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Most current online distributed machine learning algorithms have been studied in a data-parallel architecture among agents in
networks. We study online distributed machine learning from a different perspective, where the features about the same samples
are observed by multiple agents that wish to collaborate but do not exchange the raw data with each other. We propose a
distributed feature online gradient descent algorithm and prove that local solution converges to the global minimizer with a
sublinear rate O(

���
2T

√
). Our algorithm does not require exchange of the primal data or even the model parameters between

agents. Firstly, we design an auxiliary variable, which implies the information of the global features, and estimate at each agent by
dynamic consensus method. -en, local parameters are updated by online gradient descent method based on local data stream.
Simulations illustrate the performance of the proposed algorithm.

1. Introduction

With the development of multiagent system, the observed
data are being generated at anywhere, anytime, using dif-
ferent devices and technologies [1–3]. -ere is a lot of in-
terest in extracting knowledge from this massive amount of
data and using it to choose a suitable business strategy [4–6],
to generate control command [7–9] or to make a decision
[10–13]. Many applications are required to process incoming
data in online way, e.g., a bank monitors the transactions of
its clients to detect frauds [2], wireless sensor networks
makes inference [14], and sensor network tracks the un-
cooperative target [15]. -e study of online learning is be-
coming an important topic of research itself [16–18].

-e success of online machine learning often depends on
the entire data stream. In some applications, the observed
data may be generated on and held bymultiple agents [1, 13].
Collecting data to a central site for training incurs extra
management and privacy concerns [1]. As a result, some
distributed machine learning algorithms have been pro-
posed to train a model by letting each agent perform local
model updates and exchange some information between
neighbors [19–22]. Most of the existing algorithms fall into

the data-parallel computation [1], where each agent has its
local data stream with the entire features. However, in
network applications, multiple agents are used to monitor an
environment, where agents are distributed over space and
are used to collect different measurements. For example, the
observation is generated by different observed models [8, 9].
It is urgent to develop some applicable algorithm to deal
with data streams with distributed features over networks.

In batch learning settings, some algorithms have been
proposed for distributed features, such as variance-reduced
dynamic diffusion (VRD2) [12], feature distributed machine
learning (FDML) [1], and the ADMM (alternating direction
method of multipliers) sharing [23]. VRD2 and FDML
obtain the optimal solution in primal domain, and the local
model is trained in a distributed manner based on the local
features. -e ADMM sharing algorithm formulates dis-
tributed feature learning as a distributed primal-dual
problem and then obtains the optimal solution by ADMM
algorithm. -ese algorithms in [1, 12, 23] effectively deal
with the batch distributed feature learning in a distributed
form. However, these algorithms in [1, 12, 23] need to access
the entire dataset and cannot be applied in online settings.
As the observation is continuously arriving very fast in
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networks, it is important to study online feature distributed
machine learning.

In this paper, we consider the situation where the fea-
tures are split across agents in online settings either due to
privacy consideration or because they are already physically
collected in a distributed manner by means of a networked
architecture. We propose a distributed feature online gra-
dient algorithm. Online supervised learning over networks is
formulated as a “cost of sum” form. -e procedure of the
proposed algorithm requires two-scales: one scale is used to
update the parameters by gradient descent and a second
faster scale for running the consistency step multiple times
to track an auxiliary term. -e main contributions of this
paper are summarized as follows.

(1) We propose a distributed feature online gradient
(DFOG) descent algorithm. By exchanging some
information between neighbors, local solution can
approximate the global solution. Compared with
VRD2 [12], FDML [1], and the sharing ADMM al-
gorithm [23], DFOG is applicable to online super-
vised learning with distributed features over
networks.

(2) We firstly formulate the centralized cost as a “cost of
sum” form. By dynamic consensus algorithm, each
node can track the sum term, which implies the
entire features of the sample at each round time.
-en, with the help of online gradient descent al-
gorithm, each node locally updates the parameters
based on its data stream.

(3) We prove that the proposed algorithm achieves an
O(

���
2T

√
) regret bound. -at is, local solution can

approach to the global solution, which is the best
decision trained based on the entire dataset.-e only
transmitted message is some parameters’ informa-
tion, and the proposed algorithm does not require
the data of the total number times and does not
exchange the raw data between neighbors.

-e rest of this paper is organized as follows: the problem
formulation is discussed in Section 2. In Section 3, we focus
on our online optimization algorithm with distributed
features over multiagent system, followed by the theoretical
results in Section 4. In Section 5, simulations illustrate the
effectiveness of our algorithm. Finally, we conclude the
paper in Section 6.

Notation and terminology: let x be the feature space and
y be the corresponding label. We denote the (i, j)th element
of a matrix A by ai,j. For t ∈ N+, the set 1, 2, . . . , T{ } is
denoted by [T]. For a convex function f, its gradient at a
point ω is denoted as ∇ωf(ω). We denote N as the number
of agents in the network. LetRd be the d-dimensional vector
space and ‖ω‖22 is the Euclidean norm of a vector ω ∈ Rd.

2. Problem Formulation

We consider a multiagent system with N agents. -e
communication between agents is described by a connected
graph G � (V,E) [24], consisting of a set of nodes

V � 1, 2, . . . , N{ }, a set of edgesE, and an adjacent matrix A

[19]. For each agent i ∈ V, we denoteEi � j |(j, i) ∈ E  as a
set of neighbors of agent i (including agent i itself ).

Assumption 1. -e graph G � V,E{ } and the adjacent
weighted matrix A satisfy the following [25]:

(i) A is a doubly stochastic matrix with positive di-
agonal, that is, aii > 0, 

N
j�1 aj,i � 1, and 

N
j�1 ai,j � 1;

(ii) -ere exists a scalar ζ > 0 such that aj,i > ζ if
(j, i) ∈ E;

(iii) -ere exists an integer B≥ 1 such that the graph
(V,Ei(B+1) ∪ · · · ∪E(j+1)B) is strongly connected.

In this work, we focus on a binary online supervised
learning with distributed features. -e features are distrib-
uted over a collection of K agents, as illustrated in Figure 1.

At each time t � 1, 2, . . . , T, network receives a labeled
sample (xt, yt). For all the time T, we consider an empirical
risk as follows:

L(ω) �
1
T



T

t�1
f ωT

xt, yt  + r(ω), (1)

where the parameters are denoted as ω ∈ Rd×1, d is the
dimension of the features, and yt ∈ − 1, +1{ } is the corre-
sponding scalar label of xt at time t. Moreover, the cost f(ω)

is convex and differentiable. In most problem of interest, the
cost function is dependent on the inner product ωTx, such as
the linear SVM cost f � max(0, 1 − yt(wTxt)) and the lo-
gistic regression cost f � log(1 + exp(− yt(ωTxt))). -e
factor r(ω) represents the regularization term. Since the
features of xt are distributed across agents, we set ω and xt to
be column vector and formulate ω and xt into N subvectors
denoted by ωi and xt,i, respectively, that is,

xt �

xt,1

xt,2

⋮

xt,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ω �

ω1

ω2

⋮

ωN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2)

Each subfeature xt,i vector and subvector ωi is located at
agent i. -en, cost function (1) can be rewritten as

L �
1
T



T

t�1
f 

N

i�1
ωT

i xt,i; yt
⎛⎝ ⎞⎠ + 

N

i�1
r ωi( , (3)

where the regularization term is assumed to satisfy an ad-
ditive form as

r(ω) � 
N

i�1
r ωi( . (4)
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-is property holds for many popular regularization
choices, such as l2, l1, and KL-divergence. Problem of this
type has been studied before in the literature by using
distributed optimization methods in [20, 21]. One common
way is to formulate problem (3) into a constrained problem,
that is,

L(ω) � min
ω

1
T



T

t�1
f zt; yt(  + 

N

i�1
r ωi( s.t. zt � 

N

i�1
ωT

i xt,i,

t � 1, 2, . . . , T.

(5)

For all the time T, problem (5) is a classical “cost of sum”
form [20]. An effective way is to design the Lagrangian
function by introducing the dual variable c [23], namely,

L(c, z,ω) �
1
T



T

t�1
f zt; yt(  +

1
T



T

t�1
ctzt −

1
T



T

t�1
ct 

N

i�1
ωT

i xi,t

+ 
N

i�1
r ωi( .

(6)

Problem (6) can be solved in a number of distributed
primal-dual methods, such as alternating direction method
of multipliers (ADMM) [4, 22, 26] and primal-dual methods
[27–29].-ese techniques have good convergence properties
but suffer from high computational costs and two-time scale
communications.

-e other way is studied in primal domain [12]. -e
algorithm in [12] requires a two-time scale operation: a faster
time-scale for the consensus iterations and a slower time-
scale for the data sampling and the gradient computing.
First, we use a consensus strategy to obtain the sum term


N
i�1 ωT

i xt,i, namely,

znk,i � 
j∈Ei

aijNωT
k,jxnk,j, (7)

where nk denotes the index of the sample selected uniformly
at random from 1, 2, . . . , T{ }. After sufficient iterations, it is
well-known that znk,i⟶ (1/N) 

N
i�1 znk,i. -en, the sto-

chastic-gradient step is used to update the parameters ω,

where the gradient is evaluated by the gradient vector of the
cost evaluated at some random data (xnk

, ynk
).

In online settings, since the data (xt, yt) is observed one
by one, we cannot access to the total dataset (xt, yt) 

T

t�1.
-ese algorithms in [1, 12, 23] cannot be applied for data
stream with distributed feature over networks. For each time
t � 1, 2, . . . , T, the multiagent system is endowed with a
sequence of cost function Lt 

T
t�1, and the goal is to minimize

the sum of the cost function. Specifically, we want to
minimize the difference between the total cost multiagent
system has incurred and that of the best fixed decision in
hindsight, which is called regret, and its definition is given as
follows:

RegT
� 

T

t�1
Lt ωt(  − 

T

t�1
Lt ω∗( , (8)

where ω∗ is the best decision of problem (1), that is,

ω∗ � argminω 

T

t�1
Lt(ω). (9)

Moreover, we consider the time-varying cost function Lt

as

Lt ωt(  � Q 
N

i�1
ωT

t,ixt,i; yt
⎛⎝ ⎞⎠ + 

N

i�1
r ωt,i . (10)

Generally speaking, the cost Q(
N
i�1 ω

T
i xt,i; yt) satisfies

Assumption 2.

Assumption 2. -e loss function Q(·) is convex and dif-
ferentiable, and the gradient ∇ωQ(ω) is uniform bound-
edness, that is, ‖∇ωQ(ω)‖≤C for some scalar C> 0.

Regret is the standard measure of the performance of
online optimization algorithm [19]. An algorithm attains
good performance if the regret is sublinear as a function of
the total time T.

Remark 1. In the multiagent system, since the entries of the
feature xt are distributed over N agents, each agent just
observes its own data stream. We face the following two
challenges in solving problem (8):

(1) Distributed challenge: each agent only receives local
data stream (xt,i, yt) and does not access to the entire
features (xt, yt). Under the condition that we do not
exchange the raw data between neighbors, each agent
needs to obtain some information on the entire
features.

(2) Online challenge: at any time t1, we only have ob-
servation for t≤ t1 and do not know Lt for t1 ≤ t≤T.
It is difficult to store all the observations due to the
high-dimensional and high-velocity data stream. We
need to update the parameters based on the current
sample and the previous parameters and pursue a
solution approximating to the global solution ω∗,

1

2

3

4

5

6

fxt;1;ytg
fxt;3;ytg

fxt;5;ytg

fxt;4;ytg
fxt;2;ytg

fxt;6;ytg

Figure 1: Distributing the features across agents.
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which is the best decision based on all the data
(xt, yt) 

t

t�1 as a prior in offline settings.

3. Distributed Feature Online Gradient
Descent Algorithm

In this section, we first analyse a dynamic average consensus
method for approximating the sum of ωT

i xt,i at agent i and
propose an online convex optimization to update the pa-
rameters ω. -e detailed framework is summarised in
Figure 2.

Now, we consider the problem of minimizing (5) by
means of an online convex optimization. Let zt � 

N
i�1 ω

T
t,ixt,i

denote the inner product that is available at time t ∈ [T]. -e
cost function Lt can be described as

Lt ωt(  � Q zt; yt(  + 
N

i�1
r ωt,i . (11)

If each agent i can obtain the auxiliary variable zt at any
time t, the parameters ωt,i can be obtained byminimizing the
local cost Lt,i, which is defined as

Lt,i � Q zt; yt(  + r ωt,i . (12)

However, the computation of zt needs to access to all the
subfeatures xt,i and the subvectors ωt,i over N agents. We
denote the average of the local inner products as

zt �
1
N



N

i�1
ωT

t,ixt,i. (13)

Motivated by works in [30–34], zt can be approximated
by a diffusion-based algorithm. Since the desired variable zt

is proportional to the average value zt, zt � Nzt, the con-
sensus strategy can be used to approximate zt. Specifically,
for the total number of iterations M, each agent would
repeat the following steps M times:

z
m+1
t,i � 

j∈Εi

aijz
m
t,i, m � 0, 1, . . . M − 1, (14)

where z0
t,i � NωT

t,ixt,i. After each agent obtains the estimator
of zt denoted as zt,i, problem (12) is converted into a dif-
ferentiable dynamic problem. For online convex optimiza-
tion problem, online gradient descent and its variants have

been achieving optimal dynamic regret in many applications
[35]. Recalling that ωt and xt are partitioned into N blocks,
the gradient step can be performed in parallel over N agents.
Specifically,

ωt,i � ωt− 1,i − μt∇zQ zt,i; yt xt,i − μt∇ωr ωt,i , (15)

where the step-size μt should satisfy μt > 0, 
∞
t�1 μt �∞, and


∞
t�1 μ

2
t <∞.

-e full algorithm is summarized in Algorithm 1.

Remark 2. Compared with FDML [1], VRD2 [12], and the
ADMM sharing algorithm [23], DFOG is applicable for data
stream with distributed features over multiagent system. At
each round time, agents observe the same sample from
different features. Each agent can obtain an auxiliary term,
which implies the information on the entire features. -en,
each agent locally runs a gradient descent step to update its
local parameters. -e procedure of Algorithm 1 is designed
to update the parameters ωt,i locally.

4. Algorithm Analysis

4.1. Convergency Analysis. In this section, we analyse the
convergence of the proposed algorithm. We first show that
the distance between zt,i and zt is upper bounded by the
difference between PM and 1/N, which is shown in Lemma 1
and proved in [25].

Lemma 1. Let Assumption 1 holds, for all agents i, j; we have

P
M

 
ij

−
1
N




≤ 1 −

ζ
4N2 

(M/B)− 2

, (16)

where N is total number of agents and M is the number of
consensus steps in(14).

-en, we show that the regret of online gradient descent
(OGD) is upper bounded by the cumulative difference be-
tween the loss of ωt and ωt+1, which is present in Lemma 2
and proved in [18].

Lemma 2. Let ωt,i 
T

t�1 denotes the sequence of parameters
produced by OGD. 3en, for any u, we have

RegT
i � 

T

t�1
Lt,i ωt,i  − Lt,i(u) ≤ r(u) − r ω1,i  + 

T

t�1
Q ωt,i  − Q ωt+1,i  . (17)

Because the features are distributed across agents, RegT
i

mainly illustrates the difference between local parameters ωi

and the corresponding parameters ω∗i in global solution.
Based on the above lemma, we derive a regret bound ofωi for
DFOG with the regularization term r(ωi) � (1/2)μ‖ωi‖

2
2.

Theorem 1. Let Assumptions 1 and 2 hold, and consider
running DFOG on a sequence of convex function, Q(ωt,i) for
all t, with the regularization term r(ωi) � (1/2)μ‖ωi‖

2
2. Let

ωt,i 
T

t�1 be the sequence of vectors produced by DFOG. If
‖u‖≤U and μ � (U/C)

���
2T

√
, the regret of ωi satisfies
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RegT
i ≤CU

���
2T

√
+ C2U

���
2T

√
+ U

2 ���
2T

√
, (18)

where C2 � (C/2)(1 − (ζ/4N2))(M/B)− 2‖zt‖∗‖x‖∗. 3e proof
is presented in Appendix.

Remark 3. -is theorem indicates that the convergence rate
of DFOG depends on the network topology through B and
the number of consensus steps M. -e larger the M is or the
smaller the B is, the faster the convergence speed is. -e
theorem presents that the proposed algorithm converges to
the global solution with sublinear rate. When the number of
data samples increases, the difference between ωt,i with ω∗i
will become closer.

4.2. Complexity Analysis

4.2.1. Time Complexity. -ere are two primary operations
associated with learning for DFOG: (1) estimating the inner
product zt for each sample at time t and (2) updating the
parameters at gradient descent step. At any time t, each
estimator zt computation requires O(M) arithmetic oper-
ations. -ere is one gradient descent step to update the
parameters, which requires O(1) arithmetic operations. As

for each time, each node will require O(M) arithmetic
operations. Hence, single node requires O(TM) arithmetic
operations for DFOG.

4.2.2. Space Complexity. At any time t, DFOG needs to store
the parameters zt and ωt, which are updated and time-
varying. Hence, space complexity for DFOG is O(1).

4.2.3. Communication Complexity. We denote the average
degree of the communication graph as k. At each consensus
step, each node requires to exchange zt (float type, 4 bytes)
with its neighbors. Since the network topology is an undi-
rected graph, it requires 8 kM bytes at any time t. Hence,
DFOG requires communication traffic of DFOG is 8 kMT
bytes for all the time T.

5. Simulation

In this section, we test our algorithm by minimizing norm
regularized logistic regression on two public datasets, a9a
and bank from UCI. Here, a multiagent system with 6 agents
is considered, and the network is generated by the random
geometric graph model. a9a dataset consists of 32561

Figure 2: -e framework of the proposed algorithm.

(1) Initialization: set ω0,i � 0.
(2) Repeat for i � 1, 2, . . . , N:
(3) z0,i � NωT

0,ixt,i

(4) For m � 0, 1, 2, . . . , M − 1
(5) zm+1

t,i � j∈Ei
aijzm

t,i

(6) End
(7) ωt,i � ωt− 1,i − μt∇zQ(zt,i; yt)xt,i − μt∇ωr(ωt,i)

(8) End

ALGORITHM 1: Distributed feature online gradient (DFOG) descent for agent i.
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training samples, 16281 testing samples, and 123 features.
We separate the features into 6 parts, and each node
obtains one part with 21, 21, 21, 20, 20, and 20 features as
the local data, respectively. On the other hand, the bank
dataset contains 4068 training samples, 453 testing sam-
ples, and 17 features. Similarly, we divide the features into
6 parts, each agent gets one part with 3, 3, 3, 3, 3, and 2
features as the local data, respectively.-e loss function we
use is

L(ω) �
1
T



T

t�1
log 1 + exp − yt 

N

i�1
ωT

i xt,i
⎛⎝ ⎞⎠⎛⎝ ⎞⎠ + λ

N

i�1
ωi

����
����
2
.

(19)

Generally, λ is a positive constant and λ> 0. -e sim-
ulations are implemented in MATLAB to verify the pro-
posed algorithm. Specifically, we use two optimization
libraries, SGDLibrary [36] and DADAM [37], to minimize

Table 1: Parameter settings.

Parameter Value
λ 0.1
N 5
M 30
B 10

0

SGD
DFOG

–100

–200

–300

–400

–500

–600
0 20 40

Iteration

C
os

t

15

10

5

0

–5

–10

–15
0 0.5 1 1.5

Number of gradient calculations ×105
2 2.5 3

C
os

t
60 80 100

Figure 3: -e evolution of cost for a9a dataset.

1
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0
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C
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80

SGD
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100

0
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–5

–6
0 1 2 3
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C
os

t

4 5

Figure 4: -e evolution of cost for bank dataset.
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(19). In our simulation, the parameters are set as sum-
marised in Table 1.

We adopt dynamic consensus method to obtain zt in
(14) and use online gradient descent algorithm to update the
parameter ωi locally in (15). In our simulations, we get the
global model trained in a centralized manner if all the
features were collected centrally by stochastic-gradient de-
scent (SGD) algorithm. Next, we compare our algorithm
against SGD algorithm proposed in [38] and keep track of
the loss for different datasets and parameters settings.
Figures 3 and 4 present the evolution of the cost during the
training procedure for a9a and bank datasets, respectively. In
addition, to make a fair comparison, we analyse the con-
vergence curve based on the count of gradient calculated.
Table 2 shows the testing error for different datasets and the
error of parameters for DFOG and SGD. -e results show
that DFOG can converge to the centralized solution of SGD,
while keeping local feature sets to the corresponding agent.
-at is, DFOG can deal with the online supervised learning
problem caused by distributed features over networks.

We next show how the performance depends on dif-
ferent M. Note that when M is larger, we need to do more
communication on the consistency step (14). Figure 5 shows
the evolution of the cost with different M. It can be found
that the larger the M we set, the faster the DFOG approaches
to the centralized SGD algorithm.

6. Conclusions

In this paper, we considered an online supervised
learning problem where the features are split across
agents in online settings. We proposed an online su-
pervised learning algorithm with distributed features
over multiagent system. We first formulated the cen-
tralized cost as a “cost of sum” form. By dynamic con-
sensus algorithm, each agent could effectively estimate
the sum term, which is calculated based on the entire
features at each round time. -en, with the help of online
gradient descent algorithm, each agent locally updates the
parameters. -e algorithm designed does not require the
data of the total number times and does not communicate
the raw data between neighbors. We proved that local
solution converges to the centralize minimizer, which is
the best decision trained based on the entire dataset, and
the proposed algorithm achieves an O(

���
2T

√
) regret

bound. Simulations with real dataset verify the
conclusion.

Distributed machining learning algorithms are worth of
further studies due to their promising future, including
distributed online boosting, distributed decision tree [39],
the use of Big data-aided learning [40], and distributed
learning over time-varying communication topology in
networks.

1 ×106×106

0

–1

–2

–3

–4

–5

–6
0 20 40

Iteration
SGD
FDOG M = 30
FDOG M = 1
FDOG M = 5
FDOG M = 10
FDOG M = 20

60 80 100

C
os

t

1

0

–1

–2

–3

–4

–5

–6
0 10.5 1.5 2

Number of gradient calculations ×105
2.5 3 3.5 4

C
os

t

Figure 5: -e convergence behavior with different M.

Table 2: Testing error and the relative error of parameters.

Dataset Testing error of SGD Testing error of DFOG 
N
i�1 ‖ωi − ω∗i ‖/‖ω∗‖

9a 0.7581 0.7581 0.0026
Bank 0.8455 0.8455 0.0064

Complexity 7



Appendix

Proof of -eorem 1: let Assumption 2 holds, for each time t,
then we have

Q ωt,i  − Q(u)≤ <ωt,i − u, ∇ωt,i
Q> , (A.1)

where 〈ωi − u,∇ωt,i
Q〉 is the inner product between vectors

ωi − u and ∇ωt,i
Q. Moreover, we denote ‖ω‖ �

������
〈ω,ω〉

√
.

Using Lemma 2, we obtain

RegT
i ≤ r(u) − r ω1(  + 

T

t�1
Q ωt,i  − Q ωt+1,i  ≤

1
2μ

‖u‖
2
2 + 

T

t�1
〈ωt,i − ωt+1,i,∇ωt,i

Q〉. (A.2)

From equation (15), we have



T

t�1
〈ωt,i − ωt+1,i,∇ωt,i

Q〉 � 
T

t�1
∇zt,i

Q ωt,i xt,i + ∇ωt,i
r ωt,i  ∇ωt,i

Q, (A.3)

where zt,i � 
N
i�1 [PM]ijωt,ixt,i.

We derive the gradient of cost (12) as follows:

∇ωt,i
Q � ∇zt

Q ωt,i xt,i. (A.4)

Substituting (A.4) into (A.3),



T

t�1
〈ωt,i − ωt+1,i,∇ωt,i

Q〉 � 
T

t�1
∇zt,i

Q · xt,i + ∇ωt,i
r ∇ωt,i

Q

� 
T

t�1
∇ωt,i

Q
�����

�����
2

2
+ 

T

t�1
∇zt,i

Q − ∇zt,i
Q xt,i∇ωt,i

Q + 
T

t�1
∇ωt,i

r∇ωt,i
Q

≤TC
2

+ 
T

t�1
C ∇zt,i

Q ωt,i  − ∇zt,i
Q ωt,i  

������

������ xt,i

����
���� + 2TCU.

(A.5)

Let Assumption 2 holds such that
‖(∇zt,i

Q(ωt,i) − ∇zt,i
Q(ωt,i))‖≤C‖zt,i − zt,i‖. Using Lemma 1,

we have

∇zt,i
Q ωt,i  − ∇zt,i

Q ωt,i  

������

������ · xt,i

����
����≤C zt,i − zt,i

����
����≤ C 1 −

ζ
4N2 

(M/B)− 2



N

i�1
ωt,ixt,i

���������

���������
. (A.6)

Denoting ‖x‖∗ � max‖xt,i‖ and
‖zt‖∗ � max‖ 

N
i�1 ωt,ixt,i‖ for t � 1, . . . , T, we derive

RegT
i ≤

1
2μ

‖u‖
2
2 + μTC2

+ μTC 1 −
ζ

4N2 

(M/B)− 2

zt

����
����∗‖x‖∗ + 2μCTU. (A.7)

If ‖u‖≤U and μt � U/C
���
2T

√
, then

RegT
i ≤CU

���
2T

√
+ C2U

���
2T

√
+ U

2 ���
2T

√
, (A.8)

where C2 � (1/2)(1 − (ζ/4N2))(M/B)− 2‖zt‖∗‖x‖∗. -eorem
1 has been proved.
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Data Availability

a9a dataset has been derived from https://www.csie.ntu.edu.
tw/~cjlin/libsvmtools/datasets/binary.html. Bank dataset
has been derived from https://archive.ics.uci.edu/ml/
datasets/Bank+Marketing.
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