Research Article

Partial-State-Constrained Adaptive Intelligent Tracking Control of Nonlinear Nonstrict-Feedback Systems with Unmodeled Dynamics and Its Application

Yuzhuo Zhao,1 Ben Niu,1 Xiaoli Jiang,1 Ping Zhao,1 Huanqing Wang,1 and Dong Yang3

1School of Mathematics and Physics, Bohai University, Jinzhou 121013, China
2School of Information Science and Engineering, Shangdong Normal University, Jinan 250014, China
3School of Engineering, Qufu Normal University, Rizhao 276826, China

Correspondence should be addressed to Ben Niu; niubensdnu@163.com

Received 8 August 2020; Revised 24 September 2020; Accepted 15 October 2020; Published 31 October 2020

Academic Editor: Shubo Wang

Copyright ©2020 Yuzhuo Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, an adaptive intelligent control scheme is presented to investigate the problem of adaptive tracking control for a class of nonstrict-feedback nonlinear systems with constrained states and unmodeled dynamics. By approximating the unknown nonlinear uncertainties, utilizing Barrier Lyapunov functions (BLFs), and designing a dynamic signal to deal with the constrained states and the unmodeled dynamics, respectively, an adaptive neural network (NN) controller is developed in the frame of the backstepping design. In order to simplify the design process, the nonstrict-feedback form is treated by using the special properties of Gaussian functions. The proposed adaptive control scheme ensures that all variables involved in the closed-loop system are bounded, the corresponding state constraints are not violated. Meanwhile, the tracking error converges to a small neighborhood of the origin. In the end, the proposed intelligent design algorithm is applied to one-link manipulator to demonstrate the effectiveness of the obtained method.

1. Introduction

Over the past few decades, nonlinear control systems, which can be employed to model numerous applications such as biological systems, chemical processes, and aerospace vehicles, have aroused a wide range of concerns among researchers. In this area, adaptive control of nonlinear systems with uncertainties is a very active research subject. The backstepping method, as we all know, has been proposed in [1] as an effective method to solve the adaptive control problem of nonlinear strict-feedback systems with mismatched uncertainties. With the rapid development of adaptive control theory, the backstepping method has been widely used in the control design of different complex nonlinear systems such as interconnected large-scale systems, MIMO systems, and unmodeled dynamic systems [2–4].

On the other hand, unmodeled dynamics are common phenomenon in practical applications, which are mainly caused by modeling errors and external disturbances. The existence of unmodeled dynamics usually degrades control performance or leads to the instability for a control system, and thus dealing with unmodeled dynamics has drawn considerable attention from many scholars in the control field. In recent years, adaptive control of uncertain nonlinear systems with unmodeled dynamics has become a research hot spot, and many related achievements have been reported [5–9]. To just name a few, a robust controller is designed in [5] for a class of nonlinear systems with unmodeled dynamics by using the method of adaptive backstepping and introducing a dynamic signal; and an adaptive output feedback controller is designed in [6] for a class of stochastic nonlinear systems with output unmodeled dynamics by using a stochastic small-gain theorem. Obviously, all the
above-mentioned references are nonlinear strict-feedback systems with unmodeled dynamics, and there are few results on nonlinear nonstrict-feedback systems with unmodeled dynamics at present. Therefore, how to deal with the nonstrict-feedback form is one of the hardest issues in the research field of nonlinear systems.

It should be pointed out that none of the above related adaptive results can be used to deal with completely unknown nonlinearities of control systems. To solve this problem, some elegant intelligent adaptive control algorithms are proposed by using NN or fuzzy logic systems [10–32]. Up to now, great progress has been made in the area of adaptive intelligent control for uncertain nonlinear systems with unmodeled dynamics, and a large number of valuable results are presented in [33–44]. For example, several adaptive intelligent control schemes are proposed in [33, 44] for several classes of nonlinear systems made up of unmodeled dynamics and strict-feedback form by using fuzzy logic and NN compensators, respectively. A suitable learning controller is proposed in [39] to overcome the disadvantages caused by parameter uncertainties and unmodeled dynamics for a class of multi-input and multi-output nonlinear systems. Meanwhile, the corresponding results have been obtained for interconnected nonlinear systems with unmodeled dynamics in [40]. However, the problem of constraints inevitably appears in various systems. The research in the field of handling complicated constraints has been paid more and more attention by researchers, and by utilizing the BLFs or the nonlinear mappings (NMs) to deal with state constraints or output constraints, a series of significant results have been obtained [45–48]. However, there exist a few intelligent control algorithms for nonstrict-feedback nonlinear systems with unmodeled dynamics to deal with the state constraints until now.

Motivated by the above research situation, this paper proposes an adaptive tracking control strategy for a class of nonstrict-feedback nonlinear systems with unmodeled dynamics and state constraints. The unknown functions are estimated by NN, then a dynamic signal is designed to handle the dynamic uncertainties to ensure that the considered system can be controlled effectively. Meanwhile, by using the BLFs to handle the state constraints, the proposed adaptive control approach can guarantee the boundedness of all the signals in the closed-loop system, and the tracking error converges to a small neighborhood of the origin. The main contributions of the proposed method are summarized as follows: (1) Compared with the variable partition technique in [36], this paper uses the essential property of Gaussian functions to deal with the nonstrict-feedback form, so that the controller design process is relatively simpler. (2) Barrier functions are applied in the design process to constrain state variables into the specified regions, despite the presence of unmodeled dynamics at the front end of the studied system. (3) This paper adopts a dynamic signal to handle the dynamic uncertainties to ensure the considered system can be controlled effectively so that the conservative assumption about unmodeled dynamics in [5] is not used.

2. Problem Formulation and Preliminaries

2.1. Problem Formulation. In this paper, we study a class of nonstrict-feedback nonlinear systems with unmodeled dynamics as follows:

\[
\begin{align*}
\dot{x} &= p(x, \xi), \\
\dot{\xi}_i &= f_i(\xi, \eta) + g_i(\xi) + O_i(\xi, \chi, t), \\
\eta &= \xi_1,
\end{align*}
\]

where \(x = [\xi_1, \xi_2, \ldots, \xi_n]^T\) represents the state vector, and \(u\) and \(\eta\) depict the system input and output, severally; partial states are constrained in the compact sets; i.e., \(\xi\) is required to remain in the sets \(|\xi_i| < K_i\) with \(K_i\) being positive constants, \(i = 1, 2, \ldots, n\); \(\chi \in R^n\) are the unmodeled dynamics, \(O_i(\cdot)\), \(i = 1, 2, \ldots, n\) represent nonlinear disturbances, and \(g_i(\cdot)\) and \(f_i(\cdot)\), \(i = 1, 2, \ldots, n\) are smooth uncertain functions with \(g_i(0) = 0\). It is assumed that \(O_i(\cdot)\) and \(p(\cdot)\) are indeterminate continuous Lipschitz functions.

Remark 1. Plant (1) has a nonstrict-feedback structure, where the diffusion terms \(g_i(\cdot)\), \(i = 1, 2, \ldots, n\) are the functions of \(x = [\xi_1, \xi_2, \ldots, \xi_n]^T\), which is different from the strict-feedback structure in [49] and the semistrict-feedback structure in [50], because the functions \(g_i(\cdot)\) are relevant to all states of \(x\).

We will establish an adaptive intelligent controller for system (1) so that the output \(\eta\) can track a given trajectory \(\eta_d\), the corresponding state constraints are not violated, and all the reference signals of the closed-loop system are bounded. Therefore, we give the following assumptions.

Assumption 1 (see [51]). For system (1), there is an unknown constant \(b_m > 0\) satisfying

\[
0 < b_m \leq |f_i(\xi)| < \infty.
\]

Assumption 2 (see [51]). \(\eta_d(t)\) is a reference signal, its up to nth-order are bounded and smooth. There exists a positive constant \(d\) such that \(|\eta_d(t)| \leq d < k_c\).

Assumption 3 (see [5]). For \(i = 1, \ldots, n\) the function \(O_i(\cdot)\) in (1) satisfies the following inequalities:

\[
|O_i(\xi, \chi, t)| \leq \varphi_{i1}(|\xi|) + \varphi_{i2}(|\chi|),
\]

where \(\varphi_{i1}(\cdot)\) and \(\varphi_{i2}(\cdot)\) are unknown nonnegative increasing smooth functions with \(\varphi_{i2}(0) = 0\).

Assumption 4 (see [5]). For \(\dot{x} = p(x, \xi)\) in (1), there is a Lyapunov function \(V(\chi)\) such that
Complexity

\[\omega_1(|x|) \leq V(x) \leq \omega_2(|x|), \quad (4) \]

\[\frac{\partial V(x)}{\partial x} \cdot p(x, \xi) \leq -k_0 V(x) + \gamma(|\xi|) + d_o, \quad (5) \]

where \((\omega_1, \omega_2)\) and \(\gamma\) represent class \(K_{\infty}\)-functions, and \(k_0 > 0\) and \(d_o > 0\) are known scalars.

Remark 2. Assumption 1 implies that the unknown functions \(f^k(x)\) are strictly positive or negative. Further, let us assume that \(0 < b_m \leq |f_i(\xi)| < \infty\) for generality. Assumption 2 is required in many literatures on the tracking control problem such as [36, 40], since we need to figure out its time derivatives up to \(n\) in the design function. This follows the similar assumption in [5], where \(\phi_{i0}(\cdot)\) and \(\phi_{i\alpha}(\cdot)\) are assumed to be available. However, Assumption 3 does not need this restriction and is thus more relaxed. Assumption 4 is the key condition to ensure the stability of the unmodeled dynamics in (1).

2.2. Preliminaries

To facilitate the design and analysis, the following Lemmas are given.

Lemma 1 (see [51]). For \(\dot{\chi} = p(x, \xi)\), there is a Lyapunov function \(V\) that satisfies (4) and (5), then for any values \(k \in (0, k_0)\), functions \(\gamma(\xi) = \gamma(|\xi|)\) and initial value \(\chi_0 = \chi_0(0)\), there is a limited time \(T_0 = T_0(k, v_0, \chi_0)\), \(B(t) \geq 0\) for all \(t > 0\) and a signal is represented by

\[\dot{v} = -kv + \gamma(|\xi|) + d_o, \quad v(0) = v_0, \quad (6) \]

such that \(B(t) = 0\) for all \(t \geq T_0\)

\[V(\chi(t)) \leq v(t) + B(t). \quad (7) \]

The solutions are specified for \(vt > 0\). We can select \(\gamma(v) = \gamma(v), \gamma(v) > 0\) is a smooth function. Now, \(v(0)\) is a nonnegative smooth function.

Lemma 2 (see [52]). For any \(\xi \in R\) and \(\omega_1 > 0\), the following relation holds: \(0 \leq |\xi| - \xi \tan \theta(\xi \varepsilon) \leq 2\omega_0, \quad \varepsilon = 0.2785\).

Lemma 3 (see [53]). For any \((x, y) \in R^n\), it can be obtained that \((xy \leq (p^T/p)|x|^2 + (1/q^T)|y|^2)\) where \(e > 0, p > 1, q > 1,\)

\[(p - 1)(q - 1) = 1. \]

Lemma 4 (see [54]). Assume that \(\Omega_{\xi_i}\) is defined as \(\Omega_{\xi_i} := \{x_i|\|x_i\| < 0.88141\virg\}\), and the inequality \([1 - \tan h^2(\chi_i/r)] \leq 0\) is satisfied for any \(x_i \notin \Omega_{\xi_i}\).

In this paper, the smooth function \(g(X)\): \(R^n \rightarrow R\) is estimated by radial basis functions (RBF) NN \(g_{mn}(X)\). The RBF NN can be written as

\[g_{mn}(X) = E^T H(X), \quad (9) \]

where \(E = [e_1, \ldots, e_l] \in R^l\) with \(l > 1\) is weight vector, \(X \in R^n\) is input vector, and \(H(X) = [h_1(x_1), \ldots, h_l(x_l)]\) is the basis function vector of the Gaussian function. \(h_i(X)\) can be expressed as

\[h_i(X) = \exp \left[\frac{(X - y_i)^T (X - y_i)}{2\sigma^2} \right], \quad i = 1, \ldots, l, \quad (10) \]

where \(y_i = [y_{i1}, \ldots, y_{id}]\) is the center of the receptive field, and \(y\) is the width of the Gaussian function. The RBF NN (9) with sufficiently large number \(l\) can approximate any continuous function \(g(X)\) over a compact set \(\Omega_X \in R^n\) to arbitrarily accuracy \(\varepsilon > 0\) as

\[g(X) = E^T H(X) + \delta(X), \quad \forall X \in \Omega_X \in R^n, \quad (11) \]

where \(E^*\) is the desired weight vector and chosen as \(E^* = \arg \min_{E \in R^n} \{\sup_{X \in \Omega_X \in R^n} |g(X) - E^T H(X)|\}\) and \(\delta(X)\) denotes the approximation error for \(\delta(X) < \varepsilon\).

Lemma 5 (see [54]). Let \(\tilde{\xi}_q = [\xi_1, \ldots, \xi_q]^T\) and \(H(\tilde{\xi}_q) = [H_1(\tilde{\xi}_q), \ldots, H_q(\tilde{\xi}_q)]^T\) be the basis function vector of the RBF NN. Now, for \((\forall k, q \in N^+\) and \(k \leq q\), we have \(\|H(\tilde{\xi}_q)\|^2 \leq \|H(\tilde{\xi}_q)\|^2\).

3. Main Result

For system (1), this part gives the concrete design process of the controller through the backstepping algorithm. The adaptive neural backstepping design requires \(n\) steps. The virtual control input in step \(i\) is designed as \(a_i(i = 1, \ldots, n - 1)\), and the real controller \(u\) is added in step \(n\) to form a stabilized closed-loop system. They are represented separately as

\[a_i = -c_i x_i - \frac{1}{2a_i} x_i \left(\frac{k}{k^H - k^T} \right) \theta_i H_i^T(X_i) H_i(X_i) \quad 1 \leq i \leq n - 1, \quad (12) \]

\[u = -c_n x_n - \frac{1}{2a_n} x_n \left(\frac{k}{k^H - k^T} \right) \theta_n H_n^T(X_n) H_n(X_n), \quad (13) \]

where the design parameters are \(c_i > 0\) and \(a_i > 0\), \(X_i = [\xi_i, \theta_i, \eta_{d}(i)]^T\) with \(\xi_i = [\xi_i, \xi_2, \ldots, \xi_i]^T, \theta_i = [\theta_1, \theta_2, \ldots, \theta_i]^T, \eta_{d}(i) = [\eta_{d1}, \eta_{d2}, \ldots, \eta_{d(i)}]^T\) with \(\eta_{d(i)} = (d^T \eta_{d(i-1)}),\) and the uncertain parameter \(\theta_i\) is estimated to be \(\hat{\theta}_i\). The transformations of coordinates are selected as follows:

\[x_i = e_i - e_{i-1}, \quad i = 1, 2, \ldots, n, \quad (14) \]

where \(e_0 = e_{d_i}(t)\).

The adaptation laws are expressed as

\[\dot{\theta}_i = \frac{\kappa_i}{2a_i} \left(\frac{x_i}{k^H - k^T} \right)^2 \theta_i H_i^T(X_i) H_i(X_i) - \mu \theta_i, \quad i = 1, 2, \ldots, n, \quad (15) \]
where the design parameters are $\kappa_i > 0$ and $\mu_i > 0$.

For clarity, let us abbreviate the functions $f_i(\xi_i)$ to f_i and set $C_i(\xi, x, t) = O$ and $H_i(x_i) = H_i$.

Now, let us start the design process.

Step 1. Based on $(x_1 - \xi_1 - \eta_d)$, one has

$$
\dot{x}_1 = f_1 \xi_2 + g_1(\xi) + O_1 - \eta_d.
$$

(16)

Next, choose the following Lyapunov function:

$$
V_1 = \frac{1}{2} \log \left(\frac{k_{b_1}^2}{k_{b_1}^2 - x_1^2} \right) + \frac{1}{\kappa_0} v + \frac{b_{m-2}}{2k_1} \phi_{11}(\xi_1)
$$

where $\log(\theta)$ stands for the natural logarithm of θ, $\tilde{\theta}_1 = \theta_1 - \tilde{\theta}_1$ denotes the parameter error, and k_0 and k_1 are positive constants. In the set $\Omega_{x_1} V_1$ is continuous.

Thus, according to Assumption 2, the derivative of V_1 along with (8) leads to

$$
\dot{V}_1 \leq \frac{x_1}{k_{b_1}^2 - x_1^2} \left(f_1 \xi_2 + g_1(\xi) - \tilde{\theta}_d \right) + \frac{1}{\kappa_0} \phi_{11}(\xi_1)
$$

$$
+ \frac{x_1}{k_{b_1}^2 - x_1^2} \phi_{12}(\xi_1) \left(|\xi_1| \right) + \frac{1}{\kappa_0} \phi_{11}(\xi_1) + \frac{b_{m-2}}{2k_1} \phi_{11}(\xi_1) + \frac{d_1}{\kappa_0}
$$

$$
- \frac{\bar{K}}{\kappa_0} v - \frac{b_{m-2}}{k_1} \dot{\bar{\theta}}_1.
$$

(18)

Now, we conduct $|x_1/(k_{b_1}^2 - x_1^2)|\phi_{11}(\xi_1)$ and $|x_1/(k_{b_1}^2 - x_1^2)|\phi_{12}(\xi_1)$ in (18). According to Lemma 2, the following inequality holds:

$$
\frac{x_1}{k_{b_1}^2 - x_1^2} \phi_{11}(\xi_1) \leq \lambda_1' + \frac{x_1}{k_{b_1}^2 - x_1^2} \phi_{11}(\xi_1) \tan h_0 + \frac{x_1}{k_{b_1}^2 - x_1^2} \phi_{11}(\xi_1) \tan h
$$

$$
+ \left(\frac{x_1}{k_{b_1}^2 - x_1^2} \right) \phi_{12}(\xi_1)
$$

= \frac{x_1}{k_{b_1}^2 - x_1^2} \phi_{11}(\xi_1) + \lambda_1',
$$

where $\lambda_1' = 0.2785 \lambda_1$ and $\phi_{11}(\xi_1) = \phi_{11}(\xi_1) \tan h_0 + \phi_{11}(\xi_1) \tan h$ in (19).

The same method in [32] is repeated

$$
\frac{x_1}{k_{b_1}^2 - x_1^2} \phi_{12}(\xi_1) \leq \frac{x_1}{k_{b_1}^2 - x_1^2} \frac{1}{4} \left(\frac{x_1}{k_{b_1}^2 - x_1^2} \right) + d_1(t)
$$

$$
+ \left(\frac{x_1}{k_{b_1}^2 - x_1^2} \right) \phi_{12}(\xi_1) \tan h
$$

= \frac{x_1}{k_{b_1}^2 - x_1^2} \phi_{12}(\xi_1) + \lambda'_1 + \lambda'_1 + d_1(t),
$$

where $\lambda'_1 = 0.2785 \lambda_1$ and $\phi_{12}(\xi_1) = \phi_{12}(\xi_1) \tan h_0 + \phi_{12}(\xi_1) \tan h$ in (20).

Combing (18), (19), and (20), it yields

$$
\dot{V} \leq \frac{x_1}{k_{b_1}^2 - x_1^2} \left(f_1 \xi_2 + g_1(\xi) - \tilde{\theta}_d + \phi_{11}(\xi_1) + \phi_{12}(\xi_1) \right)
$$

$$
+ \phi_{12}(\xi_1) + \frac{1}{k_{b_1}^2 - x_1^2} \frac{x_1}{4} \frac{d_0}{\kappa_0} + \frac{\bar{K}}{\kappa_0} v + \lambda_1' + \lambda'_1 + d_1
$$

$$
- \frac{b_{m-2}}{k_1} \dot{\bar{\theta}}_1 + x_1 \left(\frac{\xi_1}{\kappa_1} \gamma_{10}(\xi_1) \right),
$$

(21)

where $|d_1(t)| \leq d_1$.

For $x_1 = 0$, $(1/\kappa_0) \xi_1' \gamma_{10}(\xi_1)$ in (21) is discontinuous, and the NN cannot be directly modeled, so we introduce a hyperbolic tangent function $\tan h(x_1/\kappa)$ and (21) becomes

$$
\dot{V} \leq \frac{x_1}{k_{b_1}^2 - x_1^2} \left(f_1 \xi_2 + g_1(\xi) \right) - \frac{1}{2} \frac{x_1}{k_{b_1}^2 - x_1^2} \frac{b_{m-2}}{\kappa_1} \dot{\bar{\theta}}_1
$$

$$
+ \left(1 - 2 \tan h \left(\frac{x_1}{\kappa} \right) \right) \frac{\xi_1}{\kappa_0} \gamma_{10}(\xi_1) - \frac{\bar{K}}{\kappa_0} v + \frac{d_0}{\kappa_0} + \lambda_1' + \lambda'_1 + d_1,
$$

(22)
where \(r \) is the positive constant, and the unknown nonlinear function \(\delta_1(X_1) \) is expressed as
\[
\delta_1(X_1) = \frac{1}{2} \frac{x_1}{k_b^2 - x_1^2} - \eta_d + \frac{1}{4} \frac{x_1}{k_b^2 - x_1} + g_l(\xi) + \hat{\delta}_1(\xi_1)
\]
\[+ \hat{\delta}_1(\xi_1, v) + \frac{2x_1}{k_b^2 - x_1^2} \tan \left(\frac{x_1}{r} \right) \frac{\xi_1^2 y_0(\xi_1)}{k_0}. \] \((23) \)

For \(\forall \varepsilon > 0, \delta_1(X_1) \) is approximated to NN \(E_1^T H_1(X_1) \), such that
\[
\delta_1(X_1) = E_1^T H_1(X_1) + \delta_1(X_1), \quad |\delta_1(X_1)| \leq \varepsilon_1. \] \((24) \)

where \(\delta_1(X_1) \) is the error of this model and \(X_1 = [\xi^T, \eta_d, \eta_d, \eta, v]^T \).

Based on Lemma 3 and Lemma 5, the following inequality holds:
\[
\frac{x_1}{k_b^2 - x_1^2} \delta_1(X_1) = \frac{x_1}{k_b^2 - x_1} \left(E_1^T H_1(X_1) + \delta_1(X_1) \right)
\leq \frac{x_1}{k_b^2 - x_1} \left(\|E_1^T\| H_1(X_1) + \varepsilon_1 \right)
\leq \frac{x_1}{k_b^2 - x_1} \left(\|E_1^T\| H_1(P_1) + \varepsilon_1 \right)
\leq \frac{1}{2d_1} \left(\frac{x_1}{k_b^2 - x_1} \right)^2 b_m \theta_1 H_1^T(P_1) H_1(P_1)
+ \frac{a_1^2}{2} + \frac{1}{2} \left(\frac{x_1}{k_b^2 - x_1} \right)^2 + \varepsilon_1^2 \] \((25) \)

where \(\theta_1 = (\|E_1^T\|/b_m) \) and \(P_1 = [\xi_1, \eta_d, \eta_d, \eta, v]^T \).

Therefore, substitute (25) into (22) to get
\[
\hat{\delta}_1 = \frac{k_1}{2a_1} \left(\frac{x_1}{k_b^2 - x_1} \right)^2 b_m \theta_1 H_1^T(P_1) H_1(P_1)
+ \frac{a_1^2}{2} + \frac{1}{2} \left(\frac{x_1}{k_b^2 - x_1} \right)^2 + \varepsilon_1^2 \]
\[
\hat{\delta}_1 = \frac{k_1}{2a_1} \left(\frac{x_1}{k_b^2 - x_1} \right)^2 b_m \theta_1 \] \(\hat{\delta}_1 \) \((28) \)

where \(\theta_1 = (\|E_1^T\|/b_m) \) and \(P_1 = [\xi_1, \eta_d, \eta_d, \eta, v]^T \).

Then, we choose an adaptive law \(\hat{\theta}_1 \) from (15), when \(i = 1 \).

Next, using Assumption 1 and designing a virtual control signal \(\alpha_1 \) in (12) when \(i = 1 \), (26) becomes
\[
\hat{V}_1 \leq \frac{x_1}{k_b^2 - x_1} f_1 x_2 + \frac{x_1^2}{k_b^2 - x_1^2} \xi_1^2 \alpha_1
+ \frac{1}{2d_1} \left(\frac{x_1}{k_b^2 - x_1} \right)^2 b_m \theta_1 H_1^T H_1 + \frac{d_0}{k_0} + \lambda_1^t
+ \left(1 - 2 \tan h^2 \left(\frac{x_1}{r} \right) \right) \frac{\xi_1^2 y_0(\xi_1)}{k_0} - k
+ \frac{d_1}{k_0} + B_1 - k_1 \frac{x_1^2}{k_b^2 - x_1^2} + \frac{\mu b_m^2 \theta_1^2}{2k_1}
\]
\[
\hat{V}_1 \leq \frac{x_1}{k_b^2 - x_1} f_1 x_2 + \left(1 - 2 \tan h^2 \left(\frac{x_1}{r} \right) \right) \frac{\xi_1^2 y_0(\xi_1)}{k_0} - k
+ \frac{d_1}{k_0} + B_1 - k_1 \frac{x_1^2}{k_b^2 - x_1^2} + \frac{\mu b_m^2 \theta_1^2}{2k_1}
\]
\[
\hat{V}_1 \leq \frac{x_1}{k_b^2 - x_1} f_1 x_2 + \left(1 - 2 \tan h^2 \left(\frac{x_1}{r} \right) \right) \frac{\xi_1^2 y_0(\xi_1)}{k_0} - k
+ \frac{d_1}{k_0} + B_1 - k_1 \frac{x_1^2}{k_b^2 - x_1^2} + \frac{\mu b_m^2 \theta_1^2}{2k_1}
\]
\[
\hat{V}_1 \leq \frac{x_1}{k_b^2 - x_1} f_1 x_2 + \left(1 - 2 \tan h^2 \left(\frac{x_1}{r} \right) \right) \frac{\xi_1^2 y_0(\xi_1)}{k_0} - k
+ \frac{d_1}{k_0} + B_1 - k_1 \frac{x_1^2}{k_b^2 - x_1^2} + \frac{\mu b_m^2 \theta_1^2}{2k_1}
\] \((31) \)

where \(k_1 = c_1 b_m^2 > 0 \) and \(B_1 = (\mu b_m^2/2k_1) \theta_1^2 + \lambda_1^t + \xi_1^2 + d_1 + (\alpha_1/2) + (c_1^2/2) \). Step \(i \) \((2 \leq i \leq n - 1) \): Let \(x_i = \xi_i - \alpha_{i-1} \), then one has
\[
\dot{x}_i = f_i \dot{\xi}_i + g_i(\xi) + O_i - \dot{\alpha}_{i-1}, \]
\[
\dot{\alpha}_{i-1} = \sum_{j=1}^{i-1} \frac{\partial g_{i-1}}{\partial \xi_j} g_j(\xi) + \sum_{j=1}^{i-1} \frac{\partial \alpha_{i-1}}{\partial \xi_j} O_j + \xi_{i-1}, \]
\[
\dot{\alpha}_{i-1} = \sum_{j=1}^{i-1} \frac{\partial g_{i-1}}{\partial \xi_j} g_j(\xi) + \sum_{j=1}^{i-1} \frac{\partial \alpha_{i-1}}{\partial \xi_j} O_j + \xi_{i-1}, \]
\[
\dot{\alpha}_{i-1} = \sum_{j=1}^{i-1} \frac{\partial g_{i-1}}{\partial \xi_j} g_j(\xi) + \sum_{j=1}^{i-1} \frac{\partial \alpha_{i-1}}{\partial \xi_j} O_j + \xi_{i-1}, \] \((33) \)
with

\[\Xi_{i-1} = \sum_{j=1}^{i-1} \frac{\partial \alpha_{i-1}}{\partial \xi_j} f_j \dot{\xi}_{j+1} + \sum_{j=1}^{i-1} \frac{\partial \alpha_{i-1}}{\partial \theta_j} + \sum_{j=0}^{i-1} \frac{\partial \alpha_{i-1}}{\partial \eta_j} (\bar{y}_j) + \frac{\partial \alpha_{i-1}}{\partial \nu} \nu. \]

(34)

Then, construct a Lyapunov function \(V_i \) as

\[V_i = \frac{x_i}{k_i^2 - x_i^2} \left(f_i \dot{x}_{i+1} + g_i (x) - \sum_{j=1}^{i-1} \frac{\partial \alpha_{i-1}}{\partial \xi_j} g_j (\xi) + \Xi_{i-1} - \Xi_{i-1} \right) - \frac{b_i \tilde{\nu} \tilde{\nu}}{k_i^2}, \]

(36)

where \(\Xi = \Xi_{i-1} - \sum_{j=1}^{i-1} (\partial \alpha_{i-1} / \partial \xi_j) \theta_j \) and similar to the method in the Step 1, we can obtain

\[V_{i-1} \leq \frac{x_{i-1}}{k_i^2 - x_i^2} f_{i-1} x_i - \sum_{j=1}^{i-1} k_j x_i^2 - x_j^2 \]

\[- \sum_{j=1}^{i-1} \left(\frac{\mu_j b_m^2 \rho_j^2}{2k_j} + \frac{d_j}{k_0} \right) \left(1 - 2 \tan h^2 \left(\frac{x_i}{r} \right) \right) \]

\[- \frac{k_i}{k_i} \nu + \sum_{j=1}^{i-1} B_j, \]

(37)

where \(k_j = c \rho_m / k_j > 0, \) \(d_j (t) \leq d_j \) and \((B_j = (1/2) a_j^2 + (1/2) c_j^2 + (\mu_j b_m / k_j^2) \theta_j^2 + \lambda_j' + \epsilon_j' + d_j). \) (\(j = 1, 2, \ldots, i - 1. \))

By using Assumption 3 and the absolute value inequality, it yields

\[\left| \frac{x_i}{k_i^2 - x_i^2} \Xi \right| \leq \frac{x_i}{k_i^2 - x_i^2} \left| \left(\phi_{i1} \left(\left| \xi_j \right| \right) + \sum_{j=1}^{i-1} \left| \frac{\partial \alpha_{i-1}}{\partial \xi_j} \right| \phi_{j1} \left(\left| \xi_j \right| \right) \right) \right| \]

\[+ \frac{x_i}{k_i^2 - x_i^2} \left| \left(\phi_{i2} \left(\left| \chi_j \right| \right) + \sum_{j=1}^{i-1} \left| \frac{\partial \alpha_{i-1}}{\partial \xi_j} \right| \phi_{j2} \left(\left| \chi_j \right| \right) \right) \right|. \]

(38)

Using the same method as (19) and (20), we can get

\[\left| \frac{x_i}{k_i^2 - x_i^2} \phi_{i1} \left(\left| \xi_j \right| \right) + \sum_{j=1}^{i-1} \left| \frac{\partial \alpha_{i-1}}{\partial \xi_j} \right| \phi_{j1} \left(\left| \xi_j \right| \right) \right| \]

\[\leq \frac{x_i}{k_i^2 - x_i^2} \phi_{i1} \left(\left| \xi_j \right| \right) \nu_i + \lambda_j', \]

(39)

where \(\kappa_i > 0 \) is a design parameter and \(\tilde{\nu} \equiv \theta_i - \tilde{\theta}_i \) is the error. In the set \(\Omega \), \(\kappa_i (k_i^2 / (k_i^2 - x_i^2)) \) is continuous.

Thus, the derivative of \(V_i \) is

\[\dot{V}_i = \frac{x_i}{k_i^2 - x_i^2} \left(\phi_{i1} \left(\left| \chi_j \right| \right) + \sum_{j=1}^{i-1} \left| \frac{\partial \alpha_{i-1}}{\partial \xi_j} \right| \phi_{j1} \left(\left| \chi_j \right| \right) \right) \]

\[\leq \frac{1}{4} \left(\frac{x_i}{k_i^2 - x_i^2} \right)^2 \left[1 + \sum_{j=1}^{i-1} \left| \frac{\partial \alpha_{i-1}}{\partial \xi_j} \right| ^2 \right] \]

\[+ \frac{x_i}{k_i^2 - x_i^2} \phi_{i2} \left(\left| \xi_j \right| \right) \nu_i + \lambda_j', \]

(40)

where

\[\phi_{i1} \left(\xi_j, \xi_{j-1}, v \right) = \left(\phi_{i1} + \sum_{j=1}^{i-1} \left| \frac{\partial \alpha_{i-1}}{\partial \xi_j} \right| \phi_{j1} \right) \times \tanh \left(\frac{x_j (\phi_{i1} + \sum_{j=1}^{i-1} \left| \frac{\partial \alpha_{i-1}}{\partial \xi_j} \right| \phi_{j2} \left(\left| \chi_j \right| \right) \right)}{\lambda_i (k_i^2 - x_i^2)} \right). \]

\[\lambda_i = 0.2785 \lambda_i \phi_{i2} \left(\xi_j, \xi_{j-1}, v \right) \tanh \left(\frac{x_i \phi_{i2} \left(\xi_j, \xi_{j-1}, v \right) \tanh \left(\frac{x_j \phi_{i2} \left(\xi_j, \xi_{j-1}, v \right) \right)}{\epsilon_i (k_i^2 - x_i^2)} \right). \]

\[\phi_{i2} \left(\xi_j, \xi_{j-1}, v \right) = \phi_{j2} \left(\left| \xi_j \right| \right) \tanh \left(\frac{x_i \phi_{i2} \left(\xi_j, \xi_{j-1}, v \right) \tanh \left(\frac{x_j \phi_{i2} \left(\xi_j, \xi_{j-1}, v \right) \right)}{\epsilon_i (k_i^2 - x_i^2)} \right). \]

\[\epsilon_i' = 0.2785 \epsilon_i, \]

(41)

\[d_i (t) = \sum_{j=1}^{i-1} \left(\phi_{j2} \left(\left| \xi_j \right| \right) \right)^2 \] and \(d_i (t) \geq 0 \) for \(\forall t \geq 0. \)

Then, substitute (36)-(39) into (35) to get

\[V_i = \frac{1}{4} \log \left(\frac{k_i^2}{k_i^2 - x_i^2} \right) + \frac{b_i \tilde{\nu} \tilde{\nu}}{k_i^2}, \]

(35)
\[\dot{V}_i \leq - \sum_{j=1}^{n-1} k_j x_j^2 - \sum_{j=1}^{n-1} \mu \beta_n \eta_j^2 - \frac{k}{k_0} v + \frac{x_i}{k_0} f_i \chi_{x_i} \]

\[+ \frac{x_i}{k_0} \bar{\eta} \bar{\theta} + \sum_{j=1}^{n-1} B_j + \frac{d_0}{k_0} + \lambda_i + \epsilon_i + d_i, \]

where

\[\bar{\eta} = \frac{1}{2} x_i k_0^2 - x_i^2 + \sum_{j=1}^{n-1} \left(\frac{\partial \eta_j}{\partial \xi_j} \right)^2 \]

\[- \sum_{j=1}^{n-1} B_j + \frac{d_0}{k_0} + \lambda_i + \epsilon_i + d_i. \]

(42)

\[V_i \leq - \sum_{j=1}^{n-1} k_j x_j^2 - \sum_{j=1}^{n-1} \mu \beta_n \eta_j^2 - \frac{k}{k_0} v + \frac{x_i}{k_0} f_i \chi_{x_i} \]

\[+ \frac{x_i}{k_0} \bar{\eta} \bar{\theta} + \sum_{j=1}^{n-1} B_j + \frac{d_0}{k_0} + \lambda_i + \epsilon_i + d_i. \]

(46)

where \(x_{i+1} = \xi_{i+1} - \alpha_i \).

Next, designing a virtual control signal \(\alpha_i \) in (12) and an adaptive law \(\bar{\theta} \) from (15), then, using the same method as (27)–(31), we can get

\[V_i \leq - \sum_{j=1}^{n-1} k_j x_j^2 - \sum_{j=1}^{n-1} \mu \beta_n \eta_j^2 - \frac{k}{k_0} v + \frac{x_i}{k_0} f_i \chi_{x_i} \]

\[+ \frac{x_i}{k_0} \bar{\eta} \bar{\theta} + \sum_{j=1}^{n-1} B_j + \frac{d_0}{k_0} + \lambda_i + \epsilon_i + d_i. \]

(47)

For \(\forall \theta_i > 0 \), the unknown smooth function \(\bar{\eta}(X_i) \) is estimated by the RBF NN \(E_i^T H_i(X_i) \) and we have

\[\bar{\eta}(X_i) = E_i^T H_i(X_i) + \delta_i(X_i), \quad \left| \delta_i(X_i) \right| \leq \epsilon_i, \]

where \(X_i = [\xi_i, \eta_{i_d}, \eta_{i_d}^T, v]^T, \quad \eta_{i_d} = [\eta_{i_d}, \eta_{i_d+1}, \ldots, \eta_{i_d}^{(l)}]^T \) and \(\bar{\theta} = [\bar{\theta}_i, \ldots, \bar{\theta}_i^n]^T \).

Thus, it yields

\[\frac{x_i}{k_0^2} \bar{\eta}(X_i) = \frac{x_i}{k_0^2} \left(E_i^T H_i(X_i) + \delta_i(X_i) \right). \]

(48)

\[\frac{x_i}{k_0^2} \bar{\eta}(X_i) = \frac{x_i}{k_0^2} \left(\left\| E_i^T_{\beta_n} H_i(X_i) \right\| + \epsilon_i \right) \]

\[\leq \frac{x_i}{k_0^2} \left(\left\| E_i^T\right\|_{\beta_n} H_i(X_i) \right\| + \epsilon_i \right) \]

\[\leq \frac{x_i}{k_0^2} \left(\left\| E_i^T\right\|_{\beta_n} H_i(P_i) \right\| + \epsilon_i \right) \]

\[\leq \frac{b_m}{2 \alpha_i^2} \left(\frac{x_i}{k_0^2} \right)^2 \theta_i H_i^T(P_i) \eta_{i_d}(\bar{\eta}) \]

\[+ \frac{1}{2} \alpha_i^2 + \frac{1}{2} \left(\frac{x_i}{k_0^2} \right)^2 + \frac{1}{2} \epsilon_i^2, \]

\[\left(\frac{x_i}{k_0^2} \right)^2 - \epsilon_i \]

where \(\alpha_i \) is the design parameter, \(P_i = [\xi_i, \eta_{i_d}, \eta_{i_d}^T, v]^T \) and \(\theta_i = \left(\left\| E_i^T\right\|_{\beta_n} \right) \).

Therefore, substitute (45) into (42) to get

\[\frac{x_i}{k_0^2} \bar{\eta}(X_i) \]

\[\leq \frac{x_i}{k_0^2} \left(\left\| E_i^T\right\|_{\beta_n} H_i(P_i) \right\| + \epsilon_i \right) \]

(49)

Then, the Lyapunov function as

\[V_n = V_{n-1} + \frac{1}{2} \log \frac{k_{b_n^2}}{k_{b_n^2}} + \frac{b_m^2}{2 \alpha_i^2} \]

\[+ \frac{x_n}{k_{b_n^2}} \left(f_n u + \epsilon_n \right) - \left(\left\| E_i^T\right\|_{\beta_n} H_i(P_i) \right\| + \epsilon_i \right) \]

\[+ \frac{1}{2} \alpha_i^2 + \frac{1}{2} \left(\frac{x_i}{k_0^2} \right)^2 + \frac{1}{2} \epsilon_i^2, \]

\[\left(\frac{x_i}{k_0^2} \right)^2 - \epsilon_i \]

where \(\alpha_i \) is the design parameter, \(P_i = [\xi_i, \eta_{i_d}, \eta_{i_d}^T, v]^T \) and \(\theta_i = \left(\left\| E_i^T\right\|_{\beta_n} \right) \).

Therefore, substitute (45) into (42) to get

\[\frac{x_i}{k_0^2} \bar{\eta}(X_i) \]

\[\leq \frac{x_i}{k_0^2} \left(\left\| E_i^T\right\|_{\beta_n} H_i(P_i) \right\| + \epsilon_i \right) \]

(50)

where \(\epsilon_i \) has been defined in (38) with \(i = n \).
Using the same method as (38) to (40), we can get
\[
\frac{x_n}{k_{b_n} - x_n} \leq \frac{x_n}{k_{b_n} - x_n} \psi_{nl}(\xi_n, \tilde{\theta}_{m-1}, \nu) + \frac{x_n}{k_{b_n} - x_n} \psi_{r2}(\xi_n, \tilde{\theta}_{m-1}, \nu) + \frac{x_n}{k_{b_n} - x_n} \left[1 + \sum_{j=1}^{n-1} \left(\frac{\partial \phi_{n-1,j}}{\partial k_j} \right)^2 \right] + \lambda_n' + \epsilon_n' + d_n(t),
\]
where \(\psi_{nl}(\xi_n, \tilde{\theta}_{m-1}, \nu) \) and \(\psi_{r2}(\xi_n, \tilde{\theta}_{m-1}, \nu) \) are defined in (47) and (48), respectively.

In view of (51), (50) is written as
\[
\dot{V}_n \leq -\sum_{j=1}^{n-1} \frac{k_j x_j^2}{k_{b_j} - x_j^2} - \sum_{j=1}^{n-1} \frac{\mu_j b_m^2}{2k_j} + \frac{\xi_j}{\kappa_0} + \frac{d_0}{\kappa_0} + \sum_{j=1}^{n-1} B_j + \left(1 - 2 \tan h^2 \left(\frac{x_i}{r} \right) \right) \gamma_i y_i (\xi_i^2) + \frac{b_m^2}{\kappa_0} \tilde{\theta}_n + \sum_{j=1}^{n-1} B_j
\]
\[
\dot{V}_n \leq -\sum_{j=1}^{n-1} \frac{k_j x_j^2}{k_{b_j} - x_j^2} - \sum_{j=1}^{n-1} \frac{\mu_j b_m^2}{2k_j} + \frac{\xi_j}{\kappa_0} + \frac{d_0}{\kappa_0} + \lambda_n' + \epsilon_n' + d_n,
\]
where \(d_n(t) \leq d_n \) and
\[
\dot{\tilde{\theta}}_n = \frac{1}{2 \kappa_{n}^2} \frac{x_n}{k_{b_n} - x_n} + g_n(\xi) - \sum_{j=1}^{n-1} \frac{\partial \phi_{n-1,j}}{\partial k_j} (\xi) - \Xi_{n-1} + \tilde{\psi}_{nl}(\xi_n, \tilde{\theta}_{m-1}, \nu) + \frac{1}{4} \left(\frac{x_n}{k_{b_n} - x_n} \right)^2 \left[1 + \sum_{j=1}^{n-1} \left(\frac{\partial \phi_{n-1,j}}{\partial k_j} \right)^2 \right] + \lambda_n' + \epsilon_n' + d_n, \]
where \(\epsilon_n > 0 \) is the unknown smooth function \(\dot{\tilde{\theta}}_n(X_n) \) is estimated of the RBF NN \(E_n^T H_n(X_n) \) and we have
\[
\dot{\tilde{\theta}}_n(X_n) = E_n^T H_n(X_n) + \delta_n(X_n), \quad |\delta_n(X_n)| \leq \epsilon_n, \quad (54)
\]
where \(\delta_n(X_n) \) is the estimated error and \(\epsilon_n > 0 \) denotes a given constant.

Just like (45), one has
\[
\dot{V}_n \leq -\sum_{j=1}^{n-1} \frac{k_j x_j^2}{k_{b_j} - x_j^2} - \sum_{j=1}^{n-1} \frac{\mu_j b_m^2}{2k_j} + \frac{\xi_j}{\kappa_0} + \frac{d_0}{\kappa_0} + \lambda_n' + \epsilon_n' + d_n - \lambda_n' + \epsilon_n' + d_n,
\]
where the unknown constant \(\tilde{\theta}_n = (\|E_n^T H_n(X_n)\|/b_m) \).

By combining (52) with (55), it yields
\[
\dot{V}_n \leq -\sum_{j=1}^{n-1} \frac{k_j x_j^2}{k_{b_j} - x_j^2} - \sum_{j=1}^{n-1} \frac{\mu_j b_m^2}{2k_j} + \frac{\xi_j}{\kappa_0} + \frac{d_0}{\kappa_0} + \lambda_n' + \epsilon_n' + d_n - \lambda_n' + \epsilon_n' + d_n,
\]
where \(k_j = \epsilon_j > 0 \) and \(B_j = (1/2) \alpha_j^2 + (1/2) \beta_j^2 + \lambda_j' + \epsilon_j' + d_j, \quad j = 1, 2, \ldots, n \).

So this backstepping control design process is complete. The main result is summarized in the next section.

4. Stability Analysis

Theorem 1. Consider the closed-loop system with Assumptions 1–4, which is composed of plant (1), the virtual control
inputs a_i (12), real controller u (13), and adaptive laws (15), where RBF NN $E_i H_i (X_i)$ is employed to estimate the uncertain nonlinear function $\tilde{g}_i (X_i)$ with bounded errors $\delta_i (1 \leq i \leq n)$. Suppose that the design parameters c_i, a_i, and μ_i are appropriately chosen to satisfy $k_{b_i} > \overline{\alpha}_i + k_{b_i}$, with $\overline{\alpha}_i = \max \{a_i (\tilde{x}_j, \tilde{y}_i, \gamma_d (j), j = 1, \ldots, l)\}$, then the final closed-loop system is SGUUB, and the tracking error converges to a small region around the origin with the partial-state constraints being valid.

Proof. From (17), (35), and (49), we gain

$$V_n = \frac{1}{2} \sum_{j=1}^{n} \log \left(\frac{k_{b_i}}{k_{b_i} - x_i^2} \right) + \frac{1}{k_0} v + \frac{1}{2} \sum_{j=1}^{n} b_{m} \theta_j.$$ \hspace{1cm} (59)

It is a fact that $\log (k_{b_i} / (k_{b_i} - x_i^2)) < \left(x_i^2 / (k_{b_i} - x_i^2) \right)$ in the interval $|x_i| < k_{b_i}$. Then, (58) becomes

$$V_n = \frac{1}{2} \sum_{j=1}^{n} x_i^2 + \frac{1}{k_0} v + \frac{1}{2} \sum_{j=1}^{n} b_{m} \theta_j.$$ \hspace{1cm} (60)

Using (60), inequality (58) can be represented as

$$\dot{V}_n \leq - r_0 V + \mu_0 + \left(2 - \tan^2 \left(\frac{v}{r} \right) \right) \xi_i^2.$$ \hspace{1cm} (61)

where $r_0 = \min \{ 2c_i b_{m} \theta_i, \overline{\xi}_i; 1 \leq i \leq n \}$ and $\mu_0 = \sum_{j=1}^{n} \beta_j + (\mu_0 / k_0)$.

Obviously, we know from (61) that the first item on the right of the inequality must be negative, the second item is a positive constant, and the positive or negative of the last item depends on the size of x_i. So we are going to consider the closed-loop system in two different cases, and the results are as follows.

Case 1. $x_i \in \Omega_{x_i} = \{ x_i | |x_i| < 0.8814r \}$, r is a positive constant in (22). Because of the coordinate transformation (14), we can see that ξ_i is bounded because x_i is constructed to be bounded, and the reference signal η_d is also bounded. From (61), it gets

$$\dot{V}_n \leq - r_0 V + b_0.$$ \hspace{1cm} (62)

where $b_0 = \mu_0 + k_0$.

Besides, (61) satisfies

$$0 \leq V_n \leq \left(V(0) - \frac{b_0}{r_0} \right) e^{-r_0 t} + \frac{b_0}{r_0}.$$ \hspace{1cm} (63)

Case 2. $x_i \notin \Omega_{x_i}$. By applying Lemma 4 and $(\xi_i^2 / \xi_0 (\xi_i^2) / k_0) \geq 0$, we have

$$\left(2 - \tan^2 \left(\frac{v}{r} \right) \right) \xi_i^2 \leq 0.$$ \hspace{1cm} (64)

So, (61) is reduced to

$$\dot{V}_n \leq - r_0 V + \mu_0.$$ \hspace{1cm} (65)

Then, using (65) we can get

$$0 \leq V_n (t) \leq \left(V(0) - \frac{b_0}{r_0} \right) e^{-r_0 t} + \frac{b_0}{r_0} + \frac{b_0}{r_0}.$$ \hspace{1cm} (66)

Next, from (63) and (66), we have

$$0 \leq V_n (t) \leq V(0) + \frac{b_0}{r_0} \quad t > 0.$$ \hspace{1cm} (67)

Then, it can be concluded from the above inequality and (59) that $\log (k_{b_i} / (k_{b_i} - x_i^2))$ and $\overline{\theta}_j$ are bounded. Since $\overline{\theta}_j$ is bounded and $\overline{\theta}_j = \overline{\theta}_j + \theta_j + \overline{\theta}_j$, must be bounded.

From $\overline{\xi}_i = x_i + \eta_d$ and $|\eta_d| \leq d$, we can obtain $|\xi_0| \leq |x_i| + |\eta_d| < k_{b_i} - d$ and then, $|\xi_i| < k_{b_i}$. Apparently, $a_i (\cdot)$ is a function of $\overline{\theta}_i, \xi_i, x_i$ and η_d. Because of the boundedness of $\overline{\theta}_i, \xi_i, x_i$ and η_d, $a_i (\cdot)$ is bounded and satisfies $|a_i (\cdot)| \leq \overline{\alpha}_i$. Then, $|\xi_i| \leq |\xi_0| + |\eta_d| < k_{b_i} - \overline{\alpha}_i$. This implies that $|\xi_i| \leq k_{b_i}$ if $k_{b_i} = k_{b_i} - \overline{\alpha}_i$. Similarly, it can be in turn proven that $|\xi_i| \leq k_{b_i}$, $i = 1, \ldots, n - 1$ as long as $k_{b_i} = k_{b_i} - \overline{\alpha}_i$. From the definition in (13), we can see that u is a function of $\overline{\theta}_n, \xi_n$ and $\eta_d, \eta_d, \ldots, \eta_d^{(n)}$. Owing to the boundedness of $\overline{\theta}_n, \xi_n$ and $\eta_d, \eta_d, \ldots, \eta_d^{(n)}$, the controller u is bounded.

In both cases, we can conclude that all the reference signals of the closed-loop system are bounded. In addition, combining (63) and (66), we can see that the tracking error finally converges to a small region of the origin, and the system partial states are not violated.

From (67), it is easy to obtain

$$\log \left(\frac{k_{b_i}^2}{k_{b_i} - x_i^2} \right) \leq \left(V(0) - \mu_0 \right) e^{-r_0 t} + \frac{2\mu_0}{r_0}.$$ \hspace{1cm} (68)

We take exponentials on both sides of the above inequality; it has

$$k_{b_i}^2 \leq e^2 \left(V(0) - \mu_0 \right) e^{-r_0 t} + \frac{2\mu_0}{r_0}.$$ \hspace{1cm} (69)

It is straightforward to get Δ and Δ. If $V_n (0) = \mu_0$, then it holds $|x_i| \leq k_{b_i} \sqrt{1 - e^{-2\mu_0 / r_0}} \Delta \sqrt{1 - e^{-2\mu_0 / r_0}}$ and $V_n (0) \neq \mu_0$, it can be concluded that, given any $\Delta > k_{b_i} \sqrt{1 - e^{-2\mu_0 / r_0}}$, there exists T such that for any $t > T$, it has $|x_i| \leq \Delta$ and $x_i \rightarrow \omega$. From $x_i \rightarrow \omega$, we can see that x_i can be made arbitrarily small by selecting the design parameters appropriately.

This completes the proof.

5. Simulation Example

Example 1. In order to test the applicability of the proposed control method, the following one-link manipulator with motor dynamics and disturbances is considered:

$$\dot{q} + B \dot{q} + N \sin(q) = \tau + d, M_m \dot{q} + H_m q = u - K_m \dot{q}.$$ \hspace{1cm} (70)
where \(q, \dot{q}, \) and \(\ddot{q} \) are the link angular position, velocity, and acceleration. \(\tau \) is the torque, \(\tau_d = q^2 \cos (\dot{q} t) \) denotes the current disturbance, and \(u \) is the control input representing the voltage. Take these parameters as \(D = 1 \text{kgm}^2, B = 1 \text{Nm}, M_m = 0.1 \text{H}, H_m = 1.0 \Omega, \) and \(K_m = 0.2 \text{Nm/A}. \) Moreover, the sketch of the one-link manipulator is given in Figure 1.

Let \(\xi_1 = q, \xi_2 = \dot{q}, \) and \(\xi_3 = \tau. \) Thus, (70) can be translated into a nonlinear system as follows:

\[
\begin{align*}
\dot{\xi}_1 &= -1.25\chi + 0.25\xi_1^2 + 0.125, \\
\dot{\xi}_2 &= 3\xi_2 + g_1(\xi) + O_1, \\
\dot{\xi}_3 &= 1.2\xi_1 + g_2(\xi) + O_2, \\
\dot{\eta} &= 8u + g_3(\xi) + O_3,
\end{align*}
\]

(71)

where \(g_1(\cdot) = 2\cos^2(\xi_1) - 1.75, g_2(\cdot) = \xi_1 \xi_2 - 2\sin(\xi_1), \)

\(g_3(\cdot) = -6.25\xi_3, \)

\(O_1 = -\chi \sin(\xi_2)O_2 = 0.2\chi \xi_1 \cos(\xi_1), O_3 = -2\chi \cos(\xi_1 \xi_2). \)

The aim is to impel the output \(\eta \) of the system (70) to follow the reference trajectory \(\eta_d = 0.5 \sin(1.5t). \) We can easily check that Assumptions 1–3 hold. Moreover, to prove that Assumption 4 is correct, \(V_\chi(\chi) = 2\chi^2 \) is chosen, then
\[\begin{align*}
\alpha_1 &= -c_1 x_1 - \frac{1}{2a_1^2} \frac{x_1}{(k_{b_1} - x_1^2)} \bar{\theta}_1 H_1^T H_1, \\
\alpha_2 &= -c_2 x_2 - \frac{1}{2a_2^2} \frac{x_2}{(k_{b_2} - x_2^2)} \bar{\theta}_2 H_2^T H_2, \\
u &= -c_3 x_3 - \frac{1}{2a_3^2} \frac{x_3}{(k_{b_3} - x_3^2)} \bar{\theta}_3 H_3^T H_3,
\end{align*} \]

and the adaptive laws are expressed as

\[\bar{\theta}_i = \frac{k_i}{2a_i^2} \left(\frac{x_i}{k_i^2 - x_i^2} \right)^2 H_i^T H_i - \mu \bar{\theta}_i, \quad i = 1, 2, 3, \]

with \(x_1 = \xi_1 - \eta_d, x_2 = \xi_2 - \alpha_1 \) and \(x_3 = \xi_3 - \alpha_2 \).

The design parameters are chosen as \([\xi_1(0), \xi_2(0), \xi_3(0)]^T = [0, 0, 0, 0, 0]^T \), \([\bar{\theta}_1(0), \bar{\theta}_2(0), \bar{\theta}_3(0)]^T = [0, 0, 0, 0] \), \(c_1 = 10, c_2 = 1, c_3 = 20, a_1 = 1, a_2 = 1, a_3 = 15, \mu_1 = 2, \mu_2 = 3, \mu_3 = 5, \kappa_1 = 10, \kappa_2 = 15, \kappa_3 = 20 \), respectively. The states are constrained in \(|\xi_1| < 0.6, |\xi_2| < 0.8, |\xi_3| < 2.5 \).

Figure 2 shows the tracking result of the output trajectory \(\eta \) and the reference signal \(\eta_d \). Figure 3 shows the tracking error of the closed-loop system, which obviously achieves a good tracking performance. The response of the unmodeled dynamics \(\chi \) and \(\nu \) is shown in Figure 4. Figures 5 and 6 show the state variables \(\xi_1, \xi_2, \) and \(\xi_3 \), which show that the system states keep within their bounds. The performance of the adaptive laws is shown in Figure 7. All simulation results show that the proposed control algorithm is effective and applicable.

6. Conclusions

The paper has investigated the problem of adaptive tracking control for a class of nonstrict-feedback nonlinear systems with partial-state-constraints and unmodeled dynamics. An adaptive neural tracking control method has been presented by using the adaptive backstepping technique. Based on the inherent properties of Gaussian functions, and the universal approximation ability of RBF NN, a new method is proposed to deal with the nonstrict-feedback form of the considered nonlinear system. The proposed control algorithm can guarantee the boundedness of all the resulting closed-loop signals, the tracking error to converge to a small neighborhood of the origin, and the corresponding state constraints are not violated. Finally, the effectiveness and practicability of the obtained result are shown by a practical simulation example.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The author declares that there are no conflicts of interest.
Acknowledgments

This work was supported in part by the National Natural Science Foundation of China, under Grants 61873151, 61773192, 61773246, and 61803225, Shandong Provincial Natural Science Foundation, China, under Grant ZR2019MF009, Taishan Scholar Project of Shandong Province of China, under Grant tsqn2019-9078, and Major Program of Shandong Province Natural Science Foundation, under Grant ZR2018ZB0419.

References

Complexity

