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Although 6D object pose estimation has been intensively explored in the past decades, the performance is still not fully sat-
isfactory, especially when it comes to symmetric objects. In this paper, we study the problem of 6D object pose estimation by
leveraging the information of object symmetry. To this end, a network is proposed that predicts 6D object pose and object
reflectional symmetry as well as the key points simultaneously via a multitask learning scheme. Consequently, the pose estimation
is aware of and regulated by the symmetry axis and the key points of the to-be-estimated objects. Moreover, we devise an
optimization function to refine the predicted 6D object pose by considering the predicted symmetry. Experiments on two datasets
demonstrate that the proposed symmetry-aware approach outperforms the existing methods in terms of predicting 6D pose
estimation of symmetric objects.

1. Introduction

6D object pose estimation is of remarkable importance to a
variety of industrial applications, ranging from robotic
manipulation [1, 2] and autonomous navigation [3] to
augmented reality [4]. Serving as the base for the perception
of objects in the environment, it concerns the acquisition of
the 6D pose (location and orientation) information [2, 5].
(e ultimate goal is to achieve speedy real-time 6D object
after estimation with robust performance regardless of
varying shape, texture, occlusion, illumination, or sensor
noise.

(e recent development of 6D object pose estimation
methods has been promising, thanks to the advancement of
economical depth sensors. Existing work has explored the
6D object pose estimation for both household furniture (e.g.,
chair or table) [6] and table-top objects (e.g., box or book)
[7]. (ese methods are able to generate accurate object pose
in many real-world scenarios by utilizing the 3D informa-
tion from the depth image. Moreover, when integrating with
the color image, the RGB-D image-based 6D object pose
estimation methods [8] achieved competitive results on
objects with complex geometry and moderate occlusion.

However, previous pose estimation approaches are still
hardly satisfactory when it comes to dealing with symmetric
objects. (e reason lies in the fact that a symmetric object
might correspond to multiple poses, leading to ambiguity in
the training of the neural networks. On the contrary, the
symmetry-related feature of the object has been proved to be
one of the most informative geometric clues for a variety of
applications [9] and has the potential to facilitate the pose
estimation task as a complementary element [10]. In this
work, we tackle the problem of 6D object pose estimation for
objects with reflectional symmetry, which plays a crucial role
in a variety of applications [11–13]. Specifically, the sym-
metry is predicted jointly with the symmetry axis, thus
making these two relevant tasks boost each other.

To this end, this paper proposes an approach for 6D
object pose estimation that is aware of and regulated by the
symmetry axis and the key points of the to-be-estimated
objects. During training, the proposed approach learns to
predict the 6D object pose, the object symmetry, and the key
points in a unified network. In particular, the network
contains a multiscale feature extraction module to fuse the
appearance feature and the geometric feature at multiple
scales. (e ground-truth object symmetry of the training
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data is generated in a self-supervised manner, so no manual
data labelling is required. During testing, we propose to use
an optimization function to determine the final prediction
on the 6D object pose with the object symmetry. (is de-
cision-level optimization boosts the performance on the
prediction of 6D object pose by the predicted object
symmetry.

We evaluate the proposed method on two datasets: YCB-
Video and ShapeNet. Experimental results demonstrate that
our method outperforms the state-of-the-art methods on
most of the symmetric objects. Also, we provide a qualitative
comparison to the baseline method to demonstrate the ef-
fects of our symmetry-aware pose estimation approach.

(e contributions of this paper are as follows: (1) we
introduce a multitask network to estimate the 6D object
pose, the symmetry axis, and the key points at the same time;
(2) we propose amultiscale feature extractionmodule to fuse
the features from the color image and the depth image; (3)
we devise an optimization function to refine the predicted
6D object pose by the predicted symmetry; (4) we show that
our approach outperforms the existing methods on 6D
object pose estimation of the symmetries objects.

2. Related Work

2.1. 6DPose Estimation. Given a single RGB image, previous
methods estimate the 6D object pose by using either the
template matching techniques or end-to-end data-driven
neural networks. (ese methods are limited by various
factors, such as occlusion or the existence of ambiguity along
the depth direction, and are inadequate for 3D data rea-
soning [14]. Another type of the 6D pose estimation ap-
proach is based on data from range sensors, such as depth
camera or LIDAR. Existing approaches typically address this
problem by first establishing rough pose candidates by using
point features and then performing an iterative closest point
(ICP) algorithm to refine and select the optimal pose [15].
Recently, Xiang, Song and Xiao, and Li [5, 7, 8] integrated
the features from both the RGB image and the depth map by
leveraging the feature fusion techniques. Wada [16] pro-
posed an object-level volumetric fusion to reason 6D pose of
multiple objects. (ese approaches have proven to be fairly
robust for scenarios with poor lighting conditions or heavy
occlusions. Although we utilize a similar feature fusion
approach, our method particularly improves these ap-
proaches by introducing a symmetry detection module. We
demonstrate how our method outperforms the previous
works for 6D pose estimation on symmetric objects.

2.2. 3D Symmetry Detection. 3D symmetry detection has
received significant research attention in computer vision
and graphics communities for both synthetic and real-world
applications. Conceptually, symmetry is well defined in
mathematics and is geometrically measurable. Conventional
symmetry detection methods [17, 18] mostly use point
clustering to detect symmetries of complete geometries
(such as CAD models). However, 3D data acquired from
sensors are possibly coupled with noise, occlusion, or

complex lighting condition. (is makes the traditional
symmetry detection method incapable. To tackle this
problem, Ecins et al. proposed to detect an object from
incomplete point cloud [19]. (is method can detect sym-
metries for objects with simple geometry in occluded table-
top scenes, but it is still limited by its inferior generality so
cannot be extended to more general object types. Another
3D symmetry detection approach is to first predict the
complete geometry of the input data [20] followed by a
conventional symmetry detection [21]. (e drawback is that
it requires the shape completion method to make point-level
predictions with high accuracy, which is nontrivial as the
training data collection and network training procedures are
both effort-intensive. More recently, Shi proposed an end-
to-end deep neural network, which is able to predict both
reflectional and rotational symmetries from RGB-D images
[22]. Our method is inspired by their work. However, the
output of our method is not only the symmetry but also the
6D pose.

2.3. KeyPointDetection. Efforts have been made to compute
6D pose parameters based on the detected key points via
deep neural networks [14, 23–25]. Previously, key point
detection on texture-less objects was proven challenging
[26–28]. With the recent progress of deep learning, Rad and
Lepetit, Tekin et al, and Hu [24, 25, 29] proposed to obtain
the coordinates of the 2D key points via direction regression.
Methods mentioned above are designed to minimize the 2D
projection errors on the objects. However, small projection
errors might still be large when it comes to the 3D world. 3D
poses are obtained via 3D key points from two views of
perspective provided by synthetic RGB images [30]. How-
ever, the depth information is missing with only RGB im-
ages. (e nowadays economical depth sensors allow us to
construct, compute, and detect key points in the real 3D
world, thanks to the captured depth information.

2.4. Multitask Learning. Multitask learning refers to the
approach where multiple objectives corresponding to dif-
ferent tasks with a common representation are learned in
parallel simultaneously [31, 32]. It features the advantages of
improved efficiency and accuracy respectively in terms of
learning and prediction due to the fact that commonalities
and differences across tasks are exploited [33]. In addition, it
is effective in the avoidance of overfitting on a specific task
since the network model is regularized [34]. Wang et al.
managed to improve the 6D object pose estimation per-
formance, especially under the condition of occlusion via a
multitask learning network combining object recognition
with pose estimation [35].(e issue of 6D pose estimation of
multiple instances in the bin-picking situation was studied
by Sock [36]. He demonstrated outstanding performance of
the multitask network which learns depth, 2D detection, and
3D object pose estimation jointly as three subtasks. Xiang
et al. proposed PoseCNN where the extracted feature maps
are shared by three subtasks, namely, 3D rotation regression,
3D translation estimation, and semantic labelling [5].
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3. Method

A 6D pose consists of a position and an orientation both of
which are defined based on the camera coordinate frame in
this paper. Specifically, a pose is defined by a rotation matrix
R and a translation vector t. (e representation of a pose is
therefore a homogeneous transformation T� [R, t]. A re-
flectional symmetry plane is defined by a point on the plane
and its plane normal, i.e., S� [p, n], where p is the location of
the point and n is the plane normal.

3.1. Overview. We propose to estimate 6D object pose and
object symmetry in a multitask network (see Figure 1). In
particular, the network consists of a multiscale feature ex-
tractionmodule to fuse the features from the RGB image and
the depth map. During training, 6D object pose estimation,
symmetry prediction, and key point detection components
are coupled with each other and trained by a multitask
learning strategy.

During testing, we first predict the 6D object pose and
object symmetry by a network inference. (e predicted pose
is then refined by an optimization process which considers
the constraints provided by the predicted symmetry and the
detected key points.

3.2. Network Architecture

3.2.1. Multiscale Feature Extraction. (e input to our
method is an RGB-D image which contains at least one
object. In our problem setting, the segmentation is pre-
computed by a segmentation algorithm [5]. For the seg-
mented object, we crop the pixels in the RGB-D image and
compute the point cloud by using the intrinsic parameters of
the camera.

Our network is derived from the pixelwise dense feature
extraction network introduced in [8]. First, the point cloud is
fed into a geometric feature extraction network. Different
from [8], which uses PointNet as its backbone, we opt to use
PointNet++ [37] because of its superior ability on feature
extraction for objects with complex geometry. For the RGB
image, we use a Resnet-based U-Net to extract pixel-level
feature.(e difference to [8] is that we enlarge the dilation in
the convolution layers so that the network could perceive
more context information. We found that this adjustment is
of great significance for symmetry prediction.

(e multiscale features from the point cloud and the
features from the RGB image are subsequently concatenated
before being fed to another network to obtain the global
feature by using an average pooling layer. (e pixel-level
feature is then concatenated with the global feature to form
the overall pixelwise features which are in the end used to
predict the 6D object pose and the symmetry as well as the
key points.

3.3. Loss Function. (e multitask learning network com-
prises the pose predictor, the symmetry predictor, and the
key point predictor whose losses are embedded into the
overall loss function so that the symmetry and key point

information can serve as additional regulations to the
learning process for the pose prediction. In the end, the
results of the 6D pose estimation and the symmetry esti-
mation are output in the format of T and S. We define the
symmetric transformation of the predicted symmetry S as
Ts � [Rs, ts].

(e overall loss of the network training is the sum of the
loss of point-level predictions. For each point, the loss
consists of a pose estimation loss, a symmetry prediction
loss, and a key point detection loss:
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where N is the total number of the points. (e 6D pose
estimation loss Li

pose is defined as the average distance
between the sampled points on the object transformed by the
ground-truth pose and by the predicted pose of the i-th
point:
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where M is the number of the sampled points, xj is the j-th
point of the sampled points, and T � [R,t] is the ground-
truth pose.

(e symmetry prediction loss Li
symmetry is the average

distance between the sampled points on the object trans-
formed by the ground-truth symmetric transformation and
the predicted symmetric transformation:
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where Ts � [Rs, ts] is the ground-truth symmetric
transformation.

Similar to [38], the key point detection loss Li
keypoint is

the sum of the offset distances between the sampled points
and the key points:
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where d
p
j and d

p

j are respectively the offset distance and the
corresponding ground-truth between the j-th point and the
p-th key point. Note that our key point detection module is
different from [38], as our key points not only contain the
points selected by the farthest point sampling but also their
symmetric counterparts.

3.4. Multitask Network Training. (e three subtasks, i.e.,
pose prediction, symmetry prediction, and key point de-
tection, share the same pixelwise feature maps extracted in
prior and are trained in parallel jointly. (e symmetry
prediction task serves as an additional metric to reveal the
quality of the pointwise features, hence aiding to boost the
accuracy of the overall pose estimation task.
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3.5. Inference. During inference, we first extract the point-
level features and make point-level 6D object pose and
symmetry predictions. By averaging all the predictions, the
ultimate prediction is generated. (e design of multitask
learning on the 6D object pose and the symmetry has made
the two subtasks regulated by each other. However, we
observe from the experiments that (1) the 6D object pose
prediction and the symmetry prediction are not perfectly
consistent with each other; (2) the error of symmetry pre-
diction is noticeably smaller than the error of 6D object pose
prediction, illustrating that the predicted symmetry could be
further used to refine the predicted pose. To this end, we
introduce an optimization function as follows to refine the
predicted pose by considering the constraints provided by
the predicted symmetry:

argmin
T

1
M



M

j

Ts T xj   − Ts
T xj  

�����

�����, (5)

where T(xj) represents the location of transformed xj by T:

T xj  � Rxj + t. (6)

We use Ceres Solver [39] to optimize the above function.
We consider the T after the optimization as the final 6D
object pose of our method.

4. Results

4.1. Benchmark. We create a benchmark to evaluate our
method.(e benchmark is built based on two datasets: YCB-

Video [40] and ShapeNet [41]. YCB-Video consists of 92
RGB-D videos captured in indoor scenes with 21 different
table-top objects. (e images in the dataset are annotated
with object pose. We compute the ground-truth for each
object by using an offline symmetry detection method [21].
ShapeNet is a large-scale CAD model dataset with category-
label annotations. To generate the training and testing data,
we first perform a virtual scanning on the CAD model from
random viewpoints around the object and then compute the
ground-truth object pose and the symmetry. Note that,

CNN

PointNet++

RGB Image

Depth image

Appearance feature Pixelwise feature Multitask learning

6D pose estimation Symmetry prediction Key point detection

Global feature

Geometric feature

Figure 1: Architecture of the symmetry-aware object pose estimation network.

YCB-Video

(a)

ShapeNet

(b)

Figure 2: Examples of images from YCB-Video and ShapeNet datasets used for the experiments.

Table 1: Quantitative comparison of 6D object pose estimation on
the YCB-Video dataset.

Datasets AUC <2 cm
PointFusion 78.4 71.8
PoseCNN 87.5 88.0
DenseFusion 90.3 91.6
Ours 90.6 91.6

Table 2: Quantitative comparison of 6D object pose estimation on
the ShapeNet dataset.

Datasets AUC <2 cm
PointFusion 72.4 68.8
PoseCNN 74.9 73.5
DenseFusion 77.2 79.6
Ours 80.8 82.3
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different from [22], we only use the objects with one re-
flectional symmetry.

In order to generate images with the occlusions and
background clutter, we randomly select objects from both
images of other ShapeNet objects or images from the real-
world scenes [42]. (e examples of the two datasets are
shown in Figure 2.

4.2. Evaluation Metrics. We evaluate the 6D object pose
using the average closest point distance (ADD-S) proposed
in [5]. Specifically, we report the area under the ADD-S
curve (AUC). Given the ground-truth pose and the pre-
dicted one, ADD-S measures the mean distance between
each sample point on the object transformed by the ground-
truth pose and its closest neighbouring point among the
sample points transformed by the predicted pose. We set the
AUC threshold as 0.1m. We also evaluate the percentage of
predictions whose ADD-S is smaller than 2 cm.

4.3. Comparison to Baselines. We compare our method with
three baselines: PointFusion [43], PoseCNN [5], and Den-
seFusion [8]. (e quantitative results are shown in Table 1
(YCB-Video) and Table 2 (ShapeNet). It is clear that our
method demonstrates the best results on both YCB-Video
and ShapeNet. In particular, our method outperforms all the
baselines on ShapeNet by a large margin. Given the fact that
most of the objects in ShapeNet are symmetric, we therefore
reckon that our proposed method is especially suitable for
symmetric objects.

4.4. Qualitative Results. To demonstrate the advantages of
our method, we show the qualitative results of our
method and DenseFusion on YCB-Video in Figure 3. It
shows that our method is able to successfully produce
accurate 6D object pose on cases where DenseFusion
fails. We also visualize the predicted symmetry in
Figure 4.

DenseFusion

(a)

Ours

(b)

Figure 3: Qualitative comparison on 6D pose estimation performance between the proposed approach and previous work [8] with the YCB-
Video dataset. Our method achieves more accurate pose estimation on a variety of objects.

RGB image

(a)

Depth image

(b)

Predicted symmetry

(c)

Figure 4: Qualitative results of the predicted symmetry on the YCB-Video dataset.
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5. Conclusion

In this paper, we focus on the problem of boosting 6D object
pose estimation by leveraging object symmetry. We propose
a network that predicts 6D object pose, object symmetry,
and key points throughmultitask learning.(e predicted 6D
object pose is then refined by the predicted object symmetry
via an optimization function. We evaluate our method using
both quantitative and qualitative comparisons to the state-
of-the-art approaches. Experimental results show that our
method outperforms the three baseline approaches, par-
ticularly by a large margin in the case of ShapeNet where
most objects are symmetric. For future work, we are in-
terested in integrating other relevant geometry clues into the
pose estimation network [22, 44]. It is possible to reduce the
size of the network and improve accuracy simultaneously, by
considering relevant geometric mechanisms [44].
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