κ(t)
f + Λκ(t)

l of
the Laplacian matrix such that the dynamics of the closed-
loop system can be linearly decoupled to solve the guar-
anteed cost formation tracking problem. Second, the
guaranteed cost is associated with the Laplacian matrix

N − 1 − 1 T
N− 1

− 1N− 1 IN− 1
  of a star graph with the leader locating at

the center, which indicates that the global interaction
mechanism of the whole swarm system is determined by the
leader for the guaranteed cost formation tracking problem.
Besides, the formation tracking movement is fully deter-
mined by the state response leader.

4. Numerical Simulation

In this section, a simulation is given to illustrate the ef-
fectiveness of the proposed guaranteed cost time-varying
formation tracking design method in the above sections.

+e third-order swarm system considered in the sim-
ulation is composed with one leader labeled by 1 and five
followers labeled from 2 to 6 whose dynamics is modeled as
follows:

A �

0 1 0

0 0 1

0.5 − 1 0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B �

2

1

3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(38)

+e switching topology set of the swarm system is shown
in Figure 1, where the topology is switched among topol-
ogies G1

a, G
2
a, G

3
a, and G4

a with the dwell time Td � 0.3 s in
the connected communication time units
t ∈ [0.6i, 0.6i + 0.51) s, i ∈ N, and the communication
among all agents is interrupted in the disconnected com-
munication time units t ∈ [0.6i + 0.51, 0.6(i + 1)) s. In this
case, the maximum communication failure rate is
εmax � 0.15. +e initial states of the whole swarm system are
given as follows:

x1(0) � [3.5, − 2.7, 1.5]
T
,

x2(0) � [3.5, 5.2, − 1.3]
T
,

x3(0) � [4.2, − 2.5, 2.3]
T
,

x4(0) � [− 3.1, − 2.5, 4.6]
T
,

x5(0) � [− 2.1, 4.8, − 1.5]
T
,

x6(0) � [− 6.2, 2.4, − 3.5]
T
.

(39)

+e expected time-varying formation function is chosen
as follows:

hm(t) �

sin t +
2(m − 1)π

5
 

cos t +
2(m − 1)π

5
 

− sin t +
2(m − 1)π

5
 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, m � 2, 3, . . . , 6.

(40)

According to the above form of hm(t), it can be found
that five followers should shape into a regular pentagon and
keep rotating around its center. Meanwhile, the conditions
_hm(t) � Ahm(t), (m � 2, 3, · · · , 6) are satisfied. Set μ � 0.9,
ϖ � 5, R � 0.1, and Q � diag 0.3, 0.1, 0.2{ }. By +eorem 1, it
can be calculated by the FEASP solver in MATLAB that c �

0.0072 and

P �

0.1002 − 0.0646 0.0442

− 0.0646 0.0508 − 0.0335

0.0442 − 0.0335 0.0570

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (41)

In this case, the guaranteed cost is determined as
Cost � 11171.4191, and the gain matrix is design as

Kl � (7.7145, 13.5458, 4.3332). (42)

Figure 2 depicts the error trajectory between the state
and formation of each follower and the leader within 15 s,
where the trajectories of followers are full curves with dif-
ferent colors and that of the leader is a red imaginary line.
One can see from Figure 2 that φm(t) (m � 2, 3, · · · , 6) of five
followers converge to the same value which equals to φ1(t)

of the leader, which means that the error state φm(t) of
five followers achieve consensus and track to that of the
leader.

3

1

5

6 1 2 6 2

5 4

ga
1 ga

2

ga
3 ga

4

4 3

6 2 6 1 2

345 4 3 5

1

Figure 1: Switching topology set Ga.
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Figure 2: Curves of φm(t) (m � 1, 2, . . . , 6). (a) φm1(t). (b) φm2(t). (c) φm3(t).
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Figure 3: Continued.
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+e state snapshots of five followers and the leader are
shown in Figure 3, where the state of the leader is described
as the red pentacle and those of the five followers are
depicted as pink pluses, blue circles, bluish x-marks, green
pentacles, and black squares, orderly. From Figures 3(a)-
3(b), it can be found that the formation of five followers is
achieved with the geometrical shape of the regular pen-
tagon, and the state of the leader locates at the center of the
regular pentagon. From Figures 3(b)–3(d), one can see that
the formation of five followers keeps rotating around the
leader; that is, the time-varying formation tracking is
achieved.

Figure 4 describes the curves of the performance index
and the guaranteed cost, respectively. It can be shown that
the value of the performance index increases to a finite value
that is less than the guaranteed cost, i.e., Jc ≤Cost.

From the simulation results in Figures 2–4, it can be
concluded that the swarm system (1) with intermittent
communications and switching topologies is guaranteed
cost time-varying formation tracking achievable by protocol
(2).

5. Conclusions

Guaranteed cost time-varying formation tracking design and
analysis problems were studied for the swarm system with
intermittent communications and switching topologies. An
intermittent guaranteed cost formation tracking control pro-
tocol was constructed, which consisted of an intermittent
control input and a performance index. It was shown that by
designing the gain matrix of the control protocol, the time-
varying formation tracking was achieved, while the certain
performance was satisfied, where the upper bound of the
performance index was restrained by determining the guar-
anteed cost. By adjusting the weighting matrices of the per-
formance index, the compromised design between the control
energy expenditure and the formation regulation performance
was achieved. Sufficient conditions of the guaranteed cost time-
varying formation design and analysis were given, and the
guaranteed cost was determined. It was proven that if the
formation and the communication failure rate satisfy the
corresponding conditions in +eorem 1, then the high-order
swarm system with intermittent communications and
switching topologies can achieve the guaranteed cost time-
varying formation tracking by designing the gain matrix of the
formation control protocol. +e further works will extend the
main results of this paper from the switching connected to-
pologies to the jointly switching topologies, and the com-
munication among followers can be directed.
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