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Nowadays, people have an increasing interest in fresh products such as new shoes and cosmetics. To this end, an E-commerce
platform Taobao launched a fresh-item hub page on the recommender system, with which customers can freely and exclusively
explore and purchase fresh items, namely, the New Tendency page. In this work, we make a first attempt to tackle the fresh-item
recommendation task with two major challenges. First, a fresh-item recommendation scenario usually faces the challenge that the
training data are highly deficient due to low page views. In this paper, we propose a deep interest-shifting network (DisNet), which
transfers knowledge from a huge number of auxiliary data and then shifts user interests with contextual information. Fur-
thermore, three interpretable interest-shifting operators are introduced. Second, since the items are fresh, many of them have
never been exposed to users, leading to a severe cold-start problem. Though this problem can be alleviated by knowledge transfer,
we further babysit these fully cold-start items by a relational meta-Id-embedding generator (RM-IdEG). Specifically, it trains the
item id embeddings in a learning-to-learn manner and integrates relational information for better embedding performance. We
conducted comprehensive experiments on both synthetic datasets as well as a real-world dataset. Both DisNet and RM-IdEG
significantly outperform state-of-the-art approaches, respectively. Empirical results clearly verify the effectiveness of the proposed
techniques, which are arguably promising and scalable in real-world applications.

1. Introduction

E-commerce has been prevalent in our daily life. In tradi-
tional online shopping scenarios, all items are mixed up, and
a recommender system predicts users’ preferences on items
based on their past interactions, e.g., click, purchase, and
rating [1-3]. However, this strategy overlooks the influence
of the items’ life periods and causes two problems. First, as
many people have a growing interest in novel, newly released
commodities, their requirements will not be fully satisfied.
Second, popular items have more opportunities to be

exposed, whereas those new products are overwhelmed,
even though with high quality [4-6].

To tackle these problems, one E-commerce platform
Taobao launched a new application, namely, New Tendency
page, aiming to recommend fresh items for users who prefer
new products. As illustrated in Figure 1, a card which
contains a fresh item with its textual descriptions is pushed
to the users. Once a user clicks this card, the New Tendency
page appears, where more items from a predefined fresh
item pool are recommended to this user. As a result, users
who prefer newly released products can freely explore this


mailto:gaojianliang@csu.edu.cn
https://orcid.org/0000-0002-5056-0351
https://orcid.org/0000-0003-2898-9386
https://orcid.org/0000-0002-9363-9908
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8828087

Complexity

N /

K New Tendency page /

____________________ ,
/ Use interest \ / Fresh item \ | Fresh item '
preferences ranking ' embedding !
1
1
[ ittt Tkt LR "
) —_— Sneakers ! Item features | !
) TY New technique ' : Brand, ! !
» $99 1 purchase h Price, 'y
N ________; ________ 0" 1 purchase, ! !
g S oes S ippers ! 17 clicks P
1167 new arrival Casual life T n
purchases __$10 _i[ﬂlicga_se_ L : [:::] :
1
1
Leather N ey Rttt T
[ . For business 1 Relatlﬂlal items ! '
[
Interest ——50 __ —1 Blirihisf - Meta- N m——-—-—-—‘ ! purchase: :
o 1!
LN | ernbedding 1 ¥
3021 6791 summer style 1 "
purchases purchases $89 3 purchase i 5 1
———————————————— N v L= 1 :
Main Entrance : : : :
[ ) ]
1

F1GURre 1: An illustration of fresh item recommended. Once a user clicks the card on the left side, a fresh-item recommendation page (middle
side) appears to achieve interest shifting from users” history interests to the fresh items, where the recommended fresh items are ranked
using the embeddings of fresh items and relational items (right side). All the fresh items on the recommended page are chosen from a
specific fresh item pool, which are usually less exposed than items on the main entrance page.

page. However, to achieve high-quality ranking on this page,
two key problems have to be addressed.

1.1. QI: How to Address the Data-Deficiency Problem?
Recommending fresh items directly on the main entrance
page of the app may cause unpredictable influences. Thus,
this page has to be designed as a fresh-item recommendation
scenario. Compared to the main entrance page of the app,
the New Tendency page is reported to contain less than 5% of
page views. Most of the fresh items only have a few inter-
actions, which make the scenario-specific training data
highly deficient. As a result, we have to collect additional
information to improve the performance.

1.2. Potential Solutions to QI. We firstly notice that the
clicked card contains rich contextual information, such as
the showpiece and its textual description, which clearly
reflects the user interests. Therefore, we can utilize off-the-
shelf context-aware recommender systems (CARSs) [7],
such as factorization-based approaches [8, 9] and deep
learning-based models [10-15]. However, the model com-
plexity increases owing to the involvement of the context
features, which prevent the model being trained sufficiently.
To deal with this problem, cross-domain recommender
systems (CDRSs) [16-18] seem appealing due to their su-
periority in handling data deficiency. In particular, an
asymmetric CDRS [19-21], which collects a large amount of
context-free data (e.g., data from the main entrance of the
app, namely, auxiliary data), can be designed to improve the
prediction performance. However, existing asymmetric
CDRS models seldom consider the scenario-specific con-
textual information of the target domain.

1.3. Q2: How to Deal with Totally Cold-Start Items? As re-
ported by Taobao, more than 60% of fresh items are newborn
and never interacted by users, which causes a severe cold-
start problem. Note that these newborn items are not the
cause of data deficiency because they are not a part of
training data.

1.4. Potential Solutions to Q2. The cold-start problem is
usually solved by integrating external information, e.g., item
attributes [22, 23], user attributes [24, 25], relational data
[26], and knowledge from other domains [16]. We note that
this problem can be alleviated by applying the cross-domain
technique because the embeddings of item attributes can be
reused. Nevertheless, since the id of a cold-start item never
appears, its embedding cannot obtain a good initialization.
Pan et al. [27] proposed the meta-Id-embedding generator
(Meta-IdEG), which considers the id embedding initiali-
zation problem and solves it through a learning-to-learn
training manner. However, meta-IdEG only utilizes item
features to generate the id embedding. As a result, it is unable
to explore the community structural information when
initializing id embeddings, which leads to a suboptimal
solution.

1.5. Our Solutions. In this study, we propose two novel
techniques to construct a deep learning-based recommender
system, which simultaneously tackles these above issues. The
proposed model fully exploits various types of external
information to improve the prediction performance. To
answer Q1, we present a deep interest-shifting network
(DisNet). Specifically, it firstly learns the users’ general in-
terest vectors using a huge number of auxiliary data and then
shifts them to a scenario-specific representation using



Complexity

contexts. Next, the size of trainable parameters is reduced to
a few neural network layers, which significantly alleviates the
data-deficiency problem. To answer Q2, the transferred
embedding layer of item attributes can be reused, and the
only thing that matters is the item id embedding initiali-
zation problem. Hence, this paper proposes a relational
meta-Id-embedding generator (RM-IdEG), which is trained
in a learning-to-learn manner, aiming to make the model
achieve great generalization ability after few-shot training.
Furthermore, RM-IdEG absorbs the information of relevant
items. Therefore, the community structural information can
be inherently embedded and exploited, which has been
proved beneficial for addressing the cold-start problem [26].

The main contributions of this work are summarized as
follows:

A novel application, fresh item recommendation, is
studied, which gives new items more opportunities to
be exposed and fully personalizes the recommendations
of those who prefer the novel, innovative products. We
also make a first attempt to address the fresh-item
recommendation task by two novel techniques.

We present a deep interest-shifting network (DisNet)
to deal with the severe data-deficiency problem in a
fresh-item recommendation scenario.

To address the cold-start problem, we propose a re-
lational meta-Id-embedding generator (RM-IdEG) that
involves the relational data into meta-id embedding
initialization, which enables community structural
information to be inherently contained.

Extensive experimental results demonstrate that our
model can effectively handle fresh-item recommen-
dation tasks in both cold-start and warm-start stages.

The rest of this work is organized as follows. In the next
section, notations and preliminary knowledge are intro-
duced. In Section 3, we provide a detailed description of our
network architecture. After that, the results of empirical
studies are reported. Then, we give the related works of our
method. Further discussion and concluding remarks are
provided in the last section.

2. Notations and Preliminaries

In this section, we firstly discuss a popular architecture of
context-aware recommender systems. Then, we introduce
the training procedure of meta-IdEG and summarize the
notations in Table 1.

2.1. Context-Aware Recommendation. A popular strategy in
existing context-aware recommendation systems is to learn
latent representations for users and items and then make
decisions using these latent vectors.

Formally, given an example, which contains an item ¢, a
user u, and potentially some contexts, we first feed them into
an embedding layer. Then, their features are transformed
into vector representations by one-hot encoding or multihot
encoding. The transformed item features consist of an item
id embedding e, and other content features v,. For the user,

we combine its id embedding and other features as one
vectorized representation v,,. Finally, we denote the trans-
formed context features by c. The final prediction is made by

7 =9(quwPs©)
Q@ = fu(Va) (1)
p:=f: (et’vt)'

For example, in matrix factorization-based models [28],
q, and p, are exactly their id embeddings, and g is the
context-biased prediction function. State-of-the-art models
[29, 30] also use neural networks to learn user/item rep-
resentation as well as make decisions. This paper also adopts
neural networks for f,, f,, and g, which lead to a double-
tower model architecture.

It is noteworthy that such a learning paradigm deeply
couples the contextual information in the model architec-
ture. In our cross-domain setting, there are heterogeneous
contexts, i.e., scenario-specific contexts. Therefore, the
trainable parameters of deep neural network models cannot
be reused, which makes them hard to share knowledge
across different domains [31-33].

2.2. Meta-Id Embedding Generator. To babysit newborn
items, the only thing that matters is how to learn the em-
beddings for new items’ ids. A common learning paradigm
first uses an Id embedding generator (IdEG) to initialize a
vector for new ids in the embedding table and then update
them using incoming user interactions. The most intuitive
way is to output a random embedding initialization. How-
ever, its generalization ability may be restricted due to the
cold-start problem. To this end, Pan et al. [27] proposed to
initialize id embeddings using meta-learning technique, a.k.a.
meta-Id embedding generator (meta-IdEG). By regarding the
recommendation for each item as a task, meta-IdEG ensures
good embedding initialization such that the model achieves
better generalization ability after few-shot training.

Next, we illustrate the workflow of meta-IdEG. For each
task that relates to a specific item, we divide its data examples
(interactions) into two sets: a support set 2° and a query set
1. We firstly feed the item features into a neural network to
generate an id embedding, e/ = IdEG,,, (v,). Then, we
optimize IdEG,, ., in a learning-to-learn manner. We denote
the predicted label on the support set as * using e;". First, we
can obtain the cold-start loss by

L(3,7"¢/,2°) = —ylog(3") = (1 = ylog(1-3"). (2)

Then, we update the embedding by one step of gradient
descent:

al.
(3)

e=e —a
t— & T W e
Oe,

where « is the learning rate. Since a new embedding is
obtained, we can predict label 3 on the query set using e,.
Next, we define a warmed loss by

L,(3.7";e,27) = —ylog(7') - (1 - ylog(1-3').  (4)
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TasLE 1: Notations.

Notation Definition or descriptions

(u,t) A pair of user u and item ¢

e The id embedding of item ¢

v, The embedded features (except id) of item ¢

v, The embedded features (include id) of user u

C, C Common contexts and scenario-specific contexts

fo fu Item/user representation networks

g Decision-making network

h Context network

Q> Pr Latent user/item vectors in the interest space

z, Z, Output vector/matrix of context network h

e, e Cold-start and warmed item id embeddings in the meta-training procedure

2°, 21 Support and query sets of a cold-start item in ¢

7,9 Predicted labels on @° and 21

I s Leta Cold-start, warmed, and meta-loss in the meta-training procedure

D, DY, P° Auxiliary, warm-start, and cold-start datasets

FAA ?DN Ground-truth label and predicted labels of context-aware models and DisNet

ISO(+) Interest-shifting operator

ei (i=1,...,k) The id embeddings of top k relevant items

ap (i=1,...,k) Attention scores

W, b; (i=1,2) Weight matrices and bias vectors of the NN operator

Wi, 51 (i=1,2) Weight matrices and bias vector of RM-IdEG

W, h, b Parameters of attentional embedding aggregator

T,9°¢ Item sets of 2 U9° and 9°

Note that e and e; do not have to be explicitly com-
puted, and we are only interested in their gradients on
IdEG,,,(,. Finally, we sum the two losses to get our meta-loss
function:

lmeta = lC + ﬂlw' (5)

Here, # is the tradeoff parameter. In other words,
minimizing [ .., simultaneously achieves two goals: (1) the
error in predictions for the new items should be small; (2)
after a small amount of labeled data is collected, a few
gradient descent updates should lead to good generalization
ability.

3. Proposed Model

3.1. Deep Interest-Shifting Network. In this section, we
present DisNet, a learning framework for recommending
items in a fresh-item recommendation page, which usually
contains rich scenario-specific contexts. The overall network
architecture is shown in Figure 2.

We note that the latent vector of a user actually reflects
his or her interest in a latent space, while the scenario-
specific contexts reflect the interest shifting in the user’s
general interests [34, 35]. For example, there is a boy who is
interested in sports, games, and electronic products. Once he
clicks a fresh item iPhone-11, he may pay more attention to
electronic products with advanced technology, and we can
recommend him newly released smartphones, laptops, and
so on. We assume that such interest shifting will not change
its latent semantics. In other words, the shifted represen-
tations can directly be fed into the decision-making network
g. By this assumption, we can decouple the general interest
of users from the scenario-specific contexts. Denoting the

scenario-specific context by c,, we propose an interest-
shifting operator (ISO) to obtain a shifted user
representation:

(6)

where q;, and q,, have the same dimension m. h maps the
contexts to a latent space to extract their critical information.

It is noteworthy that there is a huge amount of auxiliary
data, from which we can model the general interest of
the users. Thus, we can pretrain the item/user representation
networks as well as the decision-making network using these
data. We denote the pretrained networks by f,, f,, and
g. Then, the context information can be incorporated to shift
the latent user vector to a scenario-specific one but in
the same interest space. Formally, DisNet makes the decision
by

77 = 9(20 P ©) = g(150( . (Vi) 2,), fi (e Vi) <)
(7)

Such a model not only transfers knowledge from a
general interest domain that has rich data samples but also
reduces the size of the trainable parameters to the ISO (-) and
h functions only. Obviously, the context-aware and data-
deficiency problems can be addressed simultaneously.

Note that c is some contexts shared by the two domains.
However, it is possible that auxiliary data have their own
context as well. We ignore such contextual information and
preserve the common parts only because we are modeling
the general interest of the users. In practice, we also enable
the decision-making network g and the embedding layer to
be fine-tuned.



Complexity

Ydn

f

Decision-making network

f

Item representation
network

Interest-shifting operator

T

. Context
User representation -
LEATCTES network
! U7 Otheritem | | i po T i
! Item id L o . i ! Context i
! . L feature [ User embeddings | | . i
! embedding | | beddi o | \ embeddings |
! i | embeddings | | ! ! !
Attentional :-_______—_____-I
Relational ~non I Relevantitem |
meta-ide; N embedding i embeddings |
J aggregator i & '
L, a

Cold-start phase

FiGURe 2: The model architecture of DisNet and RM-IdEG. The orange parts are pretrained using the auxiliary dataset. The blue ones are
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3.1.1. Interest-Shifting Operators. The above discussion
provides the overall network architecture. Now, we can
perform any reasonable shifting operation to learn the
context-specific representation of the user. In this work, we
introduce three interest-shifting operators, all of which
relate to very interesting interpretations.

Add Operator. Motivated by the huge success of the
representation learning and knowledge graph, we
adopt a similar strategy as TransR [36]. Specifically, it
embeds each entity and relation by optimizing the
translation principle e, +e, = e, if a triplet (a,r,b)
exists in the graph. Recall the example of interest
shifting, i.e., when a boy clicks an item iPhone-11, the
interest representation of this boy goes to the interest of
a boy who has a preference for electronic products with
advanced technology. If we regard the contextual in-
formation as a relation, we obtain our first operator,
which adds up the latent user vector and contextual
vector:

1S0(q,,z,) = q, + z,. (8)

This implies that q,, and z, have the same dimension.
That is, the projection function h directly learns the
discrepancy between the original interest and the
shifted interest, which is similar to the relation em-
bedding in the knowledge graph.

COT Operator. Before introducing the second operator,
we review a popular technique in the context-aware
recommendation, namely, the contextual operation
tensor (COT) [37]. By estimating a contextual opera-
tion matrix, COT maps the original user/item latent
vectors to their context-specific ones. We notice that
COT has three main limitations: (1) it assumes the
context space is fixed and the contextual operation
matrix relates to different context values; (2) it jointly
learns the original latent vectors as well as the con-
textual operation matrix; and (3) it uses linear mapping,
i.e., a 3D tensor, to obtain the contextual operation
matrix, which leads to degenerated performance. Ob-
viously, COT cannot be applied to our problem directly
because the data-deficiency problem prevents the joint
learning procedure, and cross-domain data have dif-
ferent contexts.

Fortunately, in DisNet, we have decoupled the user’s
general interest from the scenario-specific interest.
Therefore, we can estimate the scenario-specific context
operation matrix using the h function:

ISO (qu’ ZS) = Z;rqu’

Z,=h(c,). ©)

Here, h outputs a d x d matrix instead of a single vector.
In other words, while COT focuses on different context



values, our model considers how external contexts
affect the user’s interest.

Neural Network-Based Operator. Yet, we have only
considered linear shifting, while in reality, the trans-
formation may be nonlinear. To bridge this gap, we
propose a neural network-based operator:

ISO (qw zs) = WZTO-(WIT [qu"Zs] + bl) + b2> (10)

where W;, b; (i € {1,2}) refer to the weight matrices and bias
vectors. ¢ is the activation function. [-||-] denotes the con-
catenation of two vectors. It is worth pointing out that any
network architectures can be used, and this paper considers
a simple multilayer perceptron.

While the add operator regards the contexts as bias and
the COT operator considers the cross-influences between the
user interest and contexts, the NN-based operator achieves
these two goals simultaneously.

3.2. Relational Meta-Id-Embedding Generator. This section
concentrates on babysitting fresh items in the cold-start
phase, where they suffer from a severe cold-start problem. It
is worth noting that DisNet can reuse the embedding layer
after pretraining. Then, all the attributes except item id
obtain great embeddings. Hence, the only thing that matters
is the item id embedding initialization. Following [27], this
work learns an IdEG in a learning-to-learn manner. Nev-
ertheless, we notice that the vanilla meta-IdEG feeds item
features into a simple neural network to generate embed-
dings. Obviously, meta-IdEG neglects the fact that id em-
bedding reflects the community structural information
between items, exploiting which has been proved beneficial
for alleviating the cold-start problem [26].

To remedy this problem, a novel relational meta-Id
embedding generator (RM-IdEG) is proposed, whereas it
trains the item id embedding in a learning-to-learn manner
and integrates relational information for better embedding
initialization, which further improves the performance of
DisNet on new items. Specifically, we collect a set of warm-
start items that are significantly relevant to the cold-start
item t. Many influential relations can be considered, such as
items from the same seller and the same brand. For instance,
a newly released Nike T-shirt may have similar selling be-
haviors as other items in Nike shops. Then, we construct an
id embedding set .7, = {e},. .. ,ef}. Here, €} (i=1,2,...,k)
denote the id embeddings of top k relevant items. Then, we
output the new embedding via an attentional embedding
aggregator:

(11)

Here, C is used for normalization. The attention score ai
is given by a global attention network:

Complexity

ai = exp(hTa(WTei + b)), (12)

where h, W, and b are shared attention parameters. Then, we
feed the learned attentional id embedding and item features
into a neural network to obtain the final embedding:

e, = IdEG(v,, .7,) = tanh(WzTo(WlT [e/llv,] + f)l))
(13)

where W, (i € {1,2}) are weight matrices and b, is the bias
vector. To obtain numerically stable outputs, we follow some
tricks in [27]: (1) the bias of the last layer is removed; (2) tanh
activation is applied in the final layer.

Remark 1. The proposed model fully addresses the cold-start
problem from two aspects: (1) through a learning-to-learn
training procedure, our model achieves better generalization
ability with few training data; (2) by considering influentially
relevant items, RM-IdEG automatically encodes community
structural information into the embedding initialization, and
the predictive accuracy is further improved.

3.3. Training. Now, we describe the training procedure of
our model. Note that the training fresh item set 7 does not
contain those newborn items. Consequently, we choose an
item subset 7 from I to simulate the cold-start setting. For
each item in 7, which corresponds to a task, we preserve m
examples for both the support set and the query set (a total of
2m examples). The remaining examples of these items are
dropped since they should not appear before we train the RM-
IdEG. To avoid the performance of the base model being
decreased, we limit each item in J° to having less than or
equal to M examples (M >2m) and obviously, greater or
equal to 2m examples. We denote the constructed cold-start
dataset by 2°. The data examples of the remaining items I —
T ¢ constitute the warm-start dataset 2". Remark that the
items in I are all warm-start items since they have at least
one data example. We call 2° cold-start because they are used
to train RM-IdEG, which is designed for totally cold-start
items. Also, 2" is called warm-start since it is used to train
DisNet, which does not consider the cold-start problem.

In summary, we have three datasets: (1) an auxiliary
dataset 27, having no scenario-specific contexts, collected
from other domains; (2) a warm-start dataset 2% that has
rich contextual information; and (3) a cold-start dataset 2°
that contains few-shot examples. Accordingly, the whole
model is trained in three stages, and we put the details in
Algorithm 1.

4. Experiments

To justify the effectiveness of DisNet and RM-IdEG, we
conduct comprehensive experiments to answer the follow-
ing questions:
RQI: can DisNet outperform state-of-the-art methods?
RQ2: can RM-IdEG outperform state-of-the-art IdEGs?

RQ3: is our model sensitive to the parameters?
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Input: 2?: auxiliary dataset
Input: P": warm-start dataset
Input: °: cold-start dataset
Input: (£, 7,c, ¢, ): a testing example
Output: PN: the predicted label of (%, ¢, c,)
1 repeat
2 /* the first stage, pretrain the model using auxiliary data */
3 Randomly sample a batch of data from 2
4 Calculate the predicted label y by equation (1)
5 Update g, f,, f, by gradient descent
6 until Converge
7 Fixg’fwft tog’fwft
8 repeat
9 /* the second stage, train DisNet using warm-start data */
10  Randomly sample a batch of data from 2%
11 Calculate q,, p, using f,, f,
12 Compute the shifted interest vector q;, by equation (6)
13 Calculate the predicted label 3 using g by equation (7)
14  Update h, ISO(-) by gradient descent
15 until Converge
16 Fix all the trainable parameters except the item id embeddings
17 repeat
18  /* the third stage, train RM-IdEG using cold-start data */

19  Randomly sample an item #; and get its support/query sets (2, 27) from 2°

20  Aggregate embeddings of relational items of ¢; by equation (11)

22 Compute the cold-start loss on 2} by

25 Update RM-IdEG by gradient descent
26 until Converge
27 if T is a cold-start item then

29 else

31: end if

21  Generate an id embedding e; for t; using RM-IdEG

23 Update the id embedding of ¢; to e; by equation (3)
24  Compute the warmed loss on @7 by equation (4)

28  Generate an id embedding €, for f using RM-IdEG
30:  Get the id embedding €, of 7 from the embedding layer

32: Return a label 7PN for (7,7, ¢, ¢, ) by equation (7) using DisNet

equation (2)

ALGoriTHM 1: The training and testing procedure.

4.1. Dataset

4.1.1. Dataset Description. We evaluate our methods on two
synthetic datasets and a real-world dataset:

MovieLens (https://grouplens.org/datasets/movielens/)
[38]: it consists of 1.0 million movie-ranking instances
across about 6,000 users and 4,000 movies. The features
of movies include movie id, title, year of release, and
genres. Titles and genres are lists of tokens. The features
of users include user id, age, gender, occupation, and
zipcode. To simulate our fresh item setting, we choose
gender, occupation, and zipcode as scenario-specific
context features. We also convert the rating scores to
binary values. The ratings smaller than 4 are turned into
0, and the others are turned into 0.

Book-Crossing (http://www?2.informatik.uni-freiburg.
de/cziegler/BX/) [39]: it is collected by Cai-Nicolas
Ziegler in a one-month crawl from the Book-Crossing
(http://www.bookcrossing.com/) community. It con-
tains 0.27 million users, providing 1.15 million ratings

about 0.28 million books. The features of books include
ISBN number (book id), book title, year of publication,
and publisher. The features of users include age and
location. Similar to MovieLens, we select location as a
scenario-specific context feature. The ratings are con-
verted to 1 if they are at least 4 and 0, otherwise.

Taobao-Fresh: it collects 203.1 million user-item click
interactions produced by the main entrance page of
Taobao’s app as auxiliary data and 4.4 million user-item
click interactions produced by the New Tendency page
as fresh-item recommendation data. A total of 4.8
million users and 1.6 million items are considered, with
71 user features, 17 item features, and 17 contextual
features (auxiliary data have no contexts).

4.1.2. Data Splitting. For MovieLens and Book-Crossing, we
first group the items by their ids. We put those items with the
number of examples less than M + 1 and larger than 2m — 1
in J°. Then, we construct a cold-start dataset 2 by
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preserving 2m examples for each item. From the examples of
the remaining items I — 7, we randomly choose 80% as
auxiliary data 2 and 20% as the warm-start dataset 2. We
set m = 20 and M = 100 for MovieLens. For Book-Crossing,
we notice that a total of 48,434 books are rated by exactly 2
users. Hence, we set m = 1 and M = 2. It enables us to study
an extreme experimental setting, i.e., each cold-start item is
one-shot.

For Taobao-Fresh, the auxiliary data 2? have been
collected. We then split the fresh-item recommendation data
into two parts. The first one is a cold-start dataset 2° where
items have greater than or equal to 10 interactions and less
than or equal to 20 interactions. Similarly, each item in 9°
has a support set and a query set, each of which has 5 ex-
amples. The examples of the remaining items are collected as
the warm-start dataset 2". The statistics of these datasets
can be found in Table 2.

4.1.3. Data Generation. To answer RQ1, for each dataset, we
run DisNet on three types of data:

Auxiliary-only data: they contain the auxiliary data and
context-free warm-start data, i.e., the context features
of the warm-start data are removed.

Context-only: it is exactly warm-start data. In other
words, DisNet is run without pretraining.

Full data: they comprise auxiliary data and warm-start
data and are the main setting of this paper.

Note that the three types of data are used to test the
effectiveness of DisNet, while cold-start data are used to
evaluate the superiority of RM-IdEG.

For performance evaluation, we randomly divide the
warm-start and cold-start data into 80% training and 20%
testing. We run the experiments for five times, and the mean
AUC performance on the testing set is reported.

4.2. Baselines. We evaluate the proposed model in two
stages. In the first stage, we compare DisNet with three
context-aware recommendation models:

DeepFM [11]: it feeds embeddings to a factorization
machine model as well as a multilayer perceptron and
then aggregates their outputs and gets the final
prediction.

PNN [13]: the dense embeddings are fed into a dense
layer and a product layer. Then, it concatenates their
outputs together and uses a two-layer neural network to
get the prediction.

CFM [15]: CFM is a recent state-of-the-art CARS
method that explicitly learns second-order feature
interactions. It calculates the pairwise outer product of
dense embeddings and stacks them to obtain an in-
teraction cube. Then, it applies the convolution pooling
technique to get the final prediction.

The dimension of embedding vectors of each input field
is fixed to 128, and the activation function is chosen as ReLU
for all the models. As suggested in [11], we use three dense
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hidden layers as the deep component for both DeepFM and
PNN. For DisNet, the size of the user/item latent repre-
sentation is set as 64. We use two fully connected layers with
a hidden dimension of 64 for user/item representation
networks as well as the decision-making network. We do not
activate the outputs of user/item representation networks.
The context network of the NN/add ISO and the shifting
network of the NN ISO also comprise two fully connected
layers with hidden size 64 and without activation in the final
layer. For the COT ISO, we linearly learn a contextual
operation matrix of size 64 x 64 from the contexts. Finally,
the learning rate and I,-regularization parameters are fine-
tuned by five-fold cross-validation.
Then, we evaluate the RM-IdEG with two baselines:

Rand-IdEG: the random initialization of id embeddings
is one of the most commonly used strategies in rec-
ommender systems.

Meta-IdEG [27]: the state-of-the-art solution to the
cold-start problem. It firstly feeds the item features into
a simple neural network to generate embeddings and
then trains them in a learning-to-learn manner.

For Rand-IdEG, we initialize the id embeddings with
random values from a standard Gaussian distribution with
standard deviation 0.01. For meta-IdEG, we use the neural
network architecture as suggested in [27]. For RM-IdEG,
we use a two-layer neural network with a hidden size of 128
as the IdEG network. According to Pan et al. [27], the
tradeoff parameter # is robust. Hence, we follow their
experimental setting and set 5 as 0.1 for meta-IdEG and
RM-IdEG. We also follow their two suggestions that use
tanh as activation and remove the bias of the output layer.
For a target item in the synthetic dataset, we choose
k-nearest neighbors from the previous training dataset, i.e.,
2% U 2", using hamming distance as the relevant items,
where k is chosen by five-fold cross-validation. For Taobao-
Fresh, we randomly select 10 items having the same seller
and 10 items having the same brand as the relevant items.
We choose DisNet-NN as the base model, which has been
pretrained by 2 and 2.

4.3. Empirical Results

4.3.1. Performance Comparison of Context-Aware Models
(RQ1). Tables 3 and 4 report the testing AUC comparison of
three context-aware models on two synthetic datasets and
the Taobao-Fresh dataset. We have the following findings:

All the methods obtain the best performance on the full
data. For example, on Taobao-Fresh, DisNet-NN im-
proves the AUC scores on auxiliary-only and context-
only data by 1.00% and 1.69%, respectively. This finding
verifies the importance of utilizing auxiliary data and
contexts to alleviate the data-deficiency problem.

On the Taobao-Fresh dataset, all the methods achieve
significantly greater improvement on the context-only
data than the auxiliary-only data. It demonstrates that,
in the fresh-item recommendation task, the context
information highly reflects the user interest.
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TaBLE 2: The statistics of the datasets.

Datasets # users # items # interactions (M)t # auxiliary (M) # warm-start (M) # cold-start:
Book-Crossing 0.28M 0.27M 1.15 0.75 0.19 48,434
MovieLens 6,040 3,706 1.00 0.76 0.19 30,645
Taobao-Fresh 4.78 M 1.61 M 207.54 203.13 4.09 0.31 M

tThe first three columns list the number of users, items, and data examples of the whole dataset. $The second three columns report the number of data

examples of the preprocessed datasets after splitting.

TaBLE 3: Testing AUC comparison of context-aware models on synthetic datasets.

Dataset: Book-Crossing

Dataset: MovieLens

Methods - o

Auxiliaryt Context Full data Auxiliary?t Context Full data
DeepFM 0.7836e 0.7741e 0.7840e 0.7284e 0.7586e 0.7654e
PNN 0.7854e 0.7725e 0.7857e 0.7290e 0.7584e 0.7649e
CFM 0.7730e 0.7726e 0.7707e 0.7289e 0.7571e 0.7633e
DisNet-Add - 0.7745° 0.7862e - 0.7576° 0.7660e
DisNet-COT - 0.7733e 0.7864e - 0.7559e 0.7664°
DisNet-NN 0.7858 0.7748 0.7878 0.7287 0.7577 0.7666

/" indicates whether the DisNet-NN variant is significantly superior to the coupling algorithm or not on each dataset (pairwise ¢-test at the 0.05 significance
level).tOn the auxiliary-only data, the network architecture of DisNet is fixed, and we only report the performance once.

On auxiliary-only data, all the models are competitive
with each other. However, on full data, the performance
of baselines shows no significant improvement after the
context features being involved. The reason is these
baselines deeply couple the context in the model, and
thus, the knowledge of the auxiliary domain cannot be
fully utilized. Take DeepFM as an example; since 2¢
and 9" have different input formats, the deep com-
ponent cannot be reused. Though we can reuse the
embedding layer, its predictive performance is limited.

DisNet models with full data significantly outperform
all the baselines as well as their auxiliary-only and
context-only counterparts. The interest-shifting oper-
ator enables us to completely exploit both context and
cross-domain information.

Different interest-shifting operators show competitive
performance with each other. Moreover, the NN-based
operator obtains the best performance because it en-
ables the user interest to be shifted nonlinearly.

Interestingly, DisNet-COT always underperforms
DisNet-Add on the context-only dataset but is better
than DisNet-Add on the full dataset. We suppose the
reason is the COT operator tends to overfit on context-
only data since it contains more parameters. With the
help of auxiliary data, this problem is alleviated.

4.3.2. Performance Comparison of Different IdEGs (RQ2).
Tables 5 and 6 list the cold-start and warmed-up perfor-
mance of DisNet with different id embedding generators.
Once the IdEG produces the id embeddings, the cold-start
performance is directly evaluated on a meta-testing query
set, where all items are cold-start ones. Then, we perform one
step of gradient descent to update the id embeddings using a
meta-testing support set that contains the same items as the
query set. Finally, the warmed-up performance is evaluated
again on the query set.

TaBLE 4: Testing AUC comparison of context-aware models on the
Taobao-Fresh dataset.

Methods Auxiliaryt Context Full data
DeepFM 0.7367e 0.7449e 0.7362e
PNN 0.7413e 0.7439e 0.7417e
CFM 0.7377e 0.7441e 0.7442e
DisNet-Add - 0.7480° 0.7528e
DisNet-COT - 0.7467e 0.7533¢
DisNet-NN 0.7409 0.7483 0.7534

¢/° indicates whether the RM-IdEG variant is significantly superior to the
coupling algorithm or not (pairwise ¢-test at the 0.05 significance level).tOn
the auxiliary-only data, the network architecture of DisNet is fixed, and we
only report the performance once.

From the results, we conclude that

Meta-IdEG and RM-IdEG outperform Rand-IdEG on
both cold-start and warmed-up phases because the
learning-to-learn training procedure guarantees them
to quickly achieve good generalization ability on un-
seen data.

RM-IdEG achieves the best performance on all the
datasets. In particular, even with one-shot training,
RM-IdEG still outperforms on the Book-Crossing
dataset. By integrating information of significantly
relevant items, RM-IdEG inherently models the com-
munity structural information when initializing id
embeddings.

4.3.3. Parameter Sensitivities (RQ3). The main parameters
are the tradeoft parameter of the meta-loss # and the number
of relevant items k. The robustness of # has been studied in
[27]. Thus, we investigate the sensitivity of k and the results
on Book-Crossing and MovieLens datasets which are shown
in Figure 3. We can see that when k is small, the performance
is close to Meta-IdEG because few relational information is
learned. The best result is obtained when k = 6, and then the
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TaBLE 5: Testing AUC comparison of different IdEGs on synthetic datasets.

Dataset: Book-Crossing Dataset: MovieLens

IdEG types

Cold-start Warmed-up Cold-start Warmed-up
Rand-IdEG 0.7940 (+0.00%)e 0.7943 (+0.00%)e 0.7065 (+0.00%)e 0.7377 (+0.00%)e
Meta-IdEG 0.7945 (+0.06%)e 0.7948 (+0.06%)e 0.7132 (+0.95%)e 0.7680 (+4.11%)e
RM-IdEG 0.7951 (+0.14%) 0.7955 (+0.15%) 0.7174 (+1.54%) 0.7735 (+4.85%)
o/" indicates whether the DisNet-NN variant is significantly superior to the coupling algorithm or not on each dataset (pairwise ¢-test at the 0.05 significance
level).

TaBLE 6: Testing AUC comparison of different IdEGs on the Taobao-Fresh dataset. The best ones are shown in bold.

IdEG types Cold-start Warmed-up
Rand-IdEG 0.5792 (+0.00%)e 0.6042 (+0.00%)e
Meta-IdEG 0.6133 (+5.89%)e 0.6361 (+5.28%)e
RM-IdEG 0.6160 (+6.35%) 0.6382 (+5.63%)

/" indicates whether RM-IdEG is significantly superior to the coupling algorithm or not (pairwise ¢-test at the 0.05 significance level).

0.796 ——— T T

0.794 1 1 1 1 1
2 6 10 20 40

—— Cold-start
—— Warmed-up

()

0.77

0.74

AUC

0.71

—— Cold-start
—— Warmed-up

(b)

FIGURE 3: Parameter sensitivity of k on two datasets. (a) Book-Crossing. (b) MovieLens.

performance drops. The reason is that, as k becomes larger,
the relations become weaker, but the model complexity
increases.

5. Related Work

5.1. Context-Aware Recommendation. Context-aware rec-
ommender systems (CARSs) have attracted considerable
attention in past years [7]. Early work in CARS can be
divided into two categories: (1) prefiltering methods [40],
where context guides the selection of training data; (2)
postfiltering methods [41], where context drives recom-
mendation results’ selection. The main limitation of these
methods is that they require the supervision and fine-tuning
in all steps of recommendation [42]. To address this
problem, contextual modeling approaches capture the
contextual information directly in model construction.
Some works are based on matrix factorization [8], such as
CAMEF [28] and CSLIM [9]. Another group of studies ex-
ploits tensor factorization techniques for modeling user-
item-context relations [43, 44]. Recently, factorization
machines [42, 45, 46] and deep learning [47, 48] based on

CARS become increasingly popular, which directly model
nonlinear interactions between features. Some studies also
use representation learning techniques, e.g., CARS? [49] and
COT [37], which provide not only a latent vector but also
context-aware representations. In summary, all the above
methods assume the data are sufficient for training, while
severe data-deficiency problem occurs in many fresh-item
recommendation pages.

5.2. Cross-Domain Recommendation. As we have discussed,
data deficiency is one of the most challenging problems for
recommender systems, and it is much more significant in
many fresh-item recommendation scenarios. One promising
solution to this problem is cross-domain recommender
systems (CDRSs) [50]. Existing CDRSs can be categorized
into symmetric and asymmetric ones. Symmetric models
[16, 18, 51, 52] collect sparse data from multiple domains and
anticipate that these domains can complement each other. In
our task, symmetric strategy is incompatible because the two
domains have heterogeneous data format and imbalance
data size. Thus, we consider asymmetric models [19, 20, 21],
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which aim to leverage data in an auxiliary domain to alleviate
data deficiency of the target domain. In this way, knowledge
learned from the auxiliary domain is directly transferred to the
target domain, acting as priors or regularization. Nevertheless,
many asymmetric CDRSs adopt shallow methods and have the
difficulty in learning complex user-item interaction relation-
ship [18, 26]. Moreover, scenario-specific contextual infor-
mation of the target domain has been seldom considered.

5.3. Cold-Start Recommendation. When recommending
cold-start fresh items, a severe cold-start problem occurs. To
handle this problem, it is common to collect information for
the cold item or user, e.g., item attributes [22, 23] and user
attributes [24, 25]. A recent work HERS [26] also utilizes
relational data to boost performance, such as social infor-
mation of users. In [16], the authors explored a symmetric
cross-domain recommender system, where shared knowl-
edge can help alleviate the cold-start problem.

Recently, a series of works [27, 53, 54] also adopt meta-
learning technique [55] which enables the recommender
system to achieve good generalization ability after few-shot
training. From the cold-start user perspective, MeLU [53]
learns a meta-id embedding for the cold-start users and then
predicts the user preference on the items by the norm of
gradients. From the cold-start item perspective, Pan et al.
[27] proposed the meta-Id embedding generator (meta-
IdEG), which also takes id embedding initialization into
account. However, since meta-IdEG only uses item features
to generate id embedding, it ignores the community
structural information concealed in id embedding, which
leads to a suboptimal solution.

6. Discussion and Conclusion

6.1. Further Discussion. In this section, we discuss the sig-
nificance of this work.

6.1.1. Importance of the Application. The fresh-item rec-
ommendation task reveals a new perspective of personalized
recommendation, i.e., the impact of items’ life period. Some
people may prefer products which stand the test of time, while
some others may be interested in newly released products.
The New Tendency page enables the latter ones’ recom-
mendation to be fully personalized. From another point of
view, these fresh items also obtain more opportunities to be
exposed. Hence, high-quality and novel products can quickly
become popular. We also address the main difficulties of this
learning task, i.e., data deficiency and cold-start.

6.1.2. Importance of the Techniques. Surprisingly, though the
two techniques DisNet and RM-IdEG are proposed to
handle the fresh-item recommendation task, we find that
both methods have a wide range of applications.

As aforementioned, the DisNet is designed for fresh-
item recommendation pages. Actually, such pages are quite
common in existing E-commerce platforms. For example,
after a bill being paid, the E-commerce platform will
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recommend other related items to the customers. It is a
classical fresh-item recommendation scenario. Obviously, a
fresh-item recommendation page usually contains rich
contextual information. The contexts reflect that the user
interest shifts from a general one to a scenario-specific one.
However, with fewer page views, such pages usually face
severe data-deficiency problems. And this work can address
this issue by giving a novel learning framework, which si-
multaneously transfers knowledge from an auxiliary domain
as well as fully utilizes the context information.

RM-IdEG can also be applied to many real-world ap-
plications. In [27], the authors proposed to learn meta-id-
embeddings for cold-start advertisements. And we can also
collect relevant advertisements by its company, topic, and so
on. As a result, the model can generate better id embeddings.
Furthermore, other relational data can also be considered.
For instance, if we consider the user cold-start problem [53],
we may explore the social networks of a new user so that
RM-IdEG is able to initialize a fast-adapting and relation-
aware id embedding.

6.2. Conclusion. In this work, we address two difficulties of
the fresh-item recommendation task. First, we propose a deep
interest-shifting network to deal with the data-deficiency
problem of fresh item recommendation. Specifically, users’
general interests are learned from a huge number of an
auxiliary dataset. Then, our model shifts the user interest to a
scenario-specific one using context features. Second, we
propose a relational meta-Id-embedding generator (RM-
IdEG) to alleviate the cold-start problem. RM-IdEG is trained
in a learning-to-learn manner with relational information
being integrated. Hence, community structural information
can be inherently embedded in the id embeddings of newborn
items. Extensive experiments on two synthetic datasets and a
real-world dataset clearly identify the effectiveness of our
approaches, which have been already deployed on a large-
scale online fresh-item recommendation application.
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