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Intensified due to rapid urbanization and global warming-induced high temperature extremes, the urban heat island effect has
become a major environmental concern for urban residents. Scientific methods used to calculate the urban heat island intensity
(UHII) and its alleviation have become urgent requirements for urban development. This study is carried out in Zhongshan
District, Dalian City, which has a total area of 43.85 km* and a 27.5 km-long coastline. The mono-window algorithm was used to
retrieve the land surface temperatures (LSTs), employing Landsat remote sensing images, meteorological data, and building data
from 2003, 2008, 2013, and 2019. In addition, the district was divided into local climate zones (LCZs) based on the estimated
intensities and spatiotemporal variations of the heat island effect. The results show that, from 2003 to 2019, LCZs A and D shrank
by 3.225 km? and 0.395 km?, respectively, whereas LCZs B, C, and 1-6 expanded by 0.932 km?, 0.632km?, and 2.056 km?,
respectively. During this period, the maximum and minimum LSTs in Zhongshan increased by 1.365°C and 1.104°C, respectively.
The LST and UHII levels of all LCZs peaked in 2019. The average LSTs of LCZs A-C increased by 1.610°C, 0.880°C, and 3.830°C,
respectively, and those of LCZs 1-6 increased by 2°C-4"C. The UHIIs of LCZs A, C, and D increased by 0.730, 2.950, and 0.344,
respectively, and those of LCZs 1-6 increased from 1.370-2.977 to 3.744-5.379. Overall, the regions with high LSTs are spa-
tiotemporally correlated with high building densities. In this study, the land cover was then classified into four types (LCZs A-D)
using visual interpretation and object-oriented classification, including forested land, low vegetation, bare ground, and water.
Besides, the buildings were categorized as LCZs 1-6, which, respectively, represented low-density low-rises buildings, low-density
high-rises buildings, low-density super high-rises buildings, high-density low-rises buildings, high-density high-rises buildings,
and high-density super high-rises buildings.

1. Introduction

The urban population of China has grown significantly since
the Chinese Economic Reform, with the permanent pop-
ulation urbanization rate of China reaching 60.60% in 2019
[1]. Although the rapid urbanization of China has promoted
economic growth, it has also led to negative environmental
consequences. According to the Fifth Assessment Report of
the IPCC [1], the global average land surface temperature
(LST) increased by 0.85°C from 1880 to 2012, with global
warming [2] as the defining climatic trait of this period [3, 4].

In an effort to improve the quality of urban residential
environments [5, 6], researchers worldwide have studied the
drivers of changes in LST [7, 8] from a variety of per-
spectives, including social and cultural aspects [9-12].
According to these studies, large increases in construction
land areas [13] have altered native landforms [14] and
created numerous artificial heat sources [15, 16] that have
degraded the quality of urban environments and signifi-
cantly exacerbated the heat island effect. Howard was the
first to propose and define these significantly elevated LSTs
found in urban areas (as compared to the surrounding rural
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areas) as the urban heat island (UHI) effect. The difference
between urban and rural LSTs is defined as the urban heat
island intensity (UHII), which is an important metric for
identifying UHIs [17]. In recent years, UHII levels have
increased due to the combined actions of global warming
and extreme heat waves. In addition to reducing the comfort
of urban living [18], this phenomenon also poses a signif-
icant threat to the health of urban residents [19, 20].

At present, two methods are commonly used to measure
the LST. The first is based on on-site observations of air
temperatures at ground monitoring stations, and the second
uses the inversion of thermal-infrared (TIR) remote sensing
data to retrieve the LST product. Compared to the con-
ventional observation-based method, which is limited by the
number of weather monitoring stations and the nonuni-
formity of their distribution [21], TIR remote sensing is
more time-effective [22] and robust against topographic
effects [23, 24]. Therefore, TIR remote sensing is an effective
tool for studying the spatial distribution of the UHI effect
[25]. Urban climate researchers worldwide have used TIR
remote sensing to study the relationship between the UHI
effect and land-use types [26, 27] or blue-and-green spaces
[28] and to establish metrics for assessing the UHII [29, 30].
Although the UHI effect has been extensively studied, a
standardized definition of UHII has yet to be agreed upon by
the scientific community [17]. To this end, Auer [31] pro-
posed a zonal approach to urban climatology, which was
built upon by Stewart and Oke [32] to suggest urban climate
zones (UCZs), where urban and rural landscapes are in-
corporated into the analysis to enable the description of
temperature differences between different landforms. With
this background, Mills and Alexander incorporated GIS
technology with a standardized local climate zone (LCZ)
classification framework to create the World Urban Data-
base and Access Portal Tools (WUDAPT, http://www.
wudapt.org) [33], which helped to standardize the defini-
tions and characterizations of UCZs.

Studies of LCZs have generally been performed at large
scales, e.g., at a city, provincial, or city cluster level [34-38].
In contrast, the spatiotemporal dynamics of street-level
localities have rarely been studied. In this study, using the
mono-window algorithm, high-resolution Landsat images
from 2003, 2008, 2013, and 2019 were utilized in conjunction
with contemporary building and meteorological data to
determine the spatiotemporal variations in UHII for a
number of LCZs. The findings of this study can serve as a
scientific reference for urban planning researchers and guide
efforts to improve the quality of urban residential
environments.

2. Study Area

Zhongshan District is the financial and economic center of
Dalian City, China. It is located in the eastern part
(38°51'-38°55'30"N, 121°37'30"-121°42'30"E) of Dalian
City, which includes 9 subdistricts (Figure 1) and has a total
area of 43.85 km” and a 27.5 km-long coastline. Over the last
decade, the Donggang subdistrict has undergone significant
landscape changes as a result of land reclamation work,
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which has artificially altered the length and shape of its
coastline. Such alterations are typical of Dalian City and
other coastal cities. Hence, changes in the UHII of this
region are likely representative of other coastal areas of
China.

3. Data Sources

Dalian City is located in the northern warm temperate zone
and has an oceanic, warm temperate monsoonal climate.
From 2003 to 2019, hot days, during which the UHI effect is
most significant, occurred most frequently in August. The
average August temperature has increased by 2.3°C over the
past 20 years, albeit with fluctuations. In 2003 and 2019, the
average August temperatures were 23.6°C and 25.9°C, re-
spectively, reflecting intensified discomfort of urban envi-
ronments in Dalian City. Therefore, we selected remote
sensing images of Zhongshan in August to calculate its
UHIL

Table 1 lists the remote sensing data, meteorological
data, and building data used in this study, along with their
sources. The remote sensing data are used for classifying the
land use types, while the open source building data are
employed for the detailed descriptions of building types.
Building height and building density are indicative of
building aggregation in the vertical and horizontal direc-
tions. To a certain extent, the two have the largest impacts on
the urban form [39] and also correlate most strongly with the
formation and development of UHIs [26]. Buildings were
divided by height into three categories, per the 2019 Uniform
standard for design of civil building (GB 50352-2019): low-
rise residential buildings (<27m), high-rise residential
buildings (27-100 m), and super high rises (>100 m). Based
on the findings of previous studies [40] and the current state
of the study area, the buildings were also divided into low-
density buildings (<40%) and high-density buildings
(>40%).

4. Methods

4.1. Local Climate Zones. The Landsat data were first geo-
metrically calibrated and then masked and cropped. A
polygon grid in the Albers projection of the study area was
then generated using the Fishnet tool in the ArcGIS software
(ESRI), and its intersections with the vector building data
were tabulated. The land cover was then classified into four
types (LCZs A-D) using visual interpretation and object-
oriented classification, and the buildings were categorized as
LCZs 1-6. The technical framework of this process is pre-
sented in Figure 2. Finally, the UHII of each LCZ was
calculated from the LSTs inverted using the mono-window
algorithm.

The procedure for dividing an area into LCZs is as
follows. First, the climate of an area is divided into a number
of smaller LCZs according to variations in the underlying
surface. The LCZs that represent urban and rural climates
are then selected and the UHII is determined by calculating
the differences in temperature between these zones. The LCZ
classification framework comprises 17 subclassifications of
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FIGURE 1: Location of the study area.

TaBLE 1: Datasets used in this study.

Type Time

Description Source

August 28, 2019
August 20, 2013

Remote sensing data

August 6, 2008
August 25, 2003

Landsat 8-OLI

(30 m spatial resolution)

(100 m spatial resolution)
Landsat 5-TM multispectral image

Landsat 8-TIRS

glovis.usgs.gov

(30 m spatial resolution)
Infrared thermal imaging
(120 m spatial resolution)

Building data 2003, 2008, Building outline vector data https://mobile.amap.com/
2013, 2019
Meteorological data 2003-2019 Monthly temperature data data.cma.cn

buildings (LCZs 1-10) and land cover (LCZ A-G) [32]. In
this manner, we enhanced the LCZ classification system to
suit the needs of this study. High-resolution contemporary
Google Earth images of the 10 subclasses were also used to
validate the land cover types in the study area. A total of
1,000 samples were selected for this study, 600 of which were
used for classification. The remaining samples were used to
verify the accuracy. A high level of classification accuracy
was achieved, with Kappa coeflicients of 0.934, 0.952, 0.914,
and 0.963 for the 2003, 2008, 2013, and 2019 data,
respectively.

4.2. LST Inversion. LST is an important parameter for
studying surface energy balance, as well as characterizing the

UHI effect. Methods for obtaining LSTs from inverted re-
mote sensing data include the radiation transfer equation,
mono-window algorithm, single-channel algorithm, and
split-window algorithm. In an analysis of atmospheric water
vapor contents estimated using the mono-window algo-
rithm, Qin Zhi-hao and Rnieli [41, 42] found a significant
negative correlation between atmospheric transmittance and
LST estimation error. As Dalian City is located in the
southernmost Liaodong Peninsula and experiences a hot
and humid summer, its atmospheric transmittance is rela-
tively low. Therefore, we selected the mono-window algo-
rithm to retrieve the LSTs from the Landsat 5 TM6 and
Landsat 8 TIRS 10 data. The equations for the mono-window
algorithm are as follows (please note that all temperatures in
this study are expressed in units of "C):
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FIGURE 2: Technical framework of the method used in this study.
(a(1-C-D)+T,(b(1-C~-D)+C+D)~-DT) 3.983 km? and 0.435 km? of these zones were converted into
T = C > other land use types. Overall, the coverages of LCZs A and D
decreased by 3.225km” and 0.395 km?, respectively. During
C=cer, the same period, 1.129 km?, 1.319 km?, and 4.235 km? of land

D=(1-¢[1+(1-¢r1],
(1)

where T is the inverted surface temperature (K), a and b are
empirical constants (a = —67.355351 and b = 0.458606), T
is the brightness temperature (K), and T, is the effective
mean atmospheric temperature (K). C and D are inter-
mediary variables, which are obtained from & (ground
emissivity) and 7 (the atmospheric transmittance of the TIR
band).

4.3. Calculation of UHII. Based on our augmented LCZ
system and the definition of UHII given by Stewart and Oke
[31], we defined the UHII of each LCZ as the difference
between its mean LST (estimated using the mono-window
algorithm) and that of rural areas, as shown in the
following:

UHIILCZ = LSTLCZX - LSTLCZB’ (2)

where LSTycz x is the mean LST of all type-X LCZs and
LSTicz g is the mean LST of LCZ B (low and short
vegetation).

5. Results

5.1. Local Climate Zones. With the implementation of pol-
icies such as the Chinese Economic Reform, the urbaniza-
tion of Dalian City has progressed at an accelerated rate. The
accompanying changes in each LCZ are listed in Table 2.
From 2003 to 2019, 0.759 km® and 0.040 km? of land were
converted into LCZ A and LCZ D, respectively, but

were converted into LCZ B, LCZ C, and LCZ 1-6, re-
spectively, while 0.196km?, 0.687km?, and 2.179km? of
their lands were converted into other land use types. Overall,
the coverages of LCZs B, C, and 1-6 increased by 0.932 km?,
0.632km’, and 2.056km?, respectively. In Taoyuan, Lao-
hutan, and Kuiying, large swaths of forested land were
converted into construction land, roads, and areas with low
vegetation cover. In Laohutan, Donggang, and Renmin
Road, large amounts of riverine and marine areas were
reclaimed and converted into residential areas, industrial
and service areas, and roads.

From 2003 to 2019, the total area of construction land in
Zhongshan increased substantially, and significant changes
also occurred in terms of building heights and densities
(Figure 3). The majority of low-density high-rises and super
high-rises are located in the northern part of Guilin, the
northeastern part of Navy Square, and along the border
between Kuiying and Taoyuan, whereas high-density high
rises and super high rises are mostly located in Qingni-
wagiao and Renmin Road. Low-rise low-density and high-
density buildings are mainly located in Laohutan, Taoyuan,
Navy Square, and Donggang. The building types in Laohutan
and Taoyuan have changed significantly over time, with
increases in the number of low-density high rises and super
high rises. High-density low-rise buildings in Guilin have
gradually been replaced by low-density low-rise buildings.
High-density high-rise buildings have decreased in Navy
Square and Renmin Road. In Kuiying, high-density low-rise
buildings have decreased, while low-density high-rise zones
have expanded. In Donggang, the number of buildings has
increased over time due to land reclamation work and
development; characteristic buildings in this subdistrict have
changed gradually from low-density low rises to low-density
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TABLE 2: 2003-2019 land use type transfer summary.
Area in 2019 (km?)
Land use types

LCZ A LCZ B LCZ C LCZ D LCZ 1-LCZ 6 Sum

LCZ A 15.769 0.543 0.35 0.001 3.094 19.752

LCZ B 0.014 0.106 0.002 0.000 0.181 0.302

. 2 LCZ C 0.079 0.048 0.212 0.000 0.560 0.898

Area in 2003 (k) LCZ D 0.006 0.029 0.000 0.154 0.400 0.589
LCZ 1-LCZ 6 0.660 0.509 0.971 0.039 20.428 22.607

Sum 16.528 1.235 1.530 0.194 24.663 —

(2003)

(2008)

LCZ1
LCZ2
m LCZ3

mm LCZ4
mm 1CZ5
B LCZ6

(2019)

——= 1km

—= lkm

Ficure 3: Classification results for different LCZs (2003-2019).

high rises, high-density low rises, and high-density super
high rises.

5.2. Results of LST Inversion. The mono-window algorithm
was used for LST inversion. The obtained data were validated
against temperature data from ground-based weather sta-
tions and found to be highly accurate. The LST distribution
in Zhongshan generally remained unchanged from 2003 to
2019 (Figure 4). High LST areas (red and orange-red zones)
were mainly observed in the northwestern part of Zhong-
shan, which includes Renmin Road, Qingniwagqiao, Guilin,
Kunming, and Navy Square, while low LST areas (blue and
light blue zones) were mostly observed in Laohutan and
Taoyuan. In 2003, the maximum LST in Zhongshan was
36.197°C (in the western part of Qingniwaqiao and at the

border between Renmin Road and Donggang), and the
minimum LST was 19.979°C (in the coastal areas of Taoyuan
and Laohutan). The mean LST in Zhongshan in 2003 was
28.088°C. In 2008, the maximum LST was 33.382°C (mainly
in Renmin Road, Qingniwaqiao, Guilin, Navy Square, and
the center of Kuiying), and the minimum LST was 18.570°C
(in the northern coastal areas of Donggang, southeastern
coastal areas of Taoyuan, and coastal areas of Laohutan,
which expanded due to land reclamation). The mean LST in
Zhongshan in 2008 was 25.976°C. The coverage of high LST
areas increased in 2008, compared to that of 2003, indicating
a higher UHIL This may be attributed to significant land-
form changes and the large-scale conversion of forested
lands and water bodies into construction land. In 2013, the
maximum and minimum LSTs were 34.325°C and 21.128°C,
respectively, and the mean LST was 27.726°C. The
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FiGure 4: Distribution of land surface temperatures in Zhongshan (2003-2019).

subdistricts with the highest LSTs were the same as those in
2008, but the coverage of the maximum LST area in
Qingniwagqiao and Renmin Road was significantly larger in
2013. The high LST areas in Kunming, Guilin, Navy Square,
and Kuiying decreased to some extent, but the LSTs in
Donggang increased in general. In 2019, the maximum,
minimum, and mean LSTs in Zhongshan were 37.562°C,
22.083°C, and 29.823°C, respectively, and the distribution of
LSTs in 2019 remained largely unchanged from that of 2013.

Figures 3 and 4 show that high LSTs are spatiotemporally
correlated with high-density buildings; high-density areas
have a large number of buildings, forming a large impervious
surface that increases the LST. With rapid urbanization, the
building densities in Zhongshan have increased over time
and the peak LSTs in this district have also increased
accordingly.

5.3. Calculated UHII Values. From 2003 to 2019, all LCZs
exhibited fluctuating growth patterns and significant in-
creases in their average LSTs and UHIIs (Figure 5). The
average LSTs of LCZs A-C increased by 1.610°C, 0.880°C,
and 3.830°C, respectively, while the average LSTs of LCZs
1-6 increased by 3.225°C, 3.226°C, 4.111°C, 2.639°C, 3.768°C,
and 4.052°C (~2°C-4"C), respectively. As LCZ C mostly
corresponds to bare, reclaimed lands near Donggang and the
previously forested areas of Laohutan that were converted
into residential and production land (which are mostly
unused construction land as of 2019), it exhibits a partic-
ularly high average LST and UHII.

In 2003, the average LSTs of LCZs A-C were 24.331°C,
26.526°C, and 27.187°C, respectively, whereas those of LCZs
1-6 ranged from 27°C to 29°C. From 2003 to 2008, the
average LST of LCZ B changed significantly, decreasing by
2.403°C; the LSTs of LCZs A and C also decreased by 1.450°C
and 0.888°C, respectively, and those of LCZs 1-6 ranged
between 27°C and 28°C. Among LCZs 1-6, LCZ 4 had the
largest decrease in average LST of 1.003°C, whereas LCZ 6
had the smallest decrease of 0.061°C. From 2008 to 2013, the
average LST of LCZ C increased significantly by 2.437°C; the
average LSTs of LCZs A and B also increased by 1.988°C and
1.954°C, respectively. The average LSTs of LCZs 1-6 in 2013
ranged between 28°C and 30°C; the average LST of LCZ 6
increased by more than 2°C (2.225°C), while LCZ 2 had the
smallest increase of 1.344°C. The average LSTs of the other
LCZs increased by 1.379°C-1.941°C. From 2013 to 2019, the

average LST of LCZ C continued to increase significantly by
2.281°C, and the average LSTs of LCZs A and B each in-
creased by approximately 1°C (1.072°C and 1.330°C, re-
spectively). The average LSTs of LCZs 1-6 ranged between
31°C and 32°C, with LCZs 5 and 6 having the largest and
smallest increases, respectively, in average LST (2.612°C and
1.889°C, respectively). The average LSTs of the other LCZs
increased by 2.206°C-2.517°C.

In 2003, the UHIIs of LCZs A and C were —2.195 and
0.661, respectively. The UHIIs of LCZs 1-6 ranged from
1.370 to 2.977, following the order LCZ 4>LCZ 5>LCZ
2>LCZ 3>LCZ 6>LCZ 1. Although the LSTs of all the
LCZs decreased in 2008, their UHIIs continued to increase
significantly. The UHIIs of LCZs A and C were —1.241 and
2.177, respectively, and the UHIIs of LCZs 1-6 ranged from
3.337 to 4.535, following the order LCZ 5>LCZ 4>LCZ
3>LCZ2>LCZ6>LCZ1.1In 2013, although the LSTs of the
LCZs increased significantly, their UHIIs did not increase.
The UHIIs of LCZs A and C were -1.207 and 2.660, re-
spectively, and the UHIIs of LCZs 1-6 ranged from 2.762 to
4.515, following the order LCZ 6 >LCZ 5>LCZ 3>LCZ
4>LCZ 2>LCZ 1. In 2019, all the LCZs reached their
maximum LSTand UHII values. The UHIIs of LCZs A and C
were —1.465 and 3.611, respectively, and those of LCZs 1-6
ranged from 3.744 to 5.379, following the order LCZ 5 > LCZ
4>LCZ 3>LCZ 6>LCZ 2>LCZ 1.

6. Discussion

6.1. Improvements to Model Accuracy. In terms of scale,
previous studies of the UHI effect have mainly focused on
large-scale spatial analyses at a provincial or city cluster level
using low-resolution remote sensing images. In contrast, this
study used high-resolution Landsat TIR data to study the
spatiotemporal variations of UHI over a small region. In
terms of methodology, most studies have used the urban
landscape index and land-use types to explain changes in
LST or UHI based on the two-dimensional (2D) layout of
cities. For example, Fabeku et al. used satellite-derived index
maps and explained that the significant increase in the LST of
Ibadan was caused by the large-scale conversion of vegetated
land into construction land [43]. Based on MODIS and
Landsat remote sensing images, Wang et al. used models to
extract NMDI, IBI, and NDBI indexes to explore their re-
lationship with LST [44]. However, this approach overlooks
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(°C)
2019 -1.465 0 3.611 3.744 4.52 4.823 4.736 5.379 4,712
2013 | -1.207 0 2.66 2.762 3.334 3.943 3.857 4.097 4.153
2009 | 1241 0 2.177 3.337 3.943 4016 4378 4535 3.882
2003 | -2.195 0 0.661 1.37 2.174 1.592 2.977 2.492 1.54
LCZ A LCZB LCZC LCZ 1 LCZ2 LCZ3 LCZ 4 LCZ5 LCZ6

FIGURE 5: Average urban heat island intensities of the various LCZs (2003-2019).

the constraints imposed by three-dimensional (3D) build-
ings on urban morphology, which can influence urban heat
environments [45, 46]. In this study, we used an LCZ
classification framework to account for 3D urban mor-
phology attributes such as building height and building
density. The LCZ classification framework was also modified
according to the actual conditions in the study area and
previous findings. By using a multiperspective method to
compute the UHII of the study area, we effectively improved
the practical implications and scientific rigor of our UHII
calculations.

In summary, we conducted an empirical study of the
UHI effect using the LCZ classification framework and
fused 2D urban layouts with 3D morphological attributes
to investigate spatiotemporal UHII variations from
multiple perspectives. In addition, we analyzed spatio-
temporal variations of LST and UHII in the study area
over a comparatively long timescale. Whether and how
the process of urbanization affects global climate change
has consistently attracted significant attention over the
last few decades. The results presented in this study clearly
show how the 3D form of urban buildings (height and
density) affect the quality of the urban thermal envi-
ronment. It provides a scientific reference for government
departments to aid in relevant decision-making in mat-
ters, such as urban planning and land use approval.
Furthermore, the study enriches theoretical research on
urban microclimate.

6.2. Limitations. This study had a few limiting factors and
shortcomings. For example, the high-resolution Landsat
TIR data used in this study are not sufficiently precise to
provide detailed characteristics of the thermal-infrared
features of the ground surfaces. Although the building data
used in this study were calibrated in Google Earth Pro 2019,
our data deviated slightly from real building data. Only
building height and building density were used to represent

building parameters, because they have the largest influ-
ences on urban morphologies and correspond most directly
to the UHI effect. However, the effects of heat retention
capacity and sky view factors on urban heat environments
were not considered [45, 46]. Furthermore, we focused on
investigating the effects of building morphology and land
use type on UHII because, along with artificial heat sources,
they are currently believed to be the main determining
factors of UHIIL. However, we did not consider other factors
such as artificial heat sources and building materials
[47-49], which might result in localized UHII estimation
errors.

Although the above limitations will affect the accuracy of
the findings to some extent, they do not affect the objectivity
or scientific rigor of this study. To resolve these issues, we
plan to use long and accurate time series data from multiple
sources to further investigate spatiotemporal variations in
the UHI effect.

7. Conclusions

In this study, remote sensing, meteorological, and building
data were used to investigate the spatiotemporal dynamics of
the UHII of the LCZs in the Zhongshan District of Dalian
City. The findings of this study are as follows:

(1) Rapid urbanization has led to significant changes in
urban land use and conversions of land types. From
2003 to 2019, the coverages of LCZs A and D de-
creased by 3.225km* and 0.395km?, respectively,
whereas the coverages of LCZs B, C, and 1-6 in-
creased by 0.932km’ 0.632km? and 2.056km?,
respectively. The number of low-density high rises
and super high rises increased in Laohutan and
Taoyuan, and low-density low-rise buildings became
increasingly dominant in Guilin. The number of
buildings in Donggang also increased over time. On
the whole, low-density high rises, high-density low



rises, and high-density high rises have become more
common in Zhongshan.

(2) High LST regions usually contain large aggregations
of high-density buildings and appear to be spatio-
temporally correlated. High LST areas (red and or-
ange-red areas) are concentrated around Renmin
Road, Qingniwaqiao, Guilin, Kunming, and Navy
Square, whereas low LST areas (blue and dark blue
zones) are mostly located around Laohutan and
Taoyuan. Over the past 20 years, the maximum and
minimum LSTs of Zhongshan have increased by
1.365°C and 1.104°C, respectively.

(3) In 2019, all LCZs reached their maximum LST and
UHII values. The average LSTs of LCZs A-C in-
creased by 1.610°C, 0.880°C, and 3.830°C, respec-
tively, and the average LSTs of LCZs 1-6 increased by
approximately 2°C-4°C. The UHIIs of LCZs A and C
increased by 0.730 and 2.950, respectively, and those
of LCZs 1-6 increased from 1.370-2.977 to
3.744-5.379.
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