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With the rapid development of Internet of-ings technology, RFID technology has been widely used in various fields. In order to
optimize the RFID system hardware deployment strategy and improve the deployment efficiency, the prediction of the RFID
system identification rate has become a new challenge. In this paper, a neighborhood rough set and random forest (NRS-RF)
combination model is proposed to predict the identification rate of an RFID system. Firstly, the initial influencing factors of the
RFID system identification rate are reduced using neighborhood rough set theory combined with the principle of heuristic
attribute reduction of neighborhood weighted dependency, thus obtaining a kernel factor subset. Secondly, a random forest
prediction model is established based on the kernel factor subset, and a confusion matrix is established using out-of-bag (OOB)
data to evaluate the prediction results.-e test is conducted under the constructed RFID experimental environment, whose results
showed that the model can predict the identification rate of the RFID system in a fast and efficient way, and the classification
accuracy can reach 90.5%. It can effectively guide the hardware deployment and communication parameter protocol setting of the
system and improve the system performance. Compared with BP neural network (BPNN) and other prediction models, NRS-RF
has shorter prediction time and faster calculation speed. Finally, the validity of the proposed model was verified by the RFID
intelligent archives management platform.

1. Introduction

In recent years, ultra-high-frequency (UHF) passive RFID
technology has been widely applied in applications of un-
manned warehouse, industrial site, new retail store man-
agement, and other scenarios due to its excellent ability in
long-distance and multitag reading [1]. With respect to the
conventional quasistatic RFID system that is usually
deployed in a fixed way in particular areas, its system ar-
chitecture and parameter configuration are unadjustable to
some extent, making it difficult to be applied to certain

practical situations. In response to the abovementioned
circumstances, a novel mobile RFID system is, therefore,
proposed. RFID robots are not only to simply assemble the
robot with the RFID system but also to combine the RFID
system with the mobile robot to form a unified system. -e
optimization and control of the RFID system need to fully
consider the factors such as tag environment, space, moving
speed, and other factors. Compared with the existing con-
ventional quasistatic RFID system, the RFID system on the
robot is a typical dynamic system. In the conventional
quasistatic RFID system, the system deployment and reading
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strategy are relatively fixed, while in mobile RFID robots, the
RFID system needs to constantly adjust the parameters and
control the robot moving to maximize the adaptation of the
environment to obtain the best application performance.
When the mobile RFID robot is in task areas, it can
adaptively adjust protocol parameters and hardware de-
ployment strategies to accomplish tag reading tasks reliably
under dynamic scenarios, thereby improving identification
efficiency of the system. In domains of project planning and
designing, the RFID system identification rate is the key
technical index measuring system quality. In order to im-
prove efficiency of the system’s architecture and engineering
deployment, predicting the identification rate of the novel
mobile RFID system is of critical priority.

Among the existing prediction models of the RFID
system identification rate, Liu et al. successively proposed a
logistic regression analysis model, learning vector quanti-
zation neural network, and other intelligent algorithms to
predict the rate of RFID system identification, which
achieved good prediction effect. Despite the good effect
achieved through adopting the abovementioned proposals,
certain shortcomings still occur in practical applications
involving huge amount of computation and overfitting
[2, 3]. By introducing neighborhood rough set theory, Qiao
et al. conducted optimization works with respect to influ-
encing factors of the RFID system identification rate to
improve identification efficiency. However, those factors
being selected from actual test scenario are rather subjective,
whichmay impose potential disadvantageous impacts on the
identification rate of the actual system [4].

All the aforementioned algorithms are used to predict
the system identification rate in the conventional quasi-
static RFID system, yet few research studies focus on the
system in dynamic scenes so far. In response to various tag
numbers, complex multipath channel interference, and
other factors encountered in designing and deploying the
RFID system in dynamic scenes currently, tremendous
efforts have been made on validation tests and on reducing
miss rate of tags to avoid adjusting parameter deployment
to do a lot of testing. -rough applying RFID technology
to mobile robot while extending its corresponding ap-
plication schemes to dynamic scenes, a novel mobile RFID
system is, therefore, established, in which a new intelligent
learning algorithm being referred to as the neighborhood
rough set and random forest (NRS-RF) combination
model is introduced to predict the system’s identification
rate.

From the perspective of RFID system hardware de-
ployment, we comprehensively select initial influencing
factors to explore the relationship between the system
identification rate and each influencing factor. -is ap-
proach avoids doing a lot of verification tests in order to
obtain the optimal deployment strategy. -e NRS-RF model
predicts the system identification rate in a fast and efficient
way, so as to reverse guide the hardware deployment and
communication protocol parameters of the RFID system,
improve the performance of the RFID system, and meet the
engineering needs. -is novel mobile RFID system breaks
the conventional quasistatic RFID system design and

provides more in-depth scene perception and real-time
read-write strategy optimization for practical engineering
needs.

-e specific steps of the NRS-RF model are as follows:
Firstly, multiple initial influencing factors that affect the

identification rate of RFID system are identified compre-
hensively. In specific, NRS theory is adopted to reduce
influencing factors and data redundancy in between these
factors, by which the kernel factor subset is selected. Sec-
ondly, the bootstrap method is used to resample the training
set to support training the random forest prediction model
[5–7].-eNRS-RFmodel is compared with other prediction
models such as the backpropagation neural network
(BPNN) to verify its advantages in predicting the identifi-
cation rate of the RFID system.-e test results show that the
NRS-RF model can accurately and quickly complete the
prediction of the RFID system identification rate, and the
classification accuracy can reach 90.5%. It effectively guides
the project deployment and improves the performance of the
RFID system.

Compared with other models such as the BPNN, the
NRS-RF model has obvious advantages in terms of classi-
fication accuracy and training time. Last but not least, the
model is applied to the project of the RFID intelligent ar-
chives management platform, thus validating and verifying
effectiveness of the proposed model.

-e remainder of this paper is organized as follows:
Section 2 presents an overall review of related work. Section
3 highlights relevant theoretical methods. Section 4 outlines
experimental testing and analysis. Section 5 analyzes sim-
ulation results in detail and engineering application. Section
6 summarizes conclusions.

2. Related Work

Generally speaking, the deployment environment of the
conventional RFID system is usually located in fixed scenes
such as the entrance and exit of a corridor or passageway, for
which reason it is inconvenient to apply tag identification in
these areas. Under the circumstance of the scene with large
identification area, a multireader mechanism is generally
adopted [8]. However, the expenditure for improving the
mechanism will be huge and unaffordable, not to mention
potential collision between readers. Currently, as diverse
algorithms emerge, protocol algorithms of reader anticol-
lision has attracted much attention, among which heartbeat
algorithm [9] and color wave algorithm, as well as the
improved version of corresponding algorithms, prosper
[10, 11]. In this paper, as our study mainly concentrates on
single mobile reader mechanism, the RFID system with
multiple readers, therefore, does not need to be particularly
introduced in detail.

-e state-of-the-art mobile RFID system is suitable for
tag identification in small and medium areas. -is mobile
RFID system that works at UHF does not require any power
supply (passive), featuring with characteristics of long
identification distance, small size, strong directionality, and
outstanding robustness against environmental changes [12].
-e system ensures that not only all tags are covered within
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the identification range of readers’ signal and can be read
successfully but also corresponding information processing
belongs to the extended applications of the conventional
fixed RFID system. However, the aforementioned dynamic
RFID system cannot achieve its optimal status due to the
vulnerable identification rate being seriously affected by
external interference that may be induced by subjectivity,
experience, and real-time hardware deployment of the
system. -erefore, the dynamic RFID application scene
needs to guarantee more in-depth scene perception and real-
time read-write strategy optimization, which poses new
challenges for RFID read-write technology.

Under new technological strategies and formats such as
artificial intelligence, big data, new-generation robots, in-
telligent manufacturing, and new retail, RFID technology is
facilitating robots to complete automation and dehuman-
ization of warehouse management, industrial site, and new
retail management [13]. Minho et al. introduced relations
between thr RFID system identification rate and influencing
factors in a mobile system, established a support vector
machine (SVM) model, and predicted the RFID system
identification rate. However, certain errors still existed be-
tween the prediction results and the actual identification
rate. In the abovementioned methodology, factors that affect
the system identification rate were selected inadequately,
and the actual scene was neither validated nor verified [14].

In January 2016, Keonn technology company of United
States presented an RFID robot being referred to as
advanrobot and applied it to a clothing retail scene to
achieve fast and accurate mobile reading [15]. In April 2016,
a well-known United States manufacturer named -ing-
magic introduced adaptive duty cycle technology in the
reader to minimize the reader’s working time with respect to
tag numbers, thus reducing power consumption [16]. Wang
et al. proposed an efficient energy detection and calculation
method for the RFID system in a dynamic scene, which is
different from conventional anticollision algorithm. -e tag
helps the reader to judge whether the tags in the identifi-
cation area collide with each other or not by sending a PBD
burst time. If collision occurs, the collision problem will be
solved by recursive polling, thereby improving the tag
identification rate of the system [17]. In August 2016, Impinj
proposed a scheme of the Speedway Revolution RFID
reader, to which automatic performance setting is intro-
duced based on environmental noise detection and on au-
tomatic dynamic antenna switching technology to optimize
read-write time and efficiency [18].

In this paper, aiming at promoting sustainable devel-
opment of RFID technology, research studies on the RFID
robot and on developing new generation of adaptive read-
write technology are, therefore, conducted, satisfying
specific demand of niche market while accelerating tech-
nological progress of the industry. In order to improve the
system identification rate from a physical perspective of
hardware deployment, an intelligent learning algorithm
named RFID system identification rate prediction is pro-
posed based on the NRS-RF model. By using our proposed
method, not only is the relation mined between diverse
influencing factors and the system identification rate but

also intelligent scene perception is realized through model
matching instead of using conventional methods, thereby
improving the prediction accuracy. Moreover, by com-
bining the novel mobile RFID system, the optimal com-
bination of hardware deployment configuration scheme is
obtained to improve the RFID system’s identification rate,
thus maximizing effectiveness and efficiency of the hard-
ware deployment while ensuring cost efficiency in terms of
labor force and resources.

-e philosophy of using the NRS-RF model can be
summarized as follows:

(1) Influencing factors of the RFID system identification
rate are selected as the sample data, in which the NRS
theory is used to reduce the attribute of these factors,
to select the kernel factor subset that affects the
identification rate, and to reduce the input dimen-
sion of nonlinear mapping.

(2) Based on the kernel factor set, the prediction model
is constructed featuring with the 2-classification
random forests RFID system identification rate,
upon which a novel mobile RFID experimental test
platform is established accordingly. Due comparison
analysis is performed between the NRS-RF model
and the BPNN and other prediction models in terms
of OA, Kappa coefficient, RMSE, MAE, training time
and prediction time, and correlation. -e test results
show the superiority of the NRS-RF model.

(3) -e prediction model is applied to the intelligent
archives management platform, and the importance
distribution of influencing factors to RFID system
identification rate classification prediction is ana-
lyzed, verifying effectiveness and efficiency of the
proposed model.

3. Methods

3.1.ReductionFeatureFactors. Emerging as an innovation in
classical rough set theory, neighborhood rough set (NRS)
theory was put forward by Lin in 1988 [19, 20]. -e idea of
NRS algorithm is that, in the real space, each data point will
form a neighborhood δB(xi) and the data in the neigh-
borhood family will constitute the basic information par-
ticles [21–23]. NRS solves the problem of numerical data set
that is not easy to be processed in classical rough set theory,
removes redundant data features, and selects the key factors
that affect the identification rate of the RFID system [24, 25].

In the RFID system, the information system W is
composed of quad-tuple W� (U, Y, V, f ), where U is the
sample number set of the identification rate, Y is the sample
set of the identification rate (Y � C∪D), C is the influencing
factors of the identification rate functioning as the attribute
set, and D is the classification level of the identification rate
functioning as the decision attribute. -is quad-tuple in-
formation system W is called the decision table, within
which V denotes the value field of attribute and f represents
the mapping relation used to specify the property value of
sample x, that is, f�U×Y⟶V.
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If the sample xi ∈ U, the neighborhood condition of xi
needs to satisfy δB(xi) � xj|xjεU,ΔB(xi, xj)≤ δ􏽮 􏽯, where Δ
denotes distance function, for any x1, x2, x3 ∈ U, and Δ
satisfies

Δ x1, x2( 􏼁 � Δ x2, x1( 􏼁,

Δ x1, x2( 􏼁≥ 0,Δ x1, x2( 􏼁 � 0; at this time x1 � x2,

Δ x1, x3( 􏼁≤Δ x1, x2( 􏼁 + Δ x2, x3( 􏼁.

⎧⎪⎪⎨

⎪⎪⎩

(1)

For any attribute set L, when it is classified, the indis-
cernible data will be grouped into one class. -ey belong to
the indiscernible relation, which can be given by the fol-
lowing equation:

IND(L) � (x, y) ∈ U × U: f(x, a) � f(y, a), a ∈ P􏼈 􏼉.

(2)

For the indistinguishable relationship group H⊆Y,
a∊H, if the relationship IND(L) � IND(H − h{ }) is satis-
fied, it is considered that {h} is the redundant data on H,
which can be reduced. It can be defined that the value of
theory field is V, R is the equivalent relation on V, to which
the upper approximation, the lower approximation of
neighborhood rough set, and the boundary field of subset x
satisfy the following equations, respectively:

R(X) � ∪ Y ∈ U|R: Y∩X≠∅{ }, (3)

R(X) � ∪ Y ∈ U|R: Y⊆X{ }, (4)

BNR(X) � R(X) − R(X), (5)

where PosR(X) � R(X) is the positive domain of subset X
and NegR(X) � U − R(X) is the negative domain. For any
c∊C, the dependence degree of decision attribute D on
condition attribute c is defined as

ca �
Posa(D)

U
. (6)

If two random variables are defined, the correlation
degree calculated using mutual information measure can be
satisfied by the following equation:

I(X, Y) � − 􏽘
x∈Vx

􏽘
y∈Vy

p(x, y)log2
p(x, y)

p(x)p(y)
. (7)

3.2. Random Forest Prediction. Random forest (RF) algo-
rithm is based on the decision tree as a learning machine to
build bagging integration [26, 27], thus further introducing
the selection of random attributes. Specifically, conventional
decision tree algorithm selects an optimal attribute in the
current attribute set when selecting the partition attribute,
whereas the RF algorithm randomly selects a subset con-
taining K-th attributes in the attribute set, through which an
optimal attribute is selected from the subset selection for
classification. Using this kind of random selection, the
random forest can avoid disadvantages of overfitting,

exhibiting excellent antinoise performance. Outperforming
other intelligent algorithms, it only requires simple com-
putation while maintaining cost efficiency. -e principle of
RF algorithm is given below, as shown in Figure 1.

-e random forest algorithm adopts an integrated algo-
rithm; the classification accuracy of the algorithm itself is much
higher than other single algorithms, so the accuracy is higher.
-e random forest algorithm can handle high-dimensional
data without any feature selection.When bootstrap sampling is
performed on training samples, out-of-bag data will be gen-
erated. Unbiased estimates of true errors can be obtained in the
process of model generation without loss of training data. Due
to the simple implementation, high accuracy, and strong
antioverfitting ability of the algorithm, when faced with
nonlinear data such as the identification rate of the RFID
system, themodel shows high classification accuracy and is also
suitable as a benchmark model.

Due to the change of tag numbers and the complex
multipath channel interference in the architecture and de-
ployment of the RFID system, the prediction value of the
RFID system identification rate is, therefore, discretized. In
order to avoid adjusting the parameters to obtain optimal
deployment strategy and to do a lot of testing and verifi-
cation, it is necessary to comprehensively select the influ-
encing factors, thus mining the nonlinear relationship
between the RFID system identification rate and its influ-
encing factors. From the perspective of hardware deploy-
ment, the RFID hardware deployment and communication
protocol parameters should be optimized and adjusted with
the purpose to reduce the missed rate of tags and to improve
the system performance. -e relation between the influ-
encing factors and the identification rate is obtained using
RF classification prediction algorithm, to which its mathe-
matical model can be expressed by the following equations:

RFP � Tn, M{ }, (8)

d � f x1, x2, . . . , xn,RFP( 􏼁, (i � 1, 2, . . . , n). (9)

In equation (8), RFP is the parameter set of the random
forest prediction model, Tn is the number of regression trees
in the model, andM is the number of influencing factors. In
equation (9), the prediction method of the RFID system
identification rate is defined, where f is the uncertainty
function relation of random forest classification algorithm, d
is the system identification rate, and xi is the i-th index factor
affecting the identification rate, including number of tags,
number of antennas, reading distance, and other parameters.
n is the number of influencing factors of the system iden-
tification rate. Another advantage of the random forest al-
gorithm is that the influencing factors participating in the
algorithm can measure the importance degree of the clas-
sification. -e contribution value of the influencing factors
can be determined by calculating the information gain rate
of the dataset. -e information gain rate is positively cor-
related with certainty of the influencing factor, indicating
that the higher the information gain rate, the stronger the
certainty of the influencing factor. Calculation of the in-
formation gain is given by the following equations:
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g D, Xi( 􏼁 � H(D) − H D|Xi( 􏼁, (10)

whereH(D) is the information entropy of datasetD, namely,

H(D) � − 􏽘
n

i�1
Dilog2Di, (11)

where H(D|Xi) is the entropy change brought by Xi var-
iables under the condition of dataset D.

H D|Xi( 􏼁 � H D, Xi( 􏼁 − H Xi( 􏼁. (12)

4. Experiments

4.1. Selection of Influencing Factors. We use the UHF passive
RFID system as the experimental background to build a
novel mobile UHF passive RFID test platform. -is type of
RFID system has many advantages that users cannot refuse.
-is technology can achieve no human intervention and
without-contact identification. -is technology can realize
nonhuman intervention and noncontact identification. -e
system can be used in many harsh environments, such as
automatic container terminal yard operation system iden-
tification, high-speed moving object identification, multitag
identification, and other scenarios at low cost.

For the novel mobile RFID system, because of its mo-
bility, the tags in the identification area have the opportunity
to be identified and processed, which can linearly expand the
identification range of the reader. Under the same test
conditions, the novel mobile RFID system can identify more
tags and obtain the system identification rate faster than the

conventional quasistatic RFID system. However, when the
system is put into actual engineering deployment, it will
encounter factors such as changes in the number of tags and
complex multipath channel interference. When we adjust
the hardware deployment of the system, there will be
subjectivity and timeliness, resulting in the identification
range of the reader. In the blind area, we can reduce the error
of the RFID system identification rate by optimizing the
hardware configuration reasonably, so as to maximize the
performance of the system.

In RFID system project planning and designing, the
system identification rate that represents the number of tags
being successfully read in the inventory process accounts for
the total number of tags. It is an important indicator in
measuring the system performance. Generally, the system
identification rate correlates with controllable factors in-
volving moving speed of the reader, number of tags, and
other factors and with uncontrollable factors including
multipath channel interference, Doppler effect, and other
factors, as shown in Figure 2. During the experiment, eleven
controllable factors are selected as conditions, including
height of the antenna P1, number of tags P2, horizontal
distance between the tag and shelf P3, number of reader
polling cycles P4, moving speed of the antenna P5, hori-
zontal angle of the antenna P6, vertical angle of the antenna
P7, number of antennas P8, light intensity (the sunlight and
the dark room without light are selected under same ex-
perimental conditions) P9, shelf height P10, and reader
transmitting power P11. -e level of the RFID system
identification rate is regarded as the decision attribute.

In order to verify prediction accuracy of the proposed
intelligent prediction method for the RFID system, firstly,
orthogonal experiments are conducted using a variable-
controlling approach. -e antenna height is set to 0.6m,
0.9m, and 1.2m, respectively; the number of tags is set to 90,
130, 150, and 180, respectively; the distance between tags and
antennas is set to 0.8m, 1.5m, and 1.9m, respectively; the
number of polling turns of the reader is set to 1, 2, and 3,
respectively; the moving speed of the antenna is set to 0.3m/
s, 0.6m/s, and 0.9m/s, respectively; the horizontal angle of
antenna is set to 0° and 30°, respectively; the vertical angle of
antenna is set to 0° and 30°, respectively; the number of
antennas of the same specification is set to 1 and 2, re-
spectively; the light intensity is set to 0 (sunlight) and 1
(darkroom), respectively; the shelf height is set to 0.6m and
1.2m, respectively; and the reader transmitting power is set
to 18 dBm, 23 dBm, and 28 dBm, respectively.

We need to traverse 10368 sets of cross experiments and
record the identification rate of the RFID system, in which
each group of influencing factors is used to conduct 3 ex-
periments, and both the average value of the RFID system
identification rate and the influence factors can be taken as
the sample data.

In practical engineering applications, the new type of
portable RFID system should be expected to reach 100%
identification rate on tagged goods inventory. In practical
applications, however, due to complex constraining factors
such as multipath effect, it is not ideal to rely on the current
hardware. -erefore, the threshold of the identification rate

Final result

Vote

Result 1 Result 2 Result 3 Result K

Decision 
tree 1

Decision 
tree 2

Decision 
tree 3

Decision 
tree K

Test set 1 Test set 2 Test set 3 Test set K

Boot strap 
sampling

Datasets

Figure 1: Schematic diagram of the random forest algorithm.
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can only reach 95%, which needs to be adjusted with respect
to differing projects according to actual situations. We
believe that whether the identification rate is qualified or not
lies in satisfying the requirements of actual situations. If the
identification rate of the system exceeds 95%, it is regarded
as high rate and can be categorized into type 1; otherwise, it
is labelled as unqualified type 2 if the identification rate is less
than the threshold value of 95%.

4.2.ComprehensiveAnalysis of theTest Platform. According to
the proposed prediction model of the RFID system iden-
tification rate, a novel mobile UHF passive RFID system is
constructed combining a mobile robotic car reader antenna
and other devices as an RFID experimental test platform.
Featuring 9m length, 4m width, and 3.75m height, the
platform is built in the corridor of an open classroom, as
shown in Figure 3(a). -e product of water drop robot of
Beijing Yunji technology company is selected as the robotic
vehicle used in the experiment, which maneuvers with
abilities of highly sensitive intelligent perception and po-
sitioning navigation.

As shown in Figure 3(b), the robotic vehicle that is
enabled with a path scanning function can adjust its moving
speed following the experimental requirements. -e vehicle
scans the test site, where the white color represents the area it
walks within, the gray color represents the unexplored area,
and the black solid line represents the obstacle information
established in the map. -e scanning results are shown in
Figure 4. -e mobile robotic vehicle is equipped with an
adjustable tripod, reader, and antenna. -e detailed ex-
perimental specifications are introduced as follows.

An RFID reader (MODEL Mercury6, BingMagic) is
adopted, which has stable read-write performance sup-
porting reading ISO 18000-6C protocol standard in wired
mode with a 9 dBi circular polarization reader antenna. -e
four-layer book shelf on the left side is 1.5m ∗ 2m, with a
certain number of books evenly distributed on each layer
and with archive tags pasted on the side of each book.-e tag
used is UHF passive and its working frequency mainly
ranges from 860MHz to 920MHZ, exhibiting excellent
directionality and satisfactory read distance.

-e novel mobile RFID experimental system has the
following characteristics:

(1) -e novel mobile RFID system overcomes the tra-
ditional quasistatic RFID system because the iden-
tification area is static, there is always the problem of
blind spots in identification, and it avoids the dis-
advantages of manual handheld readers that cause

large errors in the identification rate of the RFID
system

(2) In order to identify all tags in the area, the novel
mobile RFID system requires a mobile robot to poll
the tags in the reading area, and the tags are covered
by the reader signal area, at least, once

(3) Some tags will repeatedly enter and leave the signal
area of the reader

(4) Some tags will be identified multiple times by the
reader

-e experiment builds a novel mobile UHF passive RFID
test platform. Because only a movable single reader mech-
anism can be used to realize multitag identification, the cost
is much less than the RFID system with multireader
mechanism, which also saves multiple readings. It also saves
equipment installation and wiring costs. However, the
system still has the following limitations.

Due to the sector-shaped antenna radiation field of RFID
mobile robotic vehicle, the echo signal of tags on both sides
of the sector is weak and vulnerable to interference. With the
range of sector coverage, the echo signal of far end tag A is
weak, whereas that of near end tag B is strong. During the
process of identifying tags, the tags on both ends of the sector
may block the reader antenna if the vehicle moves too fast,
thus resulting in information loss.

In order to facilitate simple and direct identification,
different moving speeds of the vehicle are selected as initial
influencing factors for the RFID system. As shown in Fig-
ure 5, it is required that the vehicle must move along the
linear path with the signal radiation radius R at a reasonable
and constant speed under specified conditions to obtain the
optimal identification rate of the RFID system. Our future
research will be focusing on the optimal disk point path to
obtain the maximum identification rate of the system.

-roughout the process of identifying tags, only by
adjusting the parameters from the physical perspective of
hardware deployment can the optimal deployment scheme
of combination be obtained. In the abovementioned ex-
periment, however, the ideal identification rate of 100%
cannot be achieved merely through adjusting hardware
configurations. Admittedly, there are still other detrimental
encumbrances that may potentially induce blind area
problems, to which limitation involving antenna polariza-
tion mismatching and multipath fading can be attributed
largely.

In response to the situation that the number of tags on
the shelf is positively correlated with the size of storage area,
only small-size tags are selected to be uniformly placed in the
identification area without considering the serious tag col-
lision problem in the scene with dense multiple UHF tags.
With respect to other initial factors selected in Section 4.1,
such as antenna height, polling circle of the reader, and
horizontal distance between the antenna and shelf, a rea-
sonable test range should be conscientiously selected. Fur-
thermore, there are still many important tasks to be
accomplished, which include, but not limited to, conducting
orthogonal combination of controllable variables and testing

Reader Reader antenna

Polling
circles

Power
Number

Angle
Light

intensity Blind
spot

Number
Directional
polarization

System 
identification rate

Other Tags

Moving speed
Height

Figure 2: Influencing factors and the system identification rate.
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diverse combinations of influencing factors, as well as re-
cording the RFID system identification rate.

4.3. Proposed Algorithm

4.3.1. Reducing Influencing Factors. In Section 4.1, 11
controllable factors (see Section 4.1) are selected as condition
attributes, and the level of the RFID system identification
rate is taken as a decision attribute.

In order to reduce the redundancy in between the
aforementioned 11 groups of influencing factors and to
improve the prediction accuracy of system identification,
heuristic reduction algorithm of neighborhood weighted
dependency is, therefore, adopted. -e purpose of using this
algorithm aims on reducing the attribute reduction of
influencing factors and on obtaining the kernel factor subset
R [28, 29]. -e algorithm is a forward greedy attribute re-
duction algorithm based on the attribute importance of
weighted dependence (Algorithm 1). Detailed explanation of
the algorithm is described as follows [30, 31].

In a neighbourhood decision systemW� (U, C∪D, V, f,
ε), for Z⊂C, we define attribute x ∊Z−B and define w as
adjustment parameter and wcδ

B as weighted dependency, so
the importance degree of Z and D based on the weighted
dependence degree satisfies the following equation:

sig(x, Z, D) � wc
ε
B∪ x(D) − wc

ε
B(D). (13)

-e neighborhood radius ε� 0.28 was selected, the at-
tribute subset was selected from the empty set, and the
reduction subset was selected in turn to build an ordered
reduction attribute subset. -e dependence of the 11 groups
of influencing factors increased as the important attributes
of the reduction subset increase, thereby finally obtaining the
decision table M1, as shown in Table 1. From Table 1, it is
obvious that there are 500 sets of data after reducing sample
set U which is composed of P1, P2, P3, P4, P5, P8, and P11.
Compared with the initial influencing factors, after per-
forming heuristic reduction algorithm of neighborhood

Move

Reader

Antenna

Tag B

Tag A

Figure 5: Schematic diagram of the novel mobile RFID systemwith
the robotic vehicle.

(a) (b)

Figure 3: Test environment, (a) experimental test platform, and (b) water droplet robot.

Figure 4: Two-dimensional scanning image of the test
environment.
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rough set weighted dependency, some redundant factors are
removed, and the input features are changed from the
original 11 sets to 7 sets.

4.3.2. Random Forest Prediction. -e prediction model in
this paper is based on the random forest toolbox developed
by the University of Colorado [32], and the corresponding
codes were written in the operating environment of
MATLAB7.1. -e RFID identification rate prediction model
based on the NRS-RF includes 6 steps. Specific prediction
steps of the NRS-RF are demonstrated as follows:

(1) Normalized Input Data. -e kernel factor subset
{antenna height P1, number of tags P2, distance
between tags and shelf P3, number of polling cycles
P4, moving speed of the antenna P5, number of
antennas P8, and transmission power of the reader
P11} obtained by attribute reduction of neighbor-
hood rough set theory is used to construct 500 ∗ 7-
dimensional sample data as input variables of the
random forest model. -e sample data are processed
by the following equation:

xi
′ �

xi − min(x)

max(x) − min(x)
. (14)

-e predicted value of the identification rate of the
system is transformed by

x � x′ xmax−xmin( 􏼁 + xmin, (15)

where x is the initial RFID system identification rate
value and xmax and xmin are the maximum and
minimum value of the system identification rate,
respectively.

(2) Bootstrap Sampling Training Subsets and Decision
Tree. -e bootstrap method was used to perform n
times of resampling from the sample set S and to
randomly generate n training subsets Si with the
same number of samples. During bootstrap sampling
of training samples, 1/3 out-of-bag (OOB) data will
be left behind.-e OOB precision estimation of each
decision tree can be obtained through out-of-pocket

samples. -e OOB precision estimation of left and
right decision trees in the forest can be averaged to
obtain the generalization precision estimation of
random forest. For all the sample subsets Si, the
CART algorithm is performed to construct decision
trees, thus combining these trees to form a random
forest, which is expressed as C1, C2, . . . , Ci􏼈 􏼉.

(3) Node Split Growth. When the nodes of the decision
tree are splitting and growing, the input parameters
in the Mtry block prediction model are randomly
taken as the split subset of the current node. -e
value of Mtry represents the disturbance degree of
themodel attributes because the value in themodel is
sensitive which directly affects the prediction accu-
racy of the model. -e value can be given according
to the empirical equations:

Mtry �
M

3
􏼔 􏼕, (16)

Mtry � log2 M􏼂 􏼃, (17)

whereM is the number of input variables which is 6 in
this study. Hence, according to equations (16) and
(17), the Mtry value is 2. When the nodes are divided
in the subset, the Gini index in CART algorithm is
taken as the minimum principle to select the optimal
split influencing factor and optimal split value. During
the splitting process, none of pruning operations is
performed, and the Mtry block degree remains con-
stant. -e Gini system is defined by the following
equation:

Input: Neighborhood decision system W� (U, C∪D, V, f, ε), ε is neighborhood threshold, T is temporary subset.
Output: Reduction subset R.
Steps:

(1) ϕ⟶ R; T⟶ C − R;

(2) ∀xi ∈ T, Calculate the attribute importance sig of the sample sig(xi);
(3) xk � arg(max(sig(xi))), Find the attribute with the most important attribute of attribute reduction attribute subset xi;
(4) If (sig(xi)> 0)
(5) R⟵R⟵ xk􏼈 􏼉, T⟵T − xk􏼈 􏼉;
(6) Else
(7) return R;
(8) End for

ALGORITHM 1: Forward greedy attribute reduction.

Table 1: Decision table M1.

W 1 2 . . . 251 252 . . . 351 . . . 500
P1 1 3 . . . 2 3 . . . 2 . . . 6
P2 3 7 . . . 5 2 . . . 2 . . . 4
P3 5 6 . . . 2 1 . . . 7 . . . 2
P4 3 5 . . . 4 7 . . . 4 . . . 2
P5 5 2 . . . 5 2 . . . 1 . . . 6
P8 3 6 . . . 5 3 . . . 6 . . . 2
P11 2 3 1 4 5 3
V 1 1 . . . 1 1 . . . 1 . . . 1
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Gini ti( 􏼁 � 1 − 􏽘
K

K�1
P
2
k, (18)

where ti represents the current influencing factor, K
represents the number of groups of the influencing
factors ti, and PK represents the probability that the
sample point belongs to the K class. After determining
the optimal splitting influencing factor ti, if a subset Si

is split into two subsets St1 and St2 with respect to ti, the
optimal splitting value “a” can be calculated by the
following equation:

minGini ti, a( 􏼁 �
St1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

St

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
Gini St1( 􏼁 +

St2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

St

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
Gini St2( 􏼁, (19)

where |St|, |St1|, and |St2|, are the samples of St, St1,
and St2, respectively.

(4) Prediction Sample Category. After each decision tree
is constructed from the bottom to the top, the in-
tegrity of the tree is preserved without performing
pruning operations, and all the decision trees are
tested with test set X to obtain the test sample of the
prediction category of the RFID system identifica-
tion rate, which can be expressed as
C1(X), C2(X), . . . , Cn(X)􏼈 􏼉.

(5) Final Prediction Classification. After training, the
sample data x are input from test set data X into the
model to obtain the prediction classification results
and to select the final classification results of test set
by voting mechanism. -e principle of voting
mechanism can be expressed by the following
equation:

fRF(x) � arg
i�1,2,...,c

max I f
tree
l (x) � i􏼐 􏼑􏽮 􏽯. (20)

(6) Evaluation Model. -e confusion matrix is estab-
lished by the validation set of OOB data, and the
classification results are evaluated. Based on con-
fusion matrix, four evaluation indexes are selected,
including overall accuracy (OA), Kappa coefficient,
root mean square error (RMSE), and mean absolute
error (MAE). -e final prediction results of the
RFID system identification rate are compared with
the threshold condition of the system identification
rate in the actual project. -erefore, it can be judged
whether the hardware deployment scheme of the
RFID system can meet the application require-
ments. -e OA, Kappa coefficient, RMSE, and MAE
are expressed by the following equations,
respectively:

Overall accuracy �
􏽐

n
i�1 Xii

N
, (21)

Kappa �
N 􏽐

n
i�1 Xii − 􏽐

n
i�1 Xi+ × X+i( 􏼁

N
2

− 􏽐
n
i�1 Xi+ × X+i( 􏼁

, (22)

RMSE �

������������

􏽐
n
i�1 Yi − 􏽢Yi􏼐 􏼑

2

n

􏽳

, (23)

MAE �
1
n

􏽘

n

i�1

􏽢Yi − Yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (24)

4.3.3. Time Complexity Analysis. -is paper proposes a
neighborhood rough sets and random forest combination
model of the identification rate of the RFID system pre-
diction model. -e essence is to reduce the dimension of X
samples and Y initial influencing factors. Firstly, the initial
influencing factors are reduced using neighborhood rough
set theory combined with the principle of heuristic attribute
reduction of neighborhood weighted dependence, thus
obtaining a kernel factor subset. So, the dimension Y is
reduced toV. At this time, the time complexity of calculating
the kernel factor set of the neighborhood rough set is O
(V2XlogX). -en, the selected kernel factor subset is taken as
the input of the random forest model to establish the RFID
system identification rate prediction model. At this time, the
time complexity of the model is O (KVs (logs)2), where K
represents the number of basic classifier CART and s rep-
resents the number of training sets in the random forest
algorithm. It is obvious that the time complexity at this time
is lower than that of the random forest directly dealing with
the initial influencing factor. After all, the sample has been
dimensionally reduced, V≤Y.

5. Results and Discussion

5.1. Optimizing N-Tree and Constructing the Decision Tree.
Before performing the random forest algorithm, it is nec-
essary to optimize the super parameter N-Tree which is the
number of decision trees. -e 500 ∗ 7-dimensional sample
data are input variables of the random forest model. By
changing the N-Tree value, the OOB precision corre-
sponding to different N-Tree values can be calculated. -e
number of decision trees can be estimated byOOB precision,
as shown in Figure 6.

From Figure 6, it can be seen that the value of N-Tree
increases as the progress of model classification proceeds.
When the value of N-Tree is greater than 500, the accuracy
accordingly increases, to which the increasing tendency is
not obvious but declines instead. -erefore, taking the
model’s identification classification accuracy and the clas-
sification time as reference standards, the final value of
N-Tree is 500. Once the number of decision trees is de-
termined, each tree is divided by the Gini coefficient ex-
pression and optimal splitting value given in Section 4.3.2
from the root node until each tree accomplishes growing.
Here, we select a decision tree to observe its splitting and
growing process. -e optimal splitting influencing factor
and optimal splitting value of each node in the splitting
process of the decision tree are shown in Table 2. -e
complete construction process of the decision tree is drawn
from the root node to the bottom, as shown in Figure 7.
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5.2. Test Results. -e test set is used to verify the classifi-
cation accuracy of the constructed random forest model.-e
identification rate of the RFID system is obtained through
simulation, as shown in Figure 8. According to the pre-
diction results in Figure 8, the classification accuracy is

90.5%. -e horizontal and vertical axis represent 500 groups
of data, the red asterisk shape represents the error classi-
fication sample, and the blue circle denotes the correct
classification sample. -e data in the blue square represent
the error-prone range, the closer the sample approaches 250
decision trees, the more difficult it is to make decisions,
whereas the easier it is to make classification errors.

From the perspective of sample data, among the 500 sets
of sample data, there are 357 sets of qualified samples that
meet the threshold condition, which means the RFID system
identification rate is higher than 95%. -ere are 143 sets of
unqualified samples that do not meet the threshold con-
dition; that said, the RFID system identification rate is less
than 95%. Among 100 sets of data in the test set, there are 80
groups of qualified identification rate and the accurate
prediction rate is about 96.25%, with an average misjudg-
ment of 3 data groups. Among the unqualified identification
rate, there are 20 groups with an accuracy rate of 90% and an
average misjudgment of 2 data groups. At this time, the
NRS-RFmodel exhibits excellent performance on predicting
the RFID system identification rate.

In order to verify that the prediction accuracy can be
improved through using a neighborhood rough set to reduce
the initial influencing factor set, the relation between the
prediction accuracy and the number of influencing factors is,
therefore, analyzed adopting variable-controlling compari-
son experiment. First, accuracy verification was added to the
test samples one by one according to the importance of
influencing factors, as shown in Figure 9. It can be seen from
Figure 9 that, under the condition of ensuring consistency of
other parameters, the classification prediction accuracy was
significantly improved as the number of influencing factors
increases.

When the number of influencing factors reached 5, the
overall prediction accuracy of the test sample increased
slowly. When the number increased to 7, the accuracy
reached 90.5% and then stabilized following with a small
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Figure 7: Decision tree structure.
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Table 2: Optimal splitting influencing factor and the optimal
splitting value of nodes.

Optimal splitting influencing factor Optimal splitting value
P1 0.364
P2 0.854
P3 0.648
P4 0.985
P5 0.751
P8 0.651
P11 0.528
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decline. -e classification time was on an upward trend as
the number of influencing factors increased. When the
influencing factors reached 11, the accuracy increased more
significantly. Considering the combination of prediction
accuracy and classification time, the 7 influencing factors
obtained by attribute reduction are the optimal feature
combination which effectively improve the classification
accuracy while reducing the classification time.

In order to further verify the advantages of the NRS-RF
model in predicting the RFID system identification rate, two
new prediction algorithms are selected to construct the
prediction network model and make a comparative analysis
with the proposed NRS-RF model, including the K-nearest
neighbor-naive Bayesian (KNN-NB) and backpropagation
neural network (BPNN) [33–35].-ese three models predict
300 groups of RFID system identification rate sample data,
being compared in terms of OA, Kappa coefficient, RMSE,
MAE, training time and prediction time, and correlation.
-e prediction results are shown in Table 3 and
Figures 10–12.

-e Kappa statistic is a measurement value for evaluating
consistency, which indicates whether there is consistency
between the predicted results of the model and the actual
results. When the Kappa coefficient is greater than 0.75, it
indicates that the model is better and has a certain value. It
can be seen from Table 3 that the NRS-RF model with the
highest classification accuracy has OA and Kappa coeffi-
cients of 88.5% and 0.875, which are much higher than those
of other two models. It shows that the NRS-RF method can
effectively screen out the nuclear factor set of system
identification rate and improve the classification accuracy of
the model.

Admittedly, featuring with excellent performance on
applicability, the NRS-RF method can effectively eliminate
the influencing factors affecting the RFID system identifi-
cation rate. In Figure 10, the RMSE and MAE values of the
NRS-RF model are relatively small, the prediction error is
small, and the classification accuracy is higher. Comparing

the training set of the three models with the prediction set in
terms of operating time, the NRS-RF model requires shorter
time while ensuring lower computational complexity and
higher calculation speed, thereby better satisfying engi-
neering applications, as shown in Figure 11.

Different fromKNN-NB and BPNNmodels, the random
forest model is a kernel subset composed of 500 sample sets
as the input of the model. However, due to its simple bi-
furcation structure of the base learner decision tree, its
learning time is less than 6 s.

At the same time, when constructing the decision tree, it
randomly selects part of the features as the classification
basis of the tree growth, and when constructing the internal
base learning device, it adopts the random sampling to put
back the training samples, which ensures the generalization
ability of the final model. -erefore, the random forest al-
gorithm model has higher OA.

-e correlation between the predicted value of the
identification rate of the three models and the actual value is
analyzed, as shown in Figure 12.-e correlation coefficient R
of the three models is RNRS-RF � 0.891, RKNN-NB � 0.824, and
RBPNN � 0.798, respectively. -e R value of the NRS-RF
model is closer to 1, which indicates that the prediction value
of the model is closer to the actual measurement value,
exhibiting better prediction effect.

-e NRS-RF model compared with the other two kinds
of prediction model shows great advantages, mainly because
the initial influencing factors of redundant attributes is
more, and they not only increase the classifier identification
time but also make the classification accuracy of the RFID
system significantly decreased. -rough the reduction of
NRS algorithm, the kernel factor subset is obtained. -e
classification of kernel factors set contains stronger char-
acteristic sensitivity, improves the prediction precision, and
reduces the computational complexity of the model.

-e KNN-NB combination algorithm uses the KNN
algorithm to calculate the distance between the sample data
to be tested and the sample set. -e selected sample data are
used as the training sample of the NB algorithm, and then,
the NBmodel is used for prediction and classification, where
K� 3. Because the NB model needs to know the prior
probability, the prior probability often depends on the
hypothetical model. However, there are many kinds of
hypothetical models, so in some cases, the prediction effect
will be poor due to the hypothetical prior model, so there is a
certain error rate in classification decisions.

We use a three-layer BPNN model. -e number of
hidden layer nodes is set to 6, and the number of output layer
nodes is 1. Since the BPNN model is essentially a gradient
descent method, the objective function to be optimized is
more complicated and prone to the “sawtooth phenome-
non,” which makes the convergence speed of the BPNN
model slow and affects the final prediction classification
accuracy of the test set.

5.3. Engineering Application. As intelligent archives man-
agement inventory technology rapidly develops [36, 37], the
UHF passive RFID technology liberates the archives
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management from the relatively “stereotyped” impression
brought by barcodes. In order to further improve reading
efficiency of the archive inventory, the RFID system is
mounted on amobile robotic vehicle, and the effectiveness of
the NRS-RF model is verified in archives management
applications. Under diverse hardware deployment condi-
tions, this study selects 300 sets for the RFID system
identification rate and for influencing factors as the sample
data, on which heuristic attribute reduction of the initial
influencing factors is conducted using neighborhood rough
set theory. -e importance distribution of influencing fac-
tors is given in this paper, which is obtained by neighbor-
hood rough set reduction and by OOB error analysis of
random forest.

-e high importance score indicates that the influencing
factor has greater impacts and contributions on classification
results, as shown in Figure 13. It can be seen that the im-
portance scores all exceed 5, involving antenna height P1,
reader transmission power P2, distance between the tag and

antenna P3, and other 4 influencing factors. Finally, the set
of kernel factors is selected, which include antenna height
P1, number of tags P2, distance between tags and antennas
P3, reader polling cycles P4, antenna moving speed P5,
antenna number P8, and reader transmitting power P11.

-e average decline accuracy rate and average decline
Gini coefficient of 7 groups of influencing factors are ob-
tained through analyzing the Gini coefficient. Both the
abovementioned average decline accuracy rate and average
decline Gini coefficient can represent the degree of decline in
accuracy when the influencing factor is replaced, both of
which are positively correlated with the importance of the
influencing factors. As shown in Figure 14, the larger the
values of both the abovementioned rate and coefficient, the
higher the importance of the influencing factor. In addition,
some influencing samples of the RFID system identification
rate are shown in Table 4.

From the 300 sample data, 240 groups were selected as
training sets to train the model, and the remaining 60 groups
were test set data for verification and prediction. Ten groups
of test data were randomly selected from the test set samples,
and scatter plots were made, as shown in Table 5 and
Figure 15.-e RMSE is 0.548, and the correlation coefficient
R is 0.951, indicating outstanding prediction accuracy of the
model.

It can be seen from Table 5 that the predicted classifi-
cation level of 10 groups of test sample data is basically
consistent with the actual classification, satisfying the en-
gineering requirements. By comparing the third and fourth
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Table 3: Prediction accuracy comparison.

Prediction model Sample data Correct classification Error classification OA (%) Kappa coefficient
NRS-RF 300 265 35 88.5 0.875
KNN-NB 300 254 46 84.7 0.805
BPNN 300 245 35 82.3 0.784
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Table 4: Samples of the RFID system identification rate.

Sample number P1 P2 P3 P4 P5 P8 P11 RFID system identification rate level
1 0.6 90 0.8 1 0.3 2 18 1
2 0.9 150 1.5 2 0.6 1 23 2
3 0.6 90 1.9 3 0.9 2 28 1
4 1.2 130 0.8 3 0.9 1 18 1
5 0.9 110 1.5 2 0.3 2 23 1
6 1.2 180 1.9 1 0.6 1 28 2
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Table 5: NRS-RF model RFID system identification rate level prediction.

Sample number P1 P2 P3 P4 P5 P8 P11 Forecast level Actual level
1 0.6 90 0.8 1 0.6 1 18 2 2
2 0.9 150 1.5 2 0.3 2 23 2 1
3 1.2 130 0.8 3 0.6 1 18 1 1
4 1.2 130 0.8 2 0.9 1 18 1 2
5 0.9 180 1.5 1 0.9 2 23 2 2
6 1.2 90 1.5 3 0.9 1 28 1 1
7 0.6 180 0.8 1 0.3 1 18 2 2
8 0.9 180 1.5 2 0.6 2 23 2 2
9 1.2 90 1.9 3 0.9 2 28 1 1
10 0.6 150 0.8 1 0.3 2 18 1 2
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groups of samples in Table 5, it can be analyzed that the
system identification rate can be improved to type 1 by
reducing the moving speed of the antenna or increasing the
number of reader polling cycles when other influencing
factors are consistent. Comparative analysis of the second
and fifth groups of samples in Table 5 shows that the system
identification rate can be improved to type 1 when the
number of tags is reduced or the number of reader polling
cycles is increased, thereby accomplishing tag reading to the
largest extent. -e RFID system identification rate can,
therefore, be predicted in a prompt and effective way by
mining the relation between the identification rate and the
influencing factors. Furthermore, the system identification
rate can be improved by purposefully optimizing and
adjusting the corresponding hardware deployment, through
which the application requirements of more engineering
inventories will be satisfied.

6. Conclusions

In order to optimize the hardware deployment of the RFID
system and improve the system identification rate, a pre-
diction model of the RFID system identification rate based
on the combination model of neighborhood rough set and
random forest is proposed through mining the relation
between relevant influencing factors and the system iden-
tification rate. -is study uses neighborhood rough set
theory to conduct heuristic attribute reduction of weighted
dependence of initial influencing factors and takes the kernel
factor set as the input variable of random forest model for
model training. -e model is validated and verified in the
RFID experimental test platform. Simulation results suggest
that the fitting accuracy of the NRS-RF model is higher than
that of the BPNN and other prediction models. Finally, the
proposed model is applied to the RFID intelligent archives
management platform, thus proving the excellent perfor-
mance of the NRS-RF model. -e proposed model can
reversely configure the parameter setting of RFID hardware

deployment, and the system identification rate is, therefore,
improved to satisfy the requirements of engineering
applications.

Despite the abovementioned findings, the influence of
antenna polarization mismatch, multipath fading, or other
possible blind zone restrictions is not fully considered in the
process of mobile robotic vehicle inventory tags, which may
potentially affect the process of tag inventory. Our future
research will be focusing on in-depth exploration of the
automatic tag counting technology and on realizing the
function of automatic tracking and path planning for mobile
robots and robotic vehicles, paving way for the future de-
velopment of automation in tag reading and writing.
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[28] N. Spolaôr and M. C. Monard, “Evaluating ReliefF-based
multi-label feature selection algorithm,” Advances in Artificial
Intelligence—IBERAMIA 2014, vol. 40, no. 1, pp. 194–205,
2014.

[29] Y. Lin, Q. Hu, J. Liu, and J. Duan, “Multi-label feature se-
lection based on max-dependency and min-redundancy,”
Neurocomputing, vol. 168, no. 1, pp. 92–103, 2015.

[30] M. C. Yao and M. F. Chao, “A greedy algorithm for attribute
reduction,” Journal of Jiamusi University (Natural ence Edi-
tion), vol. 6, no. 12, pp. 125–130, 2013.

[31] L. I. Mina and C. W. Donga, “Exploration greedy algorithm
with attribute reduction,” Computer Engineering, vol. 38,
no. 19, pp. 163–166, 2013.

[32] Random forest toolbox, https://download.csdn.net/
download/u011727648/10502334?utm_source�bbsseo, 2020.

[33] B. Sanniv, K. Anwesha, B. Rohit, and D. N. Tibarewala,
“Classification of lower limb motor imagery using K-nearest
neighbor and naı̈ve-bayesian classifier,” in Proceedings of the
3rd International Conference on Recent Advances in Infor-
mation Technology (RAIT), Dhanbad, India, July 2016.

[34] Y. Yu and L. Zhang, “WSN location method based on BP
neural network in NLOS environment,” in Proceedings of the
International Conference on Wireless Communication and
Sensor Network, Wuhan, China, December 2014.

[35] D. Xu, Y. Wang, P. Peng, S. Beilun, Z. Deng, and H. Guo,
“Real-time road traffic state prediction based on kernel-
KNN,” Transportmetrica A: Transport Science, vol. 16, no. 1,
pp. 104–118, 2020.

[36] Q. L. Shen, B. Shao, and L. J. Chen, “Design and imple-
mentation of book inventory robot based on UHF RFID,”
Library Science Research, vol. 7, no. 1, pp. 24–28, 2016.

[37] N. Zhang and Y. L. Gou, “Application of new insect-proof
RFID tags in smart archive management,” Lantai World,
vol. 7, no. 1, pp. 103–105, 2018.

Complexity 15

https://www.atlasrfidstore.com/keonn-rfid-eaders-antennas/
https://www.atlasrfidstore.com/keonn-rfid-eaders-antennas/
http://www.idshi.com/ProductView.aspx?Id=84
https://download.csdn.net/download/u011727648/10502334?utm_source=bbsseo
https://download.csdn.net/download/u011727648/10502334?utm_source=bbsseo

