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In this paper, the Helmholtz equation with quadratic damping themes is used for modeling the dynamics of a simple prey-
predator system also called a simple Lotka–Volterra system. From the Helmholtz equation with quadratic damping themes
obtained after modeling, the equilibrium points have been found, and their stability has been analyzed. Subsequently, the
harmonic oscillations have been studied by the harmonic balance method, and the phenomena of resonance and hysteresis are
observed. ,e primary and secondary resonances have been researched by the multiple-scale method, and the conditions of
stability of the amplitudes of oscillations are determined. Chaos is detected analytically by the Melnikov method and numerically
using the basin of attraction, the bifurcation diagram, the Lyapunov exponent, the phase portrait, and the Poincaré section. ,e
effects of all the parameters of the system are analyzed in detail, and special emphasis is placed on the new parameters. ,rough
this analysis, the complex phenomena such as hysteresis, bistability, amplitude jump, resonances, and chaos have been obtained.
,e control of the parameters and the necessary conditions to control the aforementioned phenomena have been found.

1. Introduction

Hermann von Helmholtz (1821–1894) is the origin of the
very first acoustic resonator that bears his name. In order to
extract the harmonics from total sound, he imagined a
device made up of receptacles pierced with an orifice
depending on their size and a frequency of resonance. To
study the complexity of sounds and their perception by the
human ear, he used resonators [1]. ,e dynamics of these
resonators are governed by an oscillator equation called the
Helmholtz oscillator. ,is oscillator presents analogies with
traditional oscillators, namely, the mass-spring system, the
simple pendulum, the circuit (L, C). As fields of application,
these resonators are used in certain combustion boilers
having concerns of acoustic transmission by the flue pipe in
order to dissipate the phenomenon of resonance giving rise
to vibrations in some boilers: boiler manufacturers use them
to attenuate the noises coming out of the flue pipe. ,ey are

also used in cars, aeronautics, musical instruments, room
acoustics, bass-reflex speakers, etc. ,is resonator, taking
into account its multiple uses, was a center of interest for a
number of researchers who competed with innovations and
imaginations in order to solve physical problems on the basis
of the functioning of this resonator. Indeed, Doelman et al.
studied in [2] the irregularity of tidal oscillations due to the
geometry of the basin from the following equation:

υ.. + ζ(υ) � ζext − c( _υ). (1)

,ey have approached in their work a situation which
generally has Helmholtz periods ranging from a few
minutes to an hour. Balibrea et al. studied in [3] the stability
of the structure of the Helmholtz oscillator under changes
in the shape of nonlinear periodic disturbances. Komkin
and Bykov in [4] had the characteristics of the Helmholtz
resonator confirmed from experimental and analytical
studies.
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In general, dynamic systems and nonlinear sciences
constitute a large field of research, given their application in
several fields: in mechanics, chemistry, quantum optics,
astrophysics, hydrodynamics, electronics, biophysics, and so
on [5–25]. Much of the discussion in the physics and en-
gineering literature concerning damped oscillations, linear
and nonlinear damping in certain applied systems play an
important role since they may be used to suppress large
amplitude oscillations or various instabilities, and they can
also be used as a control mechanism [26–29]. For example,
Soliman and ,ompson in [27] and Miwadinou et al. in
[28, 29] studied with considerable detail the effects of the
damping level on the resonance response of the steady-state
solutions and on the basin bifurcation patterns of the escape
oscillator. In particular, they analyzed the effect of using
different damping levels and how this contributes to the
erosion of the safe areas in the phase space. On the contrary,
nonlinear damping in vibrations has been investigated in
[30–33]. In these different works, the authors studied the
effects of nonlinear damping on the dynamics of viscoelastic
plates, and interesting conclusions were drawn in relation to
these effects on the performance of the viscoelastic plates
used.

,e Helmholtz oscillator is thus an example of a non-
linear dynamic system which is used to better understand
nonlinear phenomena in acoustics, electronics, naval en-
gineering naval, etc. [13–16]. It is in this order of ideas that
we find a new model of the Helmholtz oscillator to better
analyze the dynamics of a simple Lotka–Volterra system.
From various previous works on the Helmholtz oscillator,
we note that the new model of Helmholtz can be the seat of
many phenomena. We can cite, for example, phenomena
such as amplitude jump, hysteresis, nonlinear resonances,
chaos, coexistence of attractors, and multistability [13–15].
,e search for these phenomena for the new Helmholtz
model therefore seems very important.,e determination of
the states of resonance in a nonlinear dynamic systemmakes
it possible to predict energy exchanges by making the energy
proportional to the square of the amplitude of the vibrations
[18–21]. For example, in mechanical systems, a sudden
increase in the resonance energy can cause damage to the
mechanical system, while antiresonance systems can be used
to store energy. Furthermore, the interest of nonlinear
resonances for the new Helmholtz oscillator is great.
Nowadays, most nonlinear vibration techniques focus on the
method of modulation of upper harmonics and sidebands,
but approaches to detect nonlinear damage based on
nonlinear resonances require even more investigation. ,us,
the condition giving the relation between the amplitude of
vibration and the parameters of the system is crucial for the
good choice of the frequency and the amplitude of excitation
to trigger a nonlinear resonance effect [34–36]. ,e most
suitable techniques for finding resonances are the harmonic
balance and the multiple-scale methods [18, 19, 37]. ,e
object of chaos theory is the study of nonlinear phenomena
governed by simple and deterministic laws whose behavior
under certain conditions becomes unpredictable. Since its
discovery in the 20th century, chaos has been one of themost
interesting for dynamic systems in areas such as physics,

mathematics, chemistry, biochemistry, economics and fi-
nance, epidemiology, and engineering [19–25]. Depending
on the field of study, it is sometimes useful or undesirable to
the point where many researchers are interested in its
prediction and/or control. One of the techniques used for
the analytical determination of chaos is the Melnikov
method. It is often used to research and predict horseshoe
chaos [21, 26, 29].

In this paper, we study resonance, hysteresis, stability,
and the chaos of a modified Helmholtz oscillator when it is
subjected to an external periodic excitation. To do this, we
consider the following system:

x
..

+ x − x
2

+ μ _x − β _x
2

+ ]x _x � FcosΩτ, (2)

where μ, ], and β, respectively, represent the linear, impure
quadratic, and pure quadratic damping coefficients and F
and Ω are, respectively, the amplitude and the frequency of
external excitation. One of the originalities here is the new
model of the Helmholtz equation obtained by reducing the
number of variables of the simple Lotka–Volterra system.
,e new themes are all quadratic damping themes. We
determine the fixed points and find their stability and their
nature for the autonomous system. We search the effect of
the external force on the system by studying the resonances
by the methods of the harmonic balance and the multiple
scales. Melnikov’s method is applied to the system to study
its chaotic behavior. ,ese different methods applied to the
system allow us to evaluate the influence of various pa-
rameters of the system on the state of the system, to predict
the variation of the maximum amplitude of the oscillations
according to the parameters of the system, and to verify the
existence of the phenomenon of jump and hysteresis in the
system. ,e horseshoe chaos and dissipative chaos are also
strongly studied and controlled. Analytical results are
confirmed by numerical simulations.

,e paper is structured as follows: Section 2 gives the
mathematical modeling of a quadratic-damping Helmholtz
oscillator and analyzes the fixed points and their stability. In
Section 3, an in-depth detail of the harmonic oscillations is
given. Section 4 deals with primary resonance and secondary
resonance, while Section 5 analyzes the horseshoe chaos
followed by the Melnikov analysis and the basin of attrac-
tion. In Section 6, the numerical analysis of the dissipative
chaos is given in detail. Finally, we conclude the paper in
Section 7.

2. Model, Fixed Points, and Stability

In this work, we consider the following simple Lot-
ka–Volterra system [12]:

ξ
.

� Kξaξ − Kηξη,

_η � Kηξη − Kdη,
(3)

where ξ represents the population of rabbits reproducing in
an autocatalytic manner, η is the lynx population, Kd is the
lynx mortality rate, Kη provides information on how fast
lynxes breed, Kξ is a speed constant which is the rabbit’s
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reproduction speed, and a is the quantity of grass assumed to
be constant. Setting Kξa � α, Kη � λ, and Kd � c, equation
(3) becomes

ξ
.

� αξ − λξη,

_η � − cη + λξη.
(4)

In order to simplify the calculations, we define
x � λξ + λη, and we find

ξ �
_x + cx

λ(c + α)
,

η �
− _x + αx

λ(c + α)
.

(5)

Replacing equation (5) in equation (4), we obtain

x
..

+ ω2
0x − δx

2
+ μ _x − β _x

2
+ ]x _x � 0, (6)

with − ω2
0 � αc, δ � − αc/(α + c), β � 1/(α + c), μ � c−

α, and ] � (α − c)/α + c.
When the system is under external periodic excitation,

equation (6) becomes

x
..

+ ω2
0x − δx

2
+ μ _x − β _x

2
+ ]x _x � Fcosωt. (7)

Now, setting Ω� (ω/ω0) and τ � ω0t, one has

x
..

+ x − δx
2

+ μ _x − β _x
2

+ ]x _x � FcosΩτ, (8)

with δ � (δ/ω2
0), μ � (μ/ω0), and ] � (]/ω0).

F and Ω designate, respectively, the amplitude and the
frequency of the external periodic excitation; μ, β, and ] are
real parameters of the system. Equation (8) represents the
equation of a Helmholtz forced oscillator with pure qua-
dratic damping (β _x2) and hybrid damping (]x _x). When
β and ] are all zero, equation (8) is reduced to the equation of
a Helmholtz oscillator [9, 10, 14].,e Helmholtz oscillator is

widely used in several areas to study the dynamics of certain
systems. Indeed, in naval architects, the Helmholtz oscil-
lator, known as the Helmholtz–,ompson equation, is used
to analyze the escape phenomenon. A detailed dynamical
analysis of the Helmholtz oscillator is done by ,ompson in
[9], and Gottwald et al. experimentally studied in [16] the
dynamics of this oscillator. Helmholtz–,ompson equation
finds direct application in the investigation of the bubble
dynamics [17] and is much discussed in the naval archi-
tecture literature (see [13]). ,ese concepts continue to find
fruitful applications in quantification of capsize resistance
[15].

In the remaining of this section, we determine the fixed
points of the autonomous Helmholtz oscillator with qua-
dratic damping and study their stability. Indeed, taking δ � 1,
the autonomous system is in the following form:

_x � y,

_y � − x + x
2

− μy + βy
2

− ]xy.
(9)

Setting _x � 0 and _y � 0, the equilibrium points of (9) are
A0(0, 0) and A1(1, 0). ,e eigenvalues λ associated with the
fixed point A0 verify

λ2 + μλ + 1 � 0. (10)

As a result,

(i) If μ2 ≥ 4, then λ1 � − μ −
������
μ2 − 4

􏽰
/2 and

λ1 � − μ +
������
μ2 − 4

􏽰
/2.

(a) μ≤ − 2, the eigenvalues λ1 and λ2 are positive.A0
is an unstable repulsive node.

(b) μ≤ 2, the eigenvalues λ1 and λ2 are negative.A0 is
a stable attractive node.

(ii) If μ2 < 4, then λ1 � − μ − i
������
μ2 − 4

􏽰
/2 and

λ2 � − μ + i
�����
μ2 − 4

􏽰
/2.

(a) − 2< μ < 0, the eigenvalues λ1 and λ2 are com-
plexes whose real parts are positive. A0 is an
unstable repulsive focus.

(b) 0< μ < 2, the eigenvalues λ1 and λ2 are com-
plexes whose real parts are negative. A0 is a stable
attractive focus.

Now, the eigenvalues λ associated with the fixed pointA1
are solutions of

λ2 +(μ + ])λ − 1 � 0. (11)

For all values of μ and ], one has
λ1 � − (μ + ]) −

����������

(μ + ])2 + 4
􏽱

/2 and
λ2 � − (μ + ]) +

����������

(μ + ])2 + 4
􏽱

/2. It is easy to note that these
eigenvalues are of opposite signs, and therefore, A1 is a
saddle point.

3. Harmonic Oscillations

In this part, we use the harmonic balance method to study
harmonic oscillations. For this, we take the solutions of
equation (8) in the following form [18, 19, 37]:
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Numerical result
Analytical result

a

Figure 1: Comparison between analytical and numerical fre-
quency-response curve a (Ω) with the parameters β �0.05, ] � 1.75,
μ � 0.05, and F� 0.05.
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x � acos(Ωτ + ϕ), (12)

with |J|≪ |a| and Jn � 0 for (n≥ 2). By inserting equation
(12) into equation (8), after some mathematical manipula-
tions, we obtain the following expression verified by the
amplitude of the harmonic oscillations:

μaΩ +
1
2
]Ωa

3 βΩ2 + 1􏼐 􏼑􏼔 􏼕
2

+ − a + a
3 βΩ2 + 1􏼐 􏼑 + aΩ2􏽨 􏽩

2
� F

2
.

(13)

Before studying the influence of each parameter on the
amplitude of the oscillations obtained, we compared the
analytical result (equation (13)) to the numerical result by
representing in Figure 1 the amplitude a as a function of the

external frequency Ω. ,e basic values of the parameters
used here and throughout this work are those used in the
literature [9, 14]. We note a coherence between these two
results which shows that the system has a nonlinear reso-
nance. Figure 2 shows the effects of the amplitude F of the
external force (Figure 2(a)), the coefficient ] of the hybrid
quadratic damping term (Figure 2(b)), and the coefficient β
of the pure quadratic damping term (Figure 2(c)). ,rough
these figures, we note the presence of stable and unstable
amplitudes whose domains of existence are strongly influ-
enced by F, β, and ]. We also note that the amplitude and the
frequency of the resonance and the bandwidth lag are
strongly influenced by these parameters. Precisely, the
amplitude of the response increases with F unlike β and ].
,e resonance frequency decreases with the increase of the
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Figure 2: Variation curve of the amplitude a as a function of the excitation frequency with μ � 0.05: (a) effect of F, (b) effect of ], and (c)
effect of β.
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parameters F and β, while it increases with ]. We also notice
through Figure 2(b) that the resonance is achieved at infinity
if ]≤ 0.1 for fixed values of F and β. On the contrary, a
system which undergoes a phenomenon of hysteresis can be
considered as a memory system. ,is application is widely
explored in engineering and technology. It is for this reason
that the hysteresis and the amplitude jump are studied.
Indeed, Figure 3 gives the variation of the amplitude a of the
oscillations according to the amplitude F of the external
excitation. From this figure, the phenomena of hysteresis
and amplitude jump are observed and are influenced by the
parameters of the system of which the most important are
those of ] and β. During amplitude jump and hysteresis
phenomenon processes, for any values of external excitation
F, three different amplitudes of oscillations are obtained,
among which two are stable and one is unstable (see the

curve in red in Figure 3(a), for example). Also, note that the
parameter ] can facilitate the appearance as well as the
disappearance of each of these two phenomena and there-
fore will allow them to be controlled. In short, the harmonic
oscillations of the system can be accompanied by phe-
nomena of nonlinear resonance, amplitude jump, and
hysteresis which are very common and are searched for in
memory systems.

4. Primary and Secondary Resonances

In order to analyze the primary and secondary resonances,
we use the multiple time-scale method; the solution of
equation (8) can be expressed in the following form [18–20]:

x(τ, ε) � x0 T0, T1( 􏼁 + εx1 T0, T1( 􏼁 + · · · , (14)
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Figure 3: Hysteresis curve giving the variation of a function of F with μ � 0.05 andΩ � 0.7: (a) effect of ] and (b) effect of β.
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Figure 5: Curve of the variation of a as a function of σ for superharmonic order resonance 2 with μ � 0.05: (a) effect of F, (b) effect of β, and
(c) effect of ].
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where T0 � τ, T1 � ετ, and ε is the small pertubative pa-
rameter. ,e time derivatives transform into

d
dτ

� D0 + εD1 + · · · , (15)

d2

dτ2
� D

2
0 + 2εD0D1 + · · · , (16)

where D0 ≡ z/zT0 and D1 ≡ z/zT1.

4.1. Primary Resonance. To search for the primary reso-
nance, we disturb all the nonlinear terms and that of the
external excitation, and we use formulas (14)–(16). We
obtain

D
2
0x0 + ε D

2
0x1 + 2D0D1x0􏼐 􏼑 + x0 + εx1 − εx2

0

+ εμD0x0 − εβ D0x0( 􏼁
2

+ ε]x0D0x0 � εFcosΩτ.

(17)

By identification, we get the following.
For ε0,
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Figure 7: Variation curve of Fcr as a function of Ω for the Melnikov chaos: (a) effect of μ and (b) effect of ].
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D
2
0x0 + x0 � 0. (18)

For ε1,

D
2
0x1 + x1 � − 2D0D1x0 + x

2
0 − μD0x0 − β D0x0( 􏼁

2

− ]x0D0x0 + FcosΩτ.
(19)

A solution of equation (18) is

x0 � A T1( 􏼁e
jT0 + A

∗
T1( 􏼁e

− jT0 . (20)

Inserting equation (20) into equation (19), we obtain

D0x0( 􏼁
2

� 2AA
∗

− A
2

T1( 􏼁e
2jT0 + A

∗2
T1( 􏼁e

− 2jT0 . (21)

,e primary resonance appears whenΩ � 1 + εσ, σ is the
detuning parameter. So, we have

D
2
0x1 + x1 � − 2j

dA

dT1
− jμA −

F

2
e

jσT1 � 0. (22)

We take the polar form of A:

A �
a

2
e

jθ
, (23)

and we put in equation (22). After some mathematical
transformations, we obtain

aσ − ab′ �
F

2
cosb, (24)

− a′ −
1
2
μa �

F

2
sinb, (25)

where b � σT1 − θ. By searching for steady-state solutions,
we get

(aσ)
2

+
1
2
μa􏼒 􏼓

2
�

F

2
􏼒 􏼓

2
. (26)

Equation (26) represents the primary resonance equa-
tion. Let us now study the stability of the amplitudes of
oscillations by posing a � a0 + a1 and b� b0 + b1, where (a0,
b0) is the nontrivial solution and (a1, b1) is assumed to be
infinite. So,

a1′ � −
1
2
μa1 −

F

2
b1cosb0,

b1′ �
F

2a
2
0
a1cosb0 +

F

2a0
b1sinb0.

(27)

It follows from the calculations that the amplitudes of
oscillations are stable if μ> 0 and σ2 + (μ2/4)> 0. Either the
amplitudes of the oscillations are stable for μ> 0 and
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unstable if μ< 0. Figure 4 shows that when the linear dis-
sipation increases, the amplitude of the response decreases
considerably, and the resonance disappears.

4.2. Secondary Resonance. For this case, all the terms of
nonlinearity are disturbed apart from the term of external
force. So, using formulas (14)–(16), we get the following.

For ε0,

D
2
0x0 + x0 � FcosΩτ. (28)

For ε1,

D
2
0x1 + x1 � − 2D0D1x0 + x

2
0 − μD0x0 − β D0x0( 􏼁

2
− ]x0D0x0.

(29)

A solution of equation (28) is

x0 � A T1( 􏼁e
jT0 + A

∗
T1( 􏼁e

− jT0 + Be
jΩT0 + Be

− jΩT0 , (30)

with

B �
F

2 1 − Ω2􏼐 􏼑
. (31)

Replacing equation (30) in equation (29), one has

2j
dA

dT1
e

jT0 + jμAe
jT0 + − B

2
+ βB

2Ω2 + ]B
2Ω􏼐 􏼑e

2jΩT0

+ − 2A
∗
B − βΩA

∗Ω + ]A
∗B( 􏼁e

j(Ω− 1)T0 + NST + c.c. � 0,

(32)

where NSTdenotes the nonsecular terms and c.c. denotes the
conjugate complexes. By analyzing equation (32), we note
that the system has a superharmonic resonance of order 2
and a subharmonic resonance of order 2. After studying, we
noted that the superharmonic resonance of order 2 is im-
portant and therefore is the only one presented in this work.

Indeed, there is a superharmonic resonance if
2Ω � 1 + εσ. After treatment of equation (32), by consid-
ering the secular terms, we obtain

2j
dA

dT1
e

jT0 + jμAe
jT0 + − B

2
+ βB

2Ω2 + ]B
2Ω􏼐 􏼑e

j(1+εσ)T0 .

(33)

By inserting the polar form of A,
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Figure 10: Effect of μ on the basin of attraction with Ω� 0.297, F� 0.308, and other parameters of Figure 7.
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A �
a

2
e

jθ T1( ), (34) in equation (33) and by canceling the real and imaginary
parts, we have
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Figure 11: Effect of ] on the basin of attraction with Ω� 0.297, F� 0.308, and other parameters of Figure 7.

0.85

0.8

0.75

0.7

0.65

0.6
0.1 0.1025 0.105 0.1075

F

x
1T 2T 4T 8T

Ch
ao

s

(a)

0.02

0

–0.02

–0.04

–0.06
0.1 0.1025 0.105 0.1075

F

Ly
ap

un
ov

 ex
po

ne
nt

(b)

Figure 12: Bifurcation diagram and its corresponding Lyapunov exponent curve of a quadratic-damping Helmholtz oscillator versus Fwith
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da

dT1
+
1
2
μa + − B

2
+ βB

2Ω2 + ]B
2Ω􏼐 􏼑sinϕ � 0,

a
dϕ
dT1

− σa + − B
2

+ βB
2Ω2 + ]B

2Ω􏼐 􏼑cosϕ � 0,

(35)

where ϕ � σT1 − θ. When looking for solutions of stationary
state, the equation of the superharmonic resonance is

1
2
μa􏼒 􏼓

2
+(σa)

2
� − 1 + βΩ2 + ]Ω􏼐 􏼑B

2
􏽨 􏽩

2
. (36)

Now, we study the stability of the resonance amplitudes
by posing a � a0 + a1 and ϕ� ϕ0 +ϕ1, where (a0, ϕ0) is the
nontrivial solution and (a1, ϕ1) is supposed infinite per-
turbations; we obtain

a1′ � −
1
2
μa1 − Pϕ1cosϕ0,

ϕ1′ �
P

2a
2
0
a1cosϕ0 +

P

a0
ϕ1sinϕ0,

(37)

where P � − B2 + βB2Ω2 + ]B2Ω.

By taking the characteristic equation of the Jacobian
matrix of the previous system and then using the
Routh–Hurwitz criterion, we conclude that the amplitudes
of oscillations are stable if μ> 0. Figure 5 represents the
effects of the parameters F (see Figure 5(a)), β(see
Figure 5(b)), and ] (see Figure 5(c)) on the superharmonic
resonance obtained for μ> 0.

Whatever the values of these parameters, we effectively
note that the amplitudes of the oscillations are stable, and the
superharmonic resonance of order 2 is stable because the
amplitudes of resonance correspond to the same frequency
of resonance. In addition, we notice that the amplitude of
resonance increases with the parameters F and δ, while it
decreases with the parameters β and ] of quadratic depre-
ciation. Precisely, the superharmonic resonance of order 2 is
accentuated when F and δ increase and disappears with
β and ].

5. Horseshoe Chaos

In this section, we analytically determine Smale’s horseshoe
chaos by Melnikov’s method, and then we verify the results
numerically by representing the basin of attraction of the
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Figure 13: Effect of parameter β on the bifurcation diagram of a quadratic-damping Helmholtz oscillator versus F with μ � 0.1 and
Ω � 0.85.
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system. ,e unperturbed system of equation (8) can be
written as follows:

_x � y,

_y � x − x
2
.

(38)
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,e potential of the system is defined by
V(x) �

1
2
x
2

−
1
3
x
3
. (39)
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Figure 16: Bifurcation diagram and its corresponding Lyapunov exponent curve of a quadratic-damping Helmholtz oscillator versus ]with
μ � 0.1, Ω � 0.85, β � 0.75, and F � 0.0925.
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,e unperturbed system is Hamiltonian, and associated
Hamiltonian is

H(x, y) �
1
2
y
2

+
1
2
x
2

−
1
3
x
3
. (40)

,e homoclinical orbits which connect the fixed points
of undisturbed system (38) correspond to zero Hamiltonian.
By solving the equation H(x; y)� 0, we get

xh � 1 −
3

1 + coshτ
,

yh �
3sinhτ

[1 + coshτ]
2.

(41)

Figure 6 presents the potential (Figure 6(a)) and
homoclinic orbits (Figure 6(b)). It is noted that the potential
is a single well and a single hump.

To determine the Melnikov criterion, we put equation
(8) in the form

_x � y,

_y � FcosΩτ − x + x
2

− μy + βy
2

− ]xy.
(42)

By definition, the integral of Melnikov is given by
[21–25]

M τ0( 􏼁 � 􏽚
+∞

− ∞
f xh, yh( 􏼁∧g xh, yh( 􏼁dt, (43)

where f
y

− x + x
2􏼠 􏼡 and g

0
FcosΩτ − μy + βy

2
− ]xy

􏼠 􏼡.
,e Melnikov integral becomes

M τ0( 􏼁 � 􏽚
+∞

− ∞
FyhcosΩτ − μy

2
h + βy

3
h − ]xhy

2
h􏼐 􏼑dτ. (44)

Replacing equation (41) in equation (44), we compute
the integral of Melnikov, and we get

M τ0( 􏼁 � −
6πΩ2F

sinh(Ωπ)
sin Ωτ0( 􏼁 −

6μ
5

−
6]
35

. (45)

If M(τ0) � 0 and dM/dτ0 ≠ 0 for some τ0 and some sets
of parameters, then horseshoes exist, and chaos occurs
[21–25]. Using this Melnikov criterion for the appearance of
the intersection between the perturbed and unperturbed
separatrixes, it is found that chaos appears when the fol-
lowing condition is satisfied:

F≥Fcr �
B

A

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (46)

where A � 6πΩ2/sinh(Ωπ) andB � − (6μ/5 + 6]/35).

,e critical value of ] for which Melnikov’s chaos ap-
pears is

]cr � − 7μ −
35πΩ2F
sinh(Ωπ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (47)

Figure 7 represents the variation of the amplitude of the
external excitation according to the frequency. In this figure,
the domain located below the curve (Fcr,Ω) indicates the
domain where the Helmholtz oscillator with quadratic
damping has a regular behavior, and above this curve, the
oscillator has a chaotic behavior. From the analysis of
Figure 7, it appears that the domain of the existence of
chaotic behavior of the oscillator studied decreases with
μ and ]. Precisely, the critical value Fcr for the appearance of
Smale’s horseshoe chaos increases with μ and ]. For example,
with Ω � 0.297 and Figure 7(a), the chaotic domain cor-
responds to Fcr � 0.2, Fcr � 0.34, and Fcr � 1.04 for μ� 0.275,
μ� 0.5, and μ� 1.75, respectively, and Fcr � 0.14, Fcr � 0.20,
and Fcr � 0.38 for ]� 0.75, ]� 3, and ]� 5 (see Figure 7(b)).
,en, we represent in Figure 8 the curve (]cr, Ω). We ob-
serve through this figure that the domain of the existence of
chaotic behavior decreases when each of the parameters μ
and F increases. ,is remark confirms the result of
Figure 7(c). In conclusion, the depreciation favors the ap-
pearance of the chaos of Melnikov, while the latter is favored
by the quadratic force of stiffness. Now, we are going to
verify these different results by numerical simulations. In-
deed, a better tool to test the validity of the proposed an-
alytical predictions is to investigate numerically the regular
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Figure 18: Poincaré section with parameters of Figure 13(b): (a) F� 0.091; (b) F� 0.0925.
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and irregular (fractal) shape of the basins of attraction. ,e
basins are plotted by scanning the initial values x0 and y0 of
x and y domains, solving numerically differential equation
(42) and collecting the initial conditions which attracted the
dynamics in the single well of the potential. From the
Melnikov critical curve (Figure 7), the results obtained after
the numerical simulations are recorded in Figures 9–11 ,
respectively, which denote the effect of F, μ, and ]. From
these different figures, we note that Melnikov’s critical value
from which Smale’s horseshoe chaos appear is confirmed
and also that the effects of μ and ] are confirmed. For ex-
ample, for F< Fcr, the basin of attraction of the system is
smooth thus showing the regular behavior (Figure 9(a)),
while for F> Fcr, the basin becomes eroded (Figures 9(b) and
9(c)) thus proving the presence of Smale’s horseshoe chaos.
From Figure 10, we observe that the Melnikov critical value
increases with μ, and the limits of the basin of attraction
become more and more smooth. Finally, we have the same
remark for the effect of ].

6. Bifurcation and Transition to Chaos

In this section, we do numerical simulations to look for
transition to dissipative chaos. To do this, the bifurcation
diagram, the Lyapunov exponent, the phase portrait, and the

Poincaré section are plotted by a direct integration of
equation (8) using the fourth-order Runge–Kutta algorithm.
Indeed, we analyze the dynamics of the system by taking
] � 0, μ � 0, andω � 0.85 (these values are the basic values
of the parameters used in the literature [9–14]) with the
initial condition (x0 � 0.2, y0 � 0.2), and the results obtained
are plotted in Figure 12. From this figure, showing a perfect
agreement between the bifurcation diagram and its corre-
sponding Lyapunov exponent, we note that the system
oscillates when 0 ≤ F ≤ 0.109 with rich dynamics. More
precisely, if 0 ≤ F ≤ 0.10085, the oscillations of the system
are periodical, 1T; for 0.10085< F ≤ 0.1075, there is a
doubling of period, and the oscillations become of period
− 2T. From 0.1075< F ≤ 0.1084, the dynamics of the system
become of period − 4T and thereafter pass a behavior period
− nT and then become chaotic when 0.10882 ≤ F ≤ 0.109.
Figures 13 and 14 represent the effects of the pure quadratic
parameter β and hybrid quadratic parameter ] of damping,
respectively, on the dynamics of the system. Two important
observations on the domain of oscillations, in general, and
on the domain of chaotic behavior, in particular, are to
emerge from the analysis of figures.

Precisely, we observe a phenomenon of successive
doubling of period leading to chaos, different domains of
which are indicated on the bifurcation diagrams. In other
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Figure 19: Effect of ] on the Poincaré section with parameters of Figure 16: (a)] � 5.5; (b)] � 5.75; (c)] � 6.
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words, the system passes successively from oscillations of
period 1T, 2T, 4T, 8T, and nT to chaotic oscillations. Indeed,
increasing the parameter β reduces the oscillation domain of
the system but does not have a perceptible effect on the
chaotic behavior of the latter (Figure 13).

From Figure 14, we note that the domain of oscillation of
the system and that of chaotic behavior increase with the
parameter ]. We can therefore note that the parameters
β and ] do not act on the system in the same way, and we can
therefore use them to control the oscillation domain of the
modified Helmholtz oscillator studied and the domain in
which the latter possesses chaotic behavior. Finally, Fig-
ures 15 and 16 represent the bifurcation diagram and its
corresponding Lyapunov exponent with β and ] as control
parameters, respectively. ,ese figures show a perfect
agreement between the two diagrams and prove that the
chaotic behavior is actually favored by the parameter ]. By
taking values of F in the appropriate values of each of the
behaviors predicted by the bifurcation diagram in
Figure 13(b), we obtained the phase portraits and the
Poincaré sections of Figures 17 and 18, respectively. We note
that the system has a periodic behavior of period − 1T for
F� 0.0425, a multiperiodic behavior of period − 4T for
F� 0.091, and chaotic if F� 0.0925. ,ese observations
confirm very well the results of Figure 13. Figure 19 rep-
resents the Poincaré section of the system for values of ]
chosen in different domains of behaviors given by Figure 16.
We observe at this level the perfect confirmation of the
periodic, multiperiodic, and chaotic behaviors of Figure 16
but also of the effect of the hybrid quadratic damping pa-
rameter on the dynamics of the modified Helmholtz
oscillator.

7. Conclusions

In this work, we have studied the quadratic-damping
Helmholtz oscillator which models the simple Lot-
ka–Volterra system. ,e determination of the equilibrium
points of the oscillator results in the latter having two fixed
points, one of which may be a node or a stable focus or
unstable, while the second is a saddle point. ,e harmonic,
primary, and secondary second-order resonances are ob-
tained from the results of treatments by the methods of
harmonic balance and multiple scales. ,e phenomena of
amplitude jump and hysteresis are also obtained. It appears
that the system has two or three amplitudes for the same
value of F or which do not have the same stability. ,is
makes the behavior of the oscillator complex and gives it
interesting properties and properties that can be used in
memory systems. Subsequently, the Melnikov criterion is
used to analytically determine Smale’s horseshoe chaos. ,e
basins of attraction are used to numerically verify the results
obtained, and there is a perfect confirmation of the pre-
diction given by the Melnikov technique. Knowing that the
presence of Smale’s horseshoe chaos does not exclude the
presence of the dissipative chaos, we used bifurcation dia-
grams, Lyapunov exponents, phase portraits, and the
Poincaré section to detect the road to dissipative chaos in the
modified Helmholtz oscillator. It appears that the system

studied can present very rich and varied behaviors such as
periodic, double-periodic, multiperiodic, and chaotic be-
haviors. Finally, by analyzing numerically the effects of all
the parameters of the system, in general, and, in particular,
those of the new parameters, we have the domains of these
parameters for which the oscillator vibrates and the domains
of interesting behaviors. We noted that all the parameters of
the system influence the frequencies and amplitudes of
oscillation of the latter in the cases of resonance, amplitude
jump, and hysteresis. For the road to chaos, we note that F
andΩ have significant effects on the dynamics of the system,
but the parameter of pure quadratic dissipation β has a less
significant effect on the appearance of chaos for the system
studied.
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