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In this paper, an adaptive intelligent control scheme is presented to investigate the problem of adaptive tracking control for a class
of nonstrict-feedback nonlinear systems with constrained states and unmodeled dynamics. By approximating the unknown
nonlinear uncertainties, utilizing Barrier Lyapunov functions (BLFs), and designing a dynamic signal to deal with the constrained
states and the unmodeled dynamics, respectively, an adaptive neural network (NN) controller is developed in the frame of the
backstepping design. In order to simplify the design process, the nonstrict-feedback form is treated by using the special properties
of Gaussian functions. -e proposed adaptive control scheme ensures that all variables involved in the closed-loop system are
bounded, the corresponding state constraints are not violated. Meanwhile, the tracking error converges to a small neighborhood
of the origin. In the end, the proposed intelligent design algorithm is applied to one-link manipulator to demonstrate the
effectiveness of the obtained method.

1. Introduction

Over the past few decades, nonlinear control systems, which
can be employed to model numerous applications such as
biological systems, chemical processes, and aerospace ve-
hicles, have aroused a wide range of concerns among re-
searchers. In this area, adaptive control of nonlinear systems
with uncertainties is a very active research subject. -e
backstepping method, as we all know, has been proposed in
[1] as an effective method to solve the adaptive control
problem of nonlinear strict-feedback systems with mis-
matched uncertainties. With the rapid development of
adaptive control theory, the backstepping method has been
widely used in the control design of different complex
nonlinear systems such as interconnected large-scale sys-
tems, MIMO systems, and unmodeled dynamic systems
[2–4].

On the other hand, unmodeled dynamics are common
phenomenon in practical applications, which are mainly
caused by modeling errors and external disturbances. -e
existence of unmodeled dynamics usually degrades control
performance or leads to the instability for a control system,
and thus dealing with unmodeled dynamics has drawn
considerable attention from many scholars in the control
field. In recent years, adaptive control of uncertain nonlinear
systems with unmodeled dynamics has become a research
hot spot, and many related achievements have been reported
[5–9]. To just name a few, a robust controller is designed in
[5] for a class of nonlinear systems with unmodeled dy-
namics by using the method of adaptive backstepping and
introducing a dynamic signal; and an adaptive output
feedback controller is designed in [6] for a class of stochastic
nonlinear systems with output unmodeled dynamics by
using a stochastic small-gain theorem. Obviously, all the
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above-mentioned references are nonlinear strict-feedback
systems with unmodeled dynamics, and there are few results
on nonlinear nonstrict-feedback systems with unmodeled
dynamics at present. -erefore, how to deal with the
nonstrict-feedback form is one of the hardest issues in the
research field of nonlinear systems.

It should be pointed out that none of the above related
adaptive results can be used to deal with completely un-
known nonlinearities of control systems. To solve this
problem, some elegant intelligent adaptive control algo-
rithms are proposed by using NN or fuzzy logic systems
[10–32]. Up to now, great progress has beenmade in the area
of adaptive intelligent control for uncertain nonlinear sys-
tems with unmodeled dynamics, and a large number of
valuable results are presented in [33–44]. For example,
several adaptive intelligent control schemes are proposed in
[33, 44] for several classes of nonlinear systems made up of
unmodeled dynamics and strict-feedback form by using
fuzzy logic and NN compensators, respectively. A suitable
learning controller is proposed in [39] to overcome the
disadvantages caused by parameter uncertainties and
unmodeled dynamics for a class of multi-input and multi-
output nonlinear systems. Meanwhile, the corresponding
results have been obtained for interconnected nonlinear
systems with unmodeled dynamics in [40]. However, the
problem of constraints inevitably appears in various systems.
-e research in the field of handling complicated constraints
has been paid more and more attention by researchers, and
by utilizing the BLFs or the nonlinear mappings (NMs) to
deal with state constraints or output constraints, a series of
significant results have been obtained [45–48]. However,
there exist a few intelligent control algorithms for nonstrict-
feedback nonlinear systems with unmodeled dynamics to
deal with the state constraints until now.

Motivated by the above research situation, this paper
proposes an adaptive tracking control strategy for a class of
nonstrict-feedback nonlinear systems with unmodeled dy-
namics and state constraints. -e unknown functions are
estimated by NN, then a dynamic signal is designed to
handle the dynamic uncertainties to ensure that the con-
sidered system can be controlled effectively. Meanwhile, by
using the BLFs to handle the state constraints, the proposed
adaptive control approach can guarantee the boundedness of
all the signals in the closed-loop system, and the tracking
error converges to a small neighborhood of the origin. -e
main contributions of the proposed method are summarized
as follows: (1) Compared with the variable partition tech-
nique in [36], this paper uses the essential property of
Gaussian functions to deal with the nonstrict-feedback form,
so that the controller design process is relatively simpler. (2)
Barrier functions are applied in the design process to
constrain state variables into the specified regions, despite
the presence of unmodeled dynamics at the front end of the
studied system. (3) -is paper adopts a dynamic signal to
handle the dynamic uncertainties to ensure the considered
system can be controlled effectively so that the conservative
assumption about unmodeled dynamics in [5] is not used.

2. Problem Formulation and Preliminaries

2.1. Problem Formulation. In this paper, we study a class of
nonstrict-feedback nonlinear systems with unmodeled dy-
namics as follows:

_χ � p(χ, ξ),

_ξi � fi ξi􏼐 􏼑ξi+1 + gi(ξ) + Οi(ξ, χ, t),

i � 1, . . . , n − 1,

_ξn � fn ξn􏼐 􏼑u + gn(ξ) + Οn(ξ, χ, t),

η � ξ1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where ξ � ξn � [ξ1, ξ2, . . . , ξn]T represents the state vector,
and u and η depict the system input and output, severally;
partial states are constrained in the compact sets; i.e., ξi is
required to remain in the sets |ξi|< kci

with kci
being positive

constants, i � 1, 2, . . . , n; χ ∈ Rn0 are the unmodeled dy-
namics, Οi(·), (i � 1, 2 . . . , n) represent nonlinear distur-
bances, and gi(·) and fi(·), (i � 1, 2 . . . , n) are smooth
uncertain functions with gi(0) � 0. It is assumed that Οi(·)

and p(·) are indeterminate continuous Lipschitz functions.

Remark 1. Plant (1) has a nonstrict-feedback structure,
where the diffusion terms gi(·), (i � 1, 2 . . . , n) are the
functions of ξ � [ξ1, . . . , ξi]

T, which is different from the
strict-feedback structure in [49] and the semistrict-feedback
structure in [50], because the functions gi(·) are relevant to
all stats of ξ.

We will establish an adaptive intelligent controller for
system [1] so that the output η can track a given trajectory ηd,
the corresponding state constraints are not violated, and all
the reference signals of the closed-loop system are bounded.
-erefore, we give the following assumptions.

Assumption 1 (see [51]). For system (1), there is an un-
known constant bm > 0 satisfying

0< bm ≤ fi ξi􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<∞. (2)

Assumption 2 (see [51]). ηd(t) is a reference signal, its up to
nth-order are bounded and smooth. -ere exists a positive
constant d such that |ηd(t)|≤ d< kc1

.

Assumption 3 (see [5]). For i � 1, . . . , n the functionΟi(·) in
(1) satisfies the following inequalities:

Οi(ξ, χ, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤φi1 ξi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + φi2(|χ|), (3)

where φi1(·) and φi2(·) are unknown nonnegative increasing
smooth functions with φi2(0) � 0.

Assumption 4 (see [5]). For _χ � p(χ, ξ) in (1), there is a
Lyapunov function V(χ) such that
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ω1(|χ|)≤V(χ)≤ω2(|χ|), (4)

zV(χ)

zχ
p(χ, ξ)≤ − k0V(χ) + c ξ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + d0, (5)

where (ω1,ω2) and c represent class K∞-functions, and
k0 > 0 and d0 > 0 are known scalars.

Remark 2. Assumption 1 implies that the unknown func-
tions fk

i (χi) are strictly positive or negative. Further, let us
assume that 0< bm ≤ |fi(ξi)|<∞ for generality. Assumption
2 is required in many literatures on the tracking control
problem such as [36, 40], since we need to figure out its time
derivatives up to n th in the design process. -ere exists the
similar assumption in [5], where φi1(·) and φi2(·) are as-
sumed to be available. However, Assumption 3 does not
need this restriction and is thus more relaxed. Assumption 4
is the key condition to ensure the stability of the unmodeled
dynamics in (1).

2.2. Preliminaries. To facilitate the design and analysis, the
following Lemmas are given.

Lemma 1 (see [51]). For _χ � p(χ, ξ), there is a Lyapunov
function V that satisfies (4) and (5), then for any values k in
(0, k0), functions (c(ξ1)≥ c(|ξ1|)) and initial value
χ0 � χ0(0), there is a limited time T0 � T0(k, v0, χ0), B(t)≥ 0
for all t> 0 and a signal is represented by

_v � − kv + c ξ1(t)( 􏼁 + d0, v(0) � v0, (6)

such that B(t) � 0 for all t≥T0

V(χ(t))≤ v(t) + B(t). (7)

-e solutions are specified for ∀t> 0. We can select
c(s) � s2c0(s2), where c(·)> 0 is a smooth function. Now,
(7) makes

_v � − kv + ξ21c0 ξ21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + d0, v(0) � v0, (8)

where c0 is a nonnegative smooth function.

Lemma 2 (see [52]). For any ζ ∈ R and ωn > 0, the following
relation holds: 0≤ |ζ| − ζ tanh(ζ/ε)≤ δω0, δ � 0.2785.

Lemma 3 (see [53]). For ∀(x, y) ∈ Rn, it can be obtained
that (xy≤ (εp/p)|x|p + (1/qεq)|y|q) where ε> 0, p> 1, q> 1,
and (p − 1)(q − 1) � 1.

Lemma 4 (see [54]). Assume that Ωx1
is defined as

Ωx1
:� x1||x1|< 0.8814v􏼈 􏼉, and the inequality

[1 − tan h2(x1/r)]≤ 0 is satisfied for any x1 ∉ Ωx1
.

In this paper, the smooth function g(X): Rn⟶ R is
estimated by radial basis functions (RBF) NN gnn(X). -e
RBF NN can be written as

gnn(X) � E
T
H(X), (9)

where E � [e1, . . . , el]
T ∈ Rl with l> 1 is weight vector,

X ∈ Rq is input vector, and H(X) � [h1(X), . . . , hl(X)]T is
the basis function vector of the Gaussian function. hi(X) can
be expressed as

hi(X) � exp −
X − ci( 􏼁

T
X − ci( 􏼁

y
2􏼢 􏼣, i � 1, . . . , l, (10)

where ci � [ci1, . . . , ciq]T is the center of the receptive field,
and y is the width of the Gaussian function.-e RBF NN (9)
with sufficiently large node number l can approximate any
continuous function g(X) over a compact set ΩX ∈ Rq to
arbitrarily accuracy ε> 0 as

g(X) � E
∗T

H(X) + δ(X), ∀X ∈ ΩX ∈ R
q
, (11)

where E∗ is the desired weight vector and chosen as E∗ �

argmin
E∈R

l supX∈ΩX
|g(X) − ETH(X)|􏽮 􏽯 and δ(X) denotes

the approximation error for δ(X)< ε.

Lemma 5 (see [54]). Let ξq � [ξ1, . . . , ξq]T and H(ξq) �

[H1(ξq), . . . , Hl(ξq)]T be the basis function vector of the RBF
NN. Now, for (∀k, q ∈ N+) and k≤ q, we have
‖H(ξq)‖2 ≤ ‖H(ξk)‖2.

3. Main Result

For system (1), this part gives the concrete design process of
the controller through the backstepping algorithm. -e
adaptive neural backstepping design requires n steps. -e
virtual control input in step i is designed as
αi(i � 1, . . . , n − 1), and the real controller u is added in step
n to form a stabilized closed-loop system. -ey are repre-
sented separately as

αi � − cixi −
1
2a

2
i

xi

k
2
bi

− x
2
i􏼐 􏼑

􏽢θiH
T
i Xi( 􏼁Hi Xi( 􏼁, 1≤ i≤ n − 1,

(12)

u � − cnxn −
1
2a

2
n

xn

k
2
bn

− x
2
n􏼐 􏼑

􏽢θnH
T
n Xn( 􏼁Hn Xn( 􏼁, (13)

where the design parameters are ci > 0 and ai > 0,

Xi � [ξ
T

i , 􏽢θ
T

i , η(i)T
d , v]T with ξi � [ξi, ξ2, . . . , ξi]

T, 􏽢θi � [􏽢θ1, 􏽢θ2,
. . . , 􏽢θi]

T, η(i)
d � [ηd, _ηd, . . . , η(i)

d ]T with η(i)
d � (diηd/dti), and

the uncertain parameter θi is estimated to be 􏽢θi. -e
transformations of coordinates are selected as follows:

xi � ξi − αi− 1, i � 1, 2, . . . , n, (14)

where α0 � ηd(t).
-e adaption laws are expressed as

_􏽢θi �
κi

2a
2
i

xi

k2
bi

− x2
i

⎛⎝ ⎞⎠

2

H
T
i Xi( 􏼁H Xi( 􏼁 − μi

􏽢θi, i � 1, 2, . . . , n,

(15)
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where the design parameters are κi > 0 and μi > 0.
For clarity, let us abbreviate the functions fi(ξi) to fi

and set Οi(ξ, χ, t) � Οi and Hi(Xi) � Hi.
Now, let us start the design process.

Step 1. Based on (x1 � ξ1 − ηd), one has

_x1 � f1ξ2 + g1(ξ) + Ο1 − _ηd. (16)

Next, choose the following Lyapunov function:

V1 �
1
2
log

k
2
b1

k
2
b1

− x
2
1

⎛⎝ ⎞⎠ +
1
κ0

v +
bm

2κ1
􏽥θ
2
1, (17)

where log(ϑ) stands for the natural logarithm of ϑ, 􏽥θ1 �

θ1 − 􏽢θ1 denotes the parameter error, and κ0 and κ1 are
positive constants. In the set Ωx1

, V1 is continuous.
-us, according to Assumption 2, the derivative of V1

along with (8) leads to

_V1 ≤
x1

k
2
b1

− x
2
1

f1ξ2 + g1(ξ) − _ηd( 􏼁 +
x1

k
2
b1

− x
2
1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
φ11 ξ1( 􏼁

+
x1

k
2
b1

− x
2
1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
φ12(|χ|) +

1
κ0

ξ21c0 ξ21􏼐 􏼑 + d0􏼐 􏼑

−
k

κ0
v −

bm

κ1
􏽥θ1

_􏽢θ1.

(18)

Now, we conduct |x1/(k2
b1

− x2
1)|φ11(|ξ1|) and |x1/(k2

b1
−

x2
1)|φ12(|χ|) in (18). According to Lemma 2, the following

inequality holds:

x1

k
2
b1

− x
2
1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
φ11 ξ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑≤ λ1′ +

x1

k
2
b1

− x
2
1
φ11 ξ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑tan h

·
x1/ k

2
b1

− x
2
1􏼐 􏼑􏼐 􏼑φ11 ξ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

λ1
⎛⎝ ⎞⎠

�
x1

k
2
b1

− x
2
1
􏽢φ11 ξ1( 􏼁 + λ1′,

(19)

where λ1′ � 0.2785λ1 and 􏽢φ11(ξ1) � φ11(|ξ1|)tanh
(x1φ11(|ξ1|)/λ1(k2

b1
− x2

1)) is a smooth function.
-e same method in [32] is repeated

x1

k
2
b1

− x
2
1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
φ12(|χ|)≤

x1

k
2
b1

− x
2
1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
φ12(v) +

1
4

x1

k2
b1

− x2
1

⎛⎝ ⎞⎠

2

+ d1(t)≤
x1

k
2
b1

− x
2
1
φ12(v)tan h

·
x1/ k

2
b1

− x
2
1􏼐 􏼑􏼐 􏼑φ12(v)

ℓ1
⎛⎝ ⎞⎠

+ ℓ1′ +
1
4

x1

k2
b1

− x2
1

⎛⎝ ⎞⎠

2

+ d1(t)

�
x1

k
2
b1

− x
2
1

􏽢φ12 ξ1, v( 􏼁 + ℓ1′

+
1
4

x1

k2
b1

− x2
1

⎛⎝ ⎞⎠

2

+ d1(t),

(20)

where ℓ1′�0.2785ℓ1,φ12(v)�φ12 ∘ω− 1
1 (2v),d1(t)� (φ12 ∘ ω− 1

1
(2B(t)))2, and 􏽢φ12(ξ1,v)�φ12tanh(x1φ12(v)/ ℓ1(k2

b1
− x2

1)).
Combing (18), (19), and (20), it yields

_V≤
x1

k
2
b1

− x
2
1

f1ξ2 + g1(ξ) − _ηd + 􏽢φ11 ξ1( 􏼁􏼠

+ 􏽢φ12 ξ1, v( 􏼁 +
1
4

x1

k
2
b1

− x
2
1

⎞⎠ +
d0

κ0
−

k

κ0
v + λ1′ + ℓ1′ + d1

−
bm

κ1
􏽥θ _􏽢θ + x1

ξ21c ξ21􏼐 􏼑

x1κ0
⎛⎝ ⎞⎠,

(21)

where |d1(t)|≤d1.
For x1 � 0, (1/κ0x1)ξ

2
1c(ξ21) in (21) is discontinuous, and

the NN cannot be directly modeled, so we introduce
a hyperbolic tangent function tan h2(x1/r) and (21) becomes

_V≤
x1

k
2
b1

− x
2
1

f1ξ2 + 􏽢g1 χ1( 􏼁( 􏼁 −
1
2

x1

k2
b1

− x2
1

⎛⎝ ⎞⎠

2

−
bm

κ1
􏽥θ _􏽢θ

+ 1 − 2 tan h
2 x1

r
􏼒 􏼓􏼒 􏼓

ξ21c0 ξ21􏼐 􏼑

κ0
−

k

κ0
v +

d0

κ0
+ λ1′ + ℓ1′ + d1,

(22)
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where r is the positive constant, and the unknown nonlinear
function 􏽢g1(X1) is expressed as

􏽢g1 X1( 􏼁 �
1
2

x1

k
2
b1

− x
2
1

− ηd +
1
4

x1

k
2
b1

− x
2
1

+ g1(ξ) + 􏽢φ11 ξ1( 􏼁

+ 􏽢φ12 ξ1, v( 􏼁 +
2x1

k
2
b1

− x
2
1
tan h

2 x1

r
􏼒 􏼓

ξ21c0 ξ21􏼐 􏼑

κ0
.

(23)

For ∀ε1 > 0, 􏽢g1(X1) is approximated to NN ET
1 H1(X1),

such that

􏽢g1 X1( 􏼁 � E
∗T
1 H1 X1( 􏼁 + δ1 X1( 􏼁, δ1 X1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ε1, (24)

where δ1(X1) is the error of this model and
X1 � [ξT

, ηd, _ηd, v]T.
Based on Lemma 3 and Lemma 5, the following in-

equality holds:
x1

k
2
b1

− x
2
1
􏽢g1 X1( 􏼁 �

x1

k
2
b1

− x
2
1

E
∗T
1 H1 X1( 􏼁 + δ1 X1( 􏼁􏼐 􏼑,

≤
x1

k
2
b1

− x
2
1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
E
∗
1

����
���� H1 X1( 􏼁
����

���� + ε1􏼐 􏼑

≤
x1

k
2
b1

− x
2
1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
E
∗
1

����
���� H1 P1( 􏼁
����

���� + ε1􏼐 􏼑

≤
1
2a

2
1

x1

k2
b1

− x2
1

⎛⎝ ⎞⎠

2

bmθ1H
T
1 P1( 􏼁H1 P1( 􏼁

+
a
2
1
2

+
1
2

x1

k2
b1

− x2
1

⎛⎝ ⎞⎠

2

+
ε21
2

,

(25)

where θ1 � (‖E∗1 ‖2/bm) and P1 � [ξ1, ηd, _ηd, v]T.
-erefore, substitute (25) into (22) to get

_V1 ≤
x1

k
2
b1

− x
2
1
f1x2 +

x1

k
2
b1

− x
2
1
f1α1

+
1
2a

2
1

x1

k2
b1

− x2
1

⎛⎝ ⎞⎠

2

bmθ1H
T
1 H1 +

d0

κ0
+ λ1′

+ 1 − 2 tan h
2 x1

r
􏼒 􏼓􏼒 􏼓

ξ21c ξ21􏼐 􏼑

κ0
−

k

κ0
v + ℓ1′ + d1

+
a
2
1
2

+
ε21
2

−
bm

κ1
􏽥θ1

_􏽢θ1,

(26)

where x2 � ξ2 − α1.
Next, using Assumption 1 and designing a virtual

control signal α1 in (12) when i � 1,
(26) becomes

_V1 ≤
x1

k
2
b1

− x
2
1
f1x2 − c1bm

x
2
1

k
2
b1

− x
2
1

+
bm

κ1
􏽥θ1

κ1
2a

2
1

x1

k2
b1

− x2
1

⎛⎝ ⎞⎠

2

H
T
1 H1 −

_􏽢θ1⎛⎝ ⎞⎠

+ 1 − 2 tan h
2 x1

r
􏼒 􏼓􏼒 􏼓

ξ21c0 ξ21􏼐 􏼑

κ0
−

k

κ0
v +

d0

κ0
+ λ1′

+ ℓ1′ + d1 +
a
2
1
2

+
ε21
2

.

(27)

-en, we choose an adaptive law _􏽢θ1 from (15), when
i � 1. _􏽢θ1 can be expressed as

_􏽢θ1 �
κ1
2a

2
1

x1

k2
b1

− x2
1

⎛⎝ ⎞⎠

2

HT
1 H1 − μ1􏽢θ1, (28)

where κ1 > 0 and μ1 > 0 are constants.
Substituting (28) into (27), it yields

_V1 ≤
x1

k
2
b1

− x
2
1
f1x2 − c1bm

x
2
1

k
2
b1

− x
2
1

+ 1 − 2 tan h
2 x1

r
􏼒 􏼓􏼒 􏼓

ξ21c0 ξ21􏼐 􏼑

κ0
−

k

κ0
r +

d0

κ0
+ λ1′ + ℓ1′

+ d1 +
a
2
1
2

+
ε21
2

+
bmμ1
κ1

􏽥θ1􏽢θ1.

(29)

Under the action of

μ1bm

κ1
􏽥θ1􏽢θ1 �

μ1bm

κ1
􏽥θ1 θ1 − 􏽥θ1􏼐 􏼑≤ −

μ1bm

2κ1
􏽥θ
2
1 +

μ1bm

2κ1
θ21, (30)

we get

_V1 ≤
x1

k
2
b1

− x
2
1
f1x2 + 1 − 2 tan h

2 x1

r
􏼒 􏼓􏼒 􏼓

ξ21c0 ξ21􏼐 􏼑

κ0
−

k

κ0
v

+
d0

κ0
+ B1 − k1

x
2
1

k
2
b1

− x
2
1

−
μ1bm

2κ1
􏽥θ
2
1,

(31)

where k1 � c1bm > 0 and B1 � (μ1bm/2κ1)θ
2
1 + λ1′+

ℓ1′ + d1 + (a2
1/2) + (ε21/2). Step i (2≤ i≤ n − 1): Let

xi � ξi − αi− 1, then one has

_xi � fiξi+1 + gi(ξ) + Οi − _αi− 1, (32)

where

_αi− 1 � 􏽘

i− 1

j�1

zαi− 1

zξj

gj(ξ) + 􏽘

i− 1

j�1

zαi− 1

zξj

Οj + Ξi− 1, (33)

Complexity 5



with

Ξi− 1 � 􏽘
i− 1

j�1

zαi− 1

zξj

fjξj+1 + 􏽘
i− 1

j�1

zαi− 1

z􏽢θj

_􏽢θj + 􏽘
i− 1

j�0

zαi− 1

zη(j)

d

η(j+1)

d +
zαi− 1

zv
_v.

(34)

-en, construct a Lyapunov function Vi as

Vi � Vi− 1 +
1
2
log

k
2
bi

k
2
bi

− x
2
i

⎛⎝ ⎞⎠ +
bm

2κi

􏽥θ
2
i , (35)

where κi > 0 is a design parameter and 􏽥θi � θi − 􏽢θi is the
error. In the set Ωxi

, (k2
bi
/(k2

bi
− x2

i )) is continuous.
-us, the derivative of Vi is

_Vi � _Vi− 1 +
xi

k
2
bi

− x
2
i

fiξi+1 + gi(x) − 􏽘
i− 1

j�1

zαi− 1

zξj

gj(ξ) + Οi − Ξi− 1⎛⎝ ⎞⎠ −
bm

κi

􏽥θi
_􏽢θi, (36)

where (Οi � Οi − 􏽐
i− 1
j�1(zαi− 1/zξj)Οj) and similar to the

method in the Step 1, we can obtain

_Vi− 1 ≤
xi− 1

k
2
bi− 1

− x
2
i− 1

fi− 1xi − 􏽘
i− 1

j�1
kj

x
2
j

k
2
bj− 1

− x
2
j− 1

− 􏽘
i− 1

j�1

μjbm

2κj

􏽥θ
2
j +

d0

κ0
+ 1 − 2 tan h

2 x1

r
􏼒 􏼓􏼒 􏼓

ξ21c0 ξ21􏼐 􏼑

κ0

−
k

κ0
v + 􏽘

i− 1

j�1
Bj,

(37)

where kj � cjbm > 0, dj(t)≤dj and (Bj � (1/2)a2
j+

(1/2)ε2j + (μjbm/2κj)θ
2
j + λj
′ + ℓj
′ + dj). (j � 1, 2, . . . , i − 1.).

By using Assumption 3 and the absolute value inequality,
it yields

xi

k
2
bi

− x
2
i

Οi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

xi

k
2
bi

− x
2
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
φi1 ξi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + 􏽘
i− 1

j�1

zαi− 1

zξj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
φj1 ξj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓⎛⎝ ⎞⎠

+
xi

k
2
bi

− x
2
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
φi2(|χ|) + 􏽘

i− 1

j�1

zαi− 1

zξj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
φj2(|χ|)⎛⎝ ⎞⎠.

(38)

Using the same method as (19) and (20), we can get

xi

k
2
bi

− x
2
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
φi1 ξi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + 􏽘
i− 1

j�1

zαi− 1

zξj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
φj1 ξj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓⎛⎝ ⎞⎠

≤
xi

k
2
bi

− x
2
i

􏽢φi1 ξi,
􏽢θi− 1, v􏼒 􏼓 + λi

′,

(39)

xi

k
2
bi

− x
2
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
φi2(|χ|) + 􏽘

i− 1

j�1

zαi− 1

zξj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
φj2(|χ|)⎛⎝ ⎞⎠

≤
1
4

xi

k2
bi

− x2
i

⎛⎝ ⎞⎠

2

1 + 􏽘
i− 1

j�1

zαi− 1

zξj

􏼠 􏼡

2
⎡⎢⎢⎣ ⎤⎥⎥⎦

+
xi

k
2
bi

− x
2
i

􏽢φi2 ξi,
􏽢θi− 1, v􏼒 􏼓 + ℓi

′ + di,

(40)

where

􏽢φi1 ξi,
􏽢θi− 1, v􏼒 􏼓 � φi1 + 􏽘

i− 1

j�1

zαi− 1

zξj

φj1
⎛⎝ ⎞⎠

× tanh xi

φi1 + 􏽐
i− 1
j�1 zαi− 1/zξj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌φj1

λi k
2
bi

− x
2
i􏼐 􏼑

⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

λi
′ � 0.2785λi, 􏽢φi2 ξi,

􏽢θi− 1, v􏼒 􏼓

� φi2 ξi,
􏽢θi− 1, v􏼒 􏼓tanh

xiφi2 ξi,
􏽢θi− 1, v􏼒 􏼓

ℓi k
2
bi

− x
2
i􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

φi2 ξi,
􏽢θi− 1, v􏼒 􏼓 � φi2 ∘ω

− 1
1 (2v) + 􏽘

i− 1

j�1

zαi− 1

zξj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
φj2 ∘ω

− 1
1 (2v),

ℓi
′ � 0.2785ℓi,

(41)

di(t) � 􏽐
i
j�1 (φj2 ∘ω− 1

1 (2D(t)))2 and di(t)≥ 0 for ∀t≥ 0.
-en, substitute (36)–(39) into (35) to get
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_Vi ≤ − 􏽘
i− 1

j�1

kjx
2
j

k
2
bj

− x
2
j

− 􏽘
i− 1

j�1

μjbm

2κj

􏽥θ
2
j −

k

κ0
v

+
xi

k
2
bi

− x
2
i

fiξi+1 + 􏽢gi χi( 􏼁( 􏼁

−
1
2

xi

k2
bi

− x2
i

⎛⎝ ⎞⎠

2

+ 1 − 2 tan h
2 x1

r
􏼒 􏼓􏼒 􏼓

ξ21c0 ξ21􏼐 􏼑

κ0

−
bm

κi

􏽥θi
_􏽢θi + 􏽘

i− 1

j�1
Bj +

d0

κ0
+ λi
′ + ℓi
′ + di,

(42)

where

􏽢gi Xi( 􏼁 �
1
2

xi

k
2
bi

− x
2
i

+
xi− 1

k
2
bi− 1

− x
2
i− 1

fi− 1

+
1
4

xi

k
2
bi

− x
2
i

1 + 􏽘
i− 1

j�1

zαj− 1

zξj

􏼠 􏼡

2
⎡⎢⎢⎣ ⎤⎥⎥⎦

− Ξi− 1 + 􏽢φi1 ξi,
􏽢θi− 1, v􏼒 􏼓 + 􏽢φi2 ξi,

􏽢θi− 1, v􏼒 􏼓

+
xi

k
2
bi

− x
2
i

gi(x) −
xi

k
2
bi

− x
2
i

􏽘

i− 1

j�1

zαi− 1

zξj

gl(ξ).

(43)

For ∀εi > 0, the unknown smooth function 􏽢gi(Xi) is
estimated by the RBF NN ET

i Hi(Xi) and we have

􏽢gi Xi( 􏼁 � E
∗T
i Hi(X) + δi Xi( 􏼁, δ Xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ εi, (44)

where Xi � [ξT
, ηT

d , 􏽢θ
T

i , v]T, ηd � [ηd, ηd
′, . . . , η(i)

d ]T and
􏽢θi � [􏽥θi, . . . , 􏽥θi]

T.
-us, it yields

xi

k
2
bi

− x
2
i

􏽢gi Xi( 􏼁 �
xi

k
2
bi

− x
2
i

E
∗T
i Hi Xi( 􏼁 + δi Xi( 􏼁􏼐 􏼑,

≤
xi

k
2
bi

− x
2
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
E
∗
i

����
���� Hi Xi( 􏼁
����

���� + εi􏼐 􏼑

≤
xi

k
2
bi

− x
2
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
E
∗
i

����
���� Hi Pi( 􏼁
����

���� + εi􏼐 􏼑

≤
bm

2a
2
i

xi

k2
bi

− x2
i

⎛⎝ ⎞⎠

2

θiH
T
i Pi( 􏼁Hi Pi( 􏼁

+
1
2
a
2
i +

1
2

xi

k2
bi

− x2
i

⎛⎝ ⎞⎠

2

+
1
2
ε2i ,

(45)

where ai is the design parameter, Pi � [ξ
T

i , ηT
d , 􏽢θ

T

i , v]T and
θi � (‖E∗i ‖2/bm).

-erefore, substitute (45) into (42) to get

_Vi ≤ − 􏽘
i− 1

j�1

kjx
2
j

k
2
bi

− x
2
j

− 􏽘
i− 1

j�1

μjbm

2κj

􏽥θ
2
j −

k

κ0
v +

xi

k
2
bi

− x
2
i

fixi+1

+
xi

k
2
bi

− x
2
i

fiαi +
bm

2a
2
i

xi

k2
bi

− x2
i

⎛⎝ ⎞⎠

2

θiH
T
i Hi

+
d0

κ0
+ λi
′ + ℓi
′ + di +

1
2
a
2
i +

1
2
ε2i + 1 − 2 tan h

2 x1

r
􏼒 􏼓􏼒 􏼓

·
ξ21c0 ξ21􏼐 􏼑

κ0
−

bm

κi

􏽥θi
_􏽢θi + 􏽘

i− 1

j�1
Bj,

(46)

where xi+1 � ξi+1 − αi.
Next, designing a virtual control signal αi in (12) and an

adaptive law 􏽢θi from (15), then, using the same method as
(27)–(31), we can get

_Vi ≤ − 􏽘
i− 1

j�1

kjx
2
j

k
2
bi

− x
2
j

− 􏽘
i− 1

j�1

μjbm

2κj

􏽥θ
2
j −

k

κ0
v +

xi

k
2
bi

− x
2
i

fixi+1

+ 1 − 2 tan h
2 x1

r
􏼒 􏼓􏼒 􏼓

ξ21c0 ξ21􏼐 􏼑

κ0
+ 􏽘

i− 1

j�1
Bj +

d0

κ0
,

(47)

where kj � cjbm > 0 and (Bj � (1/2)a2
j + (1/2)ε2j+

(μjbm/2κj)θ
2
j + λj
′ + ℓj
′ + dj). Step n: In this step, we design

the real controller u from (13), so the derivative of _xn is

_xn � fnu + gn(ξ) + Οn − _αn− 1, (48)

where _αn− 1 is specified in (33) when i � n.
-en, choose the Lyapunov function as

Vn � Vn− 1 +
1
2
log

k
2
bn

k
2
bn

− x
2
n

+
bm

2κn

􏽥θ
2
n. (49)

-en, the dynamic equation of Vn is

_Vn ≤ − 􏽘
n− 1

j�1

kjx
2
j

k
2
bj

− x
2
j

− 􏽘
n− 1

j�1

μjbm

2κj

􏽥θ
2
j −

k

κ0
v +

d0

κ0
+ 􏽘

n− 1

j�1
Bj

+
xn

k
2
bj

− x
2
n

fnu + gn(ξ) − 􏽘

n− 1

j�1

zαn− 1

zξj

gj(ξ) − Ξn− 1
⎛⎝

+
xn− 1

k
2
bn− 1

− x
2
n− 1

fn− 1
⎞⎠

+
xn

k
2
bn

− x
2
n

Οn

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
−

bm

κn

􏽥θn
_􏽢θn + 1 − 2 tan h

2 x1

r
􏼒 􏼓􏼒 􏼓

ξ21c0 ξ21􏼐 􏼑

κ0
,

(50)

where Οn � Οn − 􏽐
n− 1
j�1(zαn− 1/zξj)Οj and Ξn− 1 has been

defined in (38) with i � n.
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Using the same method as (38) to (40), we can get

xn

k
2
bn

− x
2
n

Οn

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

xn

k
2
bn

− x
2
n

􏽢φn1 ξn, 􏽢θn− 1, v􏼒 􏼓

+
xn

k
2
bn

− x
2
n

􏽢φn2 ξn, 􏽢θn− 1, v􏼒 􏼓 +
1
4

xn

k2
bn

− x2
n

⎛⎝ ⎞⎠

2

· 1 + 􏽘
n− 1

j�1

zαn− 1

zξj

􏼠 􏼡

2
⎡⎢⎢⎣ ⎤⎥⎥⎦ + λn

′ + ℓn
′ + dn(t),

(51)

where 􏽢φn1(ξn, 􏽢θn− 1, v) and 􏽢φn2(ξn, 􏽢θn− 1, v) are defined in (47)
and (48), respectively.

In view of (51), (50) is written as

_Vn ≤ − 􏽘
n− 1

j�1

kjx
2
j

k
2
bj

− x
2
j

− 􏽘
n− 1

j�1

μjbm

2κj

􏽥θ
2
j −

k

κ0
v +

d0

κ0
+ 􏽘

n− 1

j�1
Bj

+ 1 − 2 tan h
2 x1

r k
2
b1

− x
2
1􏼐 􏼑

⎛⎝ ⎞⎠⎛⎝ ⎞⎠
ξ21c0 ξ21􏼐 􏼑

κ0

−
1
2

xn

k2
bn

− x2
n

⎛⎝ ⎞⎠

2

+
xn

k
2
bn

− x
2
n

fnu + 􏽢gn Xn( 􏼁( 􏼁

−
bm

κn

􏽥θn
_􏽢θn + λn
′ + ℓn
′ + dn,

(52)

where dn(t)≤ dn and

􏽢gn Xn( 􏼁 �
1
2

xn

k
2
bn

− x
2
n

+ gn(ξ) − 􏽘
n− 1

j�1

zαn− 1

zξj

gj(ξ) − Ξn− 1

+ 􏽢φn1 ξn, 􏽢θn− 1, v􏼒 􏼓

+
1
4

xn

k2
bn

− x2
n

⎛⎝ ⎞⎠

2

1 + 􏽘
n− 1

j�1

zαn− 1

zξj

􏼠 􏼡

2
⎡⎢⎢⎣ ⎤⎥⎥⎦

+
xn− 1

k
2
bn− 1

− x
2
n− 1

fn− 1 + 􏽢φn2 ξn, 􏽢θn− 1, v􏼒 􏼓.

(53)

For ∀εn > 0, the unknown smooth function 􏽢gn(Xn) is
estimated of the RBF NN ET

n Hn(Xn) and we have

􏽢gn Xn( 􏼁 � E
∗T
n Hn Xn( 􏼁 + δn Xn( 􏼁, δ Xn( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ εn, (54)

where δi(Xn) is the estimated error and εn > 0 denotes a
given constant.

Just like (45), one has

xn

k
2
bn

− x
2
n

􏽢gn Xn( 􏼁≤
bm

2a
2
n

xn

k2
bn

− x2
n

⎛⎝ ⎞⎠

2

θnH
T
n Hn +

1
2
a
2
n

+
1
2

xn

k2
bn

− x2
n

⎛⎝ ⎞⎠

2

+
1
2
ε2n,

(55)

where the unknown constant θn � (‖E∗n ‖2/bm).
By combining (52) with (55), it yields

_Vn ≤ − 􏽘
n− 1

j�1

kjx
2
j

k
2
bj

− x
2
j

+
xn

k
2
bn

− x
2
n

fnu +
bm

2a
2
n

xn

k
2
bn

− x
2
n

θnH
T
n Hn

⎛⎝ ⎞⎠

+
1
2
a
2
n +

1
2
ε2n

+ 1 − 2 tan h
2 x1

r
􏼒 􏼓􏼒 􏼓

ξ21c0 ξ21􏼐 􏼑

κ0
−

bm

κn

􏽥θn
_􏽢θn + 􏽘

n− 1

j�1
Bj

+
d0

κ0
+ λn
′ + ℓn
′ + dn − 􏽘

n− 1

j�1

μjbm

2κj

􏽥θ
2
j −

k

κ0
v.

(56)

Now, we are ready to design the actual controller u and
adaptive law _􏽢θn, which are given as

u � − cnxn −
1
2a

2
n

xn

k
2
bn

− x
2
n

􏽢θnH
T
n Xn( 􏼁Hn Xn( 􏼁,

_􏽢θn �
κn

2a
2
n

xn

k2
bn

− x2
n

⎛⎝ ⎞⎠

2

H
T
n Hn − μn

􏽢θn,

(57)

where the positive parameters are cn, an, κn, μn.
-en, following the same derivations as those used in

Step 1, one has

_Vn ≤ − 􏽘
n

j�1

kjx
2
j

k
2
bj

− x
2
j

− 􏽘
n

j�1

μjbm

2κj

􏽥θ
2
j −

k

κ0
v

+ 1 − 2 tan h
2 x1

r
􏼒 􏼓􏼒 􏼓

ξ21c0 ξ21􏼐 􏼑

κ0
+ 􏽘

n

j�1
Bj +

d0

κ0
,

(58)

where kj � cjbm > 0 and Bj � (1/2)a2
j + (1/2)

ε2j + (μjbm/2κj)θ
2
j + λj
′ + ℓj
′ + dj, (j � 1, 2, . . . , n.).

So this backstepping control design process is complete.
-e main result is summarized in the next section.

4. Stability Analysis

Theorem 1. Consider the closed-loop system with Assump-
tions 1– 4, which is composed of plant (1), the virtual control
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inputs αi (12), real controller u (13), and adaptive laws (15),
where RBF NN ET

i Hi(Xi) is employed to estimate the un-
certain nonlinear function 􏽢gi(Xi) with bounded errors
δi(1≤ i≤ n). Suppose that the design parameters ci, ai and μi

are appropriately chosen to satisfy kci+1
> αi + kbi+1

with
αi � max|αi(xi,

􏽢θj, yd, y
(i)
d , j � 1, . . . , i)|, then the final

closed-loop system is SGUUB, and the tracking error con-
verges to a small field around the origin with the partial-state
constraints being valid.

Proof. From (17), (35), and (49), we gain

Vn �
1
2

􏽘

n

j�1
log

k
2
bj

k
2
bj

− x
2
j

⎛⎝ ⎞⎠ +
1
k0

v +
1
2

􏽘

n

j�1

bm

κj

􏽥θ
2
j . (59)

It is a fact that log(k2
bj
/(k2

bj
− x2

j))< (x2
j/(k2

bj
− x2

j)) in
the interval |xj|< kbj

. -en, (58) becomes

Vn ≤
1
2

􏽘

n

j�1

x
2
j

k
2
bj

− x
2
j

+
1
k0

v +
1
2

􏽘

n

j�1

bm

κj

􏽥θ
2
j . (60)

Using (60), inequality (58) can be represented as

_Vn ≤ − r0V + μ0 + 1 − 2 tan h
2 x1

r
􏼒 􏼓􏼒 􏼓

ξ21c ξ21􏼐 􏼑

κ0
, (61)

where r0 � min 2cibm, μi, k: 1≤ i≤ n􏽮 􏽯 and μ0 � 􏽐
n
j�1

Bj + (μ0/κ0).
Obviously, we know from (61) that the first item on the right

of the inequation must be negative, the second item is a positive
constant, and the positive or negative of the last item depends on
the size ofx1. Sowe are going to consider the closed-loop system
in two different cases, and the results are as follows. □

Case 1. x1 ∈ Ωx1
� x1||x1|< 0.8814r􏼈 􏼉, r is a positive con-

stant in (22). Because of the coordinate transformation (14),
we can see that ξ1 is bounded because x1 is constructed to be
bounded, and the reference signal ηd is also bounded. From
(61), it gets

_Vn ≤ − r0V + b0, (62)

where b0 � μ0 + k0.
Besides, (61) satisfies

0≤Vn ≤ V(0) −
b0
r0

􏼠 􏼡e
− r0t

+
b0
r0

. (63)

Case 2. x1 ∉ Ωx1
. By applying Lemma 4 and

(ξ21c0(ξ
2
1)/κ0)≥ 0, we have

1 − 2 tan h
2 x1

r
􏼒 􏼓􏼒 􏼓

ξ21c ξ21􏼐 􏼑

κ0
≤ 0. (64)

So, (61) is reduced to
_Vn ≤ − r0V + μ0. (65)

-en, using (65) we can get

0≤Vn(t)≤ V(0) −
μ0
r0

􏼠 􏼡e
− r0t

+
μ0
r0

. (66)

Next, from (63) and (66), we have

0≤Vn(t)≤V(0) +
b0

r0
, t> 0. (67)

-en, it can be concluded from the above inequality and
(59) that logk2bj

/(k2
bj

− x2
j) and 􏽥θj are bounded. Since θj is

bounded and 􏽢θj � 􏽥θj + θj, 􏽢θj must be bounded.
From ξ1 � x1 + ηd and |ηd|≤ d, we can obtain

|ξ1|≤ |x1| + |ηd|< kb1
+ d. Let kb1

� kc1
− d and then,

|ξ1|< kc1
. Apparently, α1(·) is a function of 􏽢θ1, ξ1, x1 and _ηd.

Because of the boundedness of 􏽢θ1, ξ1, x1 and _ηd, α1(·) is
bounded and satisfies |α1(·)|≤ α1. -en,
|ξ2|≤ |α1| + |x1|≤ α1 + kb2

.-is implies that |ξ2|< kc2
if

kb2
� kc2

− α1. Similarly, it can in turn be proven that
|ξi+1|< kci+1

, i � 1, . . . , n − 1 as long as kbi+1
� kci+1

− αi. From
the definition in (13), we can see that u is a function of 􏽢θn, ξn

and ηd, _ηd, . . . , η(n)
d . Owing to the boundedness of 􏽢θn, ξn and

ηd, _ηd, . . . , η(n)
d , the controller u is bounded.

In both cases, we can conclude that all the reference
signals of the closed-loop system are bounded. In addition,
combining (63) and (66), we can see that the tracking error
finally converges to a small region of the origin, and the
system partial states are not violated.

From (67), it is easy to obtain

log
k
2
b1

k
2
b1

− x
2
1

⎛⎝ ⎞⎠≤ 2 V(0) −
μ0
r0

􏼠 􏼡e
− r0t

+
2μ0
r0

. (68)

We take exponentials on both sides of the above in-
equality; it has

k
2
b1

k
2
b1

− x
2
1
≤ e

2 V(0)− μ0/r0( )( )e− r0t+ 2μ0/r0( ). (69)

It is straightforward to get (|x1|≤ kb1������������������������
1 − e− 2(V(0)− (μ0/r0))e− r0t− (2μ0/r0)

√
� Δ). If Vn(0) � μ0/r0, then

it holds |x1|≤ kb1

����������
1 − e(− 2μ0/r0)

√
� Δ. If Vn(0)≠ (μ0/r0), it

can be concluded that, given any Δ> kb1

����������
1 − e(− 2μ0/r0)

√
, there

exists T such that for any t>T, it has |x1|≤Δ. As t⟶∞,
|x1|≤ kb1

����������
1 − e(− 2μ0/r0)

√
. -is implies that |x1|≤ kb

1

����������
1 − e(− 2μ0/r0)

√
. We can see that x1 can be made arbitrarily

small by selecting the design parameters appropriately.
-is completes the proof.

5. Simulation Example

Example 1. In order to test the applicability of the proposed
control method, the following one-link manipulator with
motor dynamics and disturbances is considered:

D€q + B _q + N sin(q) � τ + τd, Mm _τ + Hmτ � u − Km _q,

(70)
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where q, _q, and €q are the link angular position, velocity, and
acceleration. τ is the torque, τd � q2 cos( _qτ) denotes the
current disturbance, and u is the control input representing
the voltage. Take these parameters as
D � 1 kgm2, B � 1Nm, Mm � 0.1H, Hm � 1.0Ω, and
Km � 0.2(Nm/A). Moreover, the sketch of the one-link
manipulator is given in Figure 1.

Let ξ1 � q, ξ2 � _q, and ξ3 � τ. -us, (70) can be trans-
lated into a nonlinear system as follows:

_χ � − 1.25χ + 0.25ξ21 + 0.125,

_ξ1 � 3ξ2 + g1(ξ) + Ο1,
_ξ2 � 1.2ξ3 + g2(ξ) + Ο2,
_ξ3 � 8u + g3(ξ) + Ο3,

η � ξ1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(71)

where g1(·) � 2 cos2(ξ1) − 1.75, g2(·) � ξ1 ξ2 − 2 sin(ξ1),
g3(·) � − 6.25 ξ3,
Ο1 � χ sin(ξ2)Ο2 � 0.2χξ1 cos(ξ1),Ο3 � − 2χ cos(ξ1ξ2).

-e aim is to impel the output η of the system (70) to
follow the reference trajectory ηd � 0.5 sin(1.5t). We can
easily check that Assumptions 1– 3 hold. Moreover, to prove
that Assumption 4 is correct, Vχ(χ) � 2χ2 is chosen, then

q
u

Actuator N

Link

Figure 1: Sketch of one-link manipulator.
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Figure 2: -e output η and reference signal ηd.
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Figure 3: -e tracking error η − ηd.
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Figure 4: -e unmodeled dynamics χ and υ.
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Figure 5: -e state variable ξ2.
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_Vχ(χ) � 4χ − 1.25χ + 0.25ξ21 + 0.25􏼐 􏼑,

≤ − 5χ2 +
1
4τ
χ2 + τξ41 +

τ
4

+
χ2

τ
,

(72)

When τ � 2.5, we have

_Vχ(χ)≤ − 4.5χ2 + 2.5ξ21 + 0.625. (73)

Let us select v1(|χ|) � 1.5χ2, v2(|χ|) � 4χ2, k0 � 1.5, d0 �

0.625, and c(|ξ1|) � 2.5ξ41. When k � 1 ∈ (0, k0), a dy-
namical signal is given as

_v � − v + 2.5ξ41 + 0.625. (74)

-en, the virtual control input α1, α2, and real controller
u are expressed as

α1 � − c1x1 −
1
2a

2
1

x1

k
2
b1

− x
2
1􏼐 􏼑

􏽢θ1H
T
1 H1,

α2 � − c2x2 −
1
2a

2
2

x2

k
2
b2

− x
2
2􏼐 􏼑

􏽢θ2H
T
2 H2,

u � − c3x3 −
1
2a

2
3

x3

k
2
b3

− x
2
3􏼐 􏼑

􏽢θ3H
T
3 H3,

(75)

and the adaptive laws are expressed as

_􏽢θi �
κi

2a
2
i

xi

k2
bi

− x2
i

⎛⎝ ⎞⎠

2

H
T
i Hi − μi

􏽢θi, i � 1, 2, 3, (76)

with x1 � ξ1 − ηd, x2 � ξ2 − α1 and x3 � ξ3 − α2.
-e design parameters are chosen as

[ξ1(0),ξ2(0),ξ3(0)]T � [0.0,0.0,0.0]T,[􏽢θ1(0),􏽢θ2(0),􏽢θ3(0)]T

� [0.0,0.0,0.0]T, c1 � 10, c2 � 15, c3 � 20,a1 � 1,a2 � 1,

a3 � 15,μ1 � 2,μ2 � 3, μ3 � 5,κ1 � 10,κ2 � 15,κ3 � 20, respec-
tively. -e states are constrained in.
|ξ1|<0.6, |ξ2|<0.8, |ξ3|<2.5.

Figure 2 shows the tracking result of the output tra-
jectory η and the reference signal ηd. Figure 3 shows the
tracking error of the closed-loop system, which obviously
achieves a good tracking performance. -e response of the
unmodeled dynamics χ and v is shown in Figure 4. Figures 5
and 6 show the state variables ξ2 and ξ3, which show that the
system states keep within their bounds. -e performance of
the adaptive laws is shown in Figure 7. All simulation results
show that the proposed control algorithm is effective and
applicable.

6. Conclusions

-e paper has investigated the problem of adaptive tracking
control for a class of nonstrict-feedback nonlinear systems
with partial-state-constraints and unmodeled dynamics. An
adaptive neural tracking control method has been presented
by using the adaptive backstepping technique. Based on the
inherent properties of Gaussian functions, and the universal
approximation ability of RBFNN, a newmethod is proposed
to deal with the nonstrict-feedback form of the considered
nonlinear system. -e proposed control algorithm can
guarantee the boundedness of all the resulting closed-loop
signals, the tracking error to converge to a small neigh-
borhood of the origin, and the corresponding state con-
straints are not violated. Finally, the effectiveness and
practicability of the obtained result are shown by a practical
simulation example.
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