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,is paper provides a disturbance observer-based prescribed performance control method for uncertain strict-feedback systems.
To guarantee that the tracking error meets a design prescribed performance boundary (PPB) condition, an improved prescribed
performance function is introduced. And radial basis function neural networks (RBFNNs) are used to approximate nonlinear
functions, while second-order filters are employed to eliminate the “explosion-complexity” problem inherent in the existing
method. Meanwhile, disturbance observers are constructed to estimate the compounded disturbance which includes time-varying
disturbances and network construction errors. ,e stability of the whole closed-loop system is guaranteed via Lyapunov theory.
Finally, comparative simulation results confirm that the proposed control method can achieve better tracking performance.

1. Introduction

Backstepping technology is widely used for nonlinear systems
with the strict-feedback structure [1–3]. ,is method requires
repeated differentiation of the virtual controller, which leads
to the problem of “explosion-complexity.” In order to solve
this problem and estimate the virtual controller, dynamic
surface control (DSC) technique [4–7] is applied. In [4], DSC
technology was applied to the state-feedback adaptive control
law, which eliminated the problem of “explosion-complexity”
and ensured that all signals in the closed-loop system were
uniformly ultimately bounded. By using DCS technology and
fuzzy logic systems, Aung et al. [7] proposed a fuzzy adaptive
control scheme that can guarantee tracking error to a small
residual set. To further estimate the derivative of the virtual
controller α(t), a famous first-order Levant differentiator was
constructed in [8]. By applying the same differentiator, Yu
et al. [9] proposed a backstepping approach, which enables
the tracking error to converge to a small neighborhood in
finite time. It can be seen from the above literature that the
nonlinear system contains unknown nonlinear function
terms and external disturbances. For the former, there are two
approximate methods: one is using the composite learning
control method [10–13] which uses online recorded data to

produce a prediction error to construct a composite learning
signal, and the other is using neural networks (NNs) or fuzzy
logic systems (FLSs) [14–19]. However, adaptive laws of
estimating parameters in [14–19] only consider whether the
Lyapunov stability condition is satisfied but does not con-
sider whether the parameter law can accurately estimate the
unknown nonlinear function itself. For the latter, we cannot
just assume that the external disturbance is bounded and the
upper bound is unknown. And this assumption will lead to a
problem where the disturbance cannot be accurately esti-
mated. Currently, the effective method is to build a dis-
turbance observer.,e basic principle is that all disturbances
are regarded as system states. In [20], a neural network
disturbance observer (NNDOB) was developed for a 3-DOF
model helicopter system. In [21], disturbance observer-
based composite control was proposed for the flexible-link
manipulator. In order to estimate unknown system non-
linearity and unknown disturbance, composite learning
control strategy for uncertain systems in strict-feedback
formwas proposed in [22, 23]. Some other interesting results
about disturbance observer-based control can be seen in
[24–27].

On the contrary, especially in practical control, it is
better to specify a prescribed performance boundary (PPB)
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of tracking error rather than the approach tracking error to a
small neighborhood. ,erefore, how to combine the pre-
scribed performance control (PPC) [28, 29] and the dis-
turbance observer to make the error meet the PPB condition
has become a research focus. Usually, the traditional PPB
[30] of tracking error e is described as

− λμ(t)< e< μ(t) if e(0)> 0,

− μ(t)< e< λμ(t) if e(0)> 0,
(1)

where λ ∈ [0, 1] and μ(t) � (μ0 − μ∞)e− λ1t + μ∞;
μ0, μ∞, and λ1 are design parameters. However, the tradi-
tional PPC strategy has two shortcomings. One is that the
design of the controller needs to consider the sign of the
initial value e(0), and the other is that the small con-
vergence overshoot of e cannot be guaranteed. To tackle
the above defects, an improved PPC methodology was
proposed in [31]. And Bu et al. [31] only discussed the
situation that external disturbances were unknown.
However, some known information of nonlinear func-
tions may not be able to provide in the practical control
system. ,erefore, it is necessary to discuss that how to
accurately estimate unknown nonlinear functions and
external disturbances under the condition that the
tracking error meets the PPB.

Inspired by the above discussion, a class of SISO un-
certain nonlinear system in strict-feedback form with un-
known time-varying disturbance will be studied in this
paper. Different from previous designs, an improved pre-
scribed performance control scheme is proposed.,e overall
framework of this paper is as follows: firstly, a specific
performance function and PPB condition are given. ,en,
the original system is transformed into an equivalent
transformation system. Afterwards, unknown nonlinear
functions are approximated by using RBFNNs, and a dis-
turbance observer is designed to estimate the compounded
disturbance which includes time-varying disturbances and
network construction errors. ,e proposed composite
prescribed performance control scheme can not only
guarantee the prescribed performance but also make ac-
curate estimates of system uncertainties. ,e main contri-
butions of this paper are summarized as follows: (1) the
proposed PPC method guarantees a small convergence
overshoot of the tracking error; (2) system uncertainties
(include unknown nonlinear functions and external dis-
turbances) can be effectively estimated by the disturbance
observer and RBFNNs; and (3) compared with the tradi-
tional PPC method, the proposed method has better control
performance. ,e remainder of this paper is organized as
follows: Section 2 lists some preliminaries. In Section 3, a
novel PPC scheme is designed, and the stability of the
closed-loop system is considered. Simulation studies are
included in Section 4. Finally, brief conclusion is presented
in Section 5.

2. Preliminaries

2.1. System Description. Consider the following SISO strict-
feedback nonlinear system:

_x1 � f1 x1(  + g1 x1( x2 + d1(t),

_x2 � f2 x2(  + g1 x2( x3 + d2(t),

· · ·

_xn � fn xn(  + gn xn( u + dn(t),

y � x1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where xi � [x1, x2, . . . , xi]
T ∈ Ri, x1 � x1 ∈ R, x � xn �

[x1, x2, . . . , xn]T ∈ Rn, u ∈ R is the control input, y ∈ R is the
output, fi(xi) is an unknown smooth function, gi(xi) is a
known nonzero function, and di(t) is the external time-
varying disturbance, i � 1, 2, . . . , n.

Assumption 1. ,e reference signal xd and its derivative _xd

are available and bounded.

Assumption 2. ,ere exist positive constants di, d∗i , andgi

such that |di(t)|≤di, | _di(t)|≤d∗i , and |gi(xi)|≤gi,
i � 1, 2, · · ·, n.

Remark 1. Assumptions 1 and 2 are common assumptions
for strict-feedback systems [4, 21, 22]. Here, the bounded-
ness of the external disturbance and its derivative is to
construct the disturbance observer, and positive constants
di, d∗i , andgi are only used for stability analysis.

For SISO strict-feedback nonlinear system (2), back-
stepping technique will be used in the design process of
controller u, and the tedious derivative calculation of the
virtual control law will cause the problem of “explosion of
terms.” To avoid such problems, the following second-order
filters are used in this paper.

Lemma 1 (see [28]). Consider the following system:

_χ1 � χ2,

_χ2 � ϖ21 − ϖ2tanh χ1 − ξ(  − ϖ3tanh
χ2
ϖ1

  ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

where ϖ1,ϖ2, and ϖ3 are design parameters and ξ is the input
signal. From [28], it can be concluded that there exists a
positive constant ϱ such that χi − ξ(i− 1)

� O((1/ϖ1)
(ϱω− i+1)),

i � 1, 2, where ω � ((1 − ω)/ω) and ω ∈ min ϱ/(1 + ϱ), 1/2}.
3erefore, there exist sufficiently small positive constants
κ1 and κ2 such that |ϵ1|≤ κ1 and |ϵ2|≤ κ2, where ϵ1 � χ1 − ξ
and ϵ2 � χ2 − _ξ.

In order to estimate the function fi(xi), we define
Fi(xi) � lifi(xi); li is the positive design constant. According
to the approximation property of RBFNNs, the approxi-
mation form of Fi(xi) can be expressed as

Fi xi(  � θ
T

Fi
φFi

xi( , (4)

where θFi
� [θFi1

, θFi2
, . . . , θFis

]T ∈ Rs is the weight vector, s is
the node number, and φFi

(xi) � [φFi1
(xi),φFi2

(xi), . . . ,

φFis
(xi)]

T ∈ Rs is the basis function vector. Here,
φFij

(xi), j � 1, 2, . . . , s, is
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φFij
xi(  � exp

− xi − cj 
T
xi − cj 

2b
2
j

⎛⎝ ⎞⎠, (5)

where cj � [cj1, cj2, . . . , cji]
T ∈ Ri and bj are the center

vector and width of the basis function, respectively.
By [2–4], choosing appropriate cj and bj and some

sufficiently large integer s, there exists an ideal weight vector
θ∗Fi
∈ Rs such that

Fi xi(  � θ ∗T
Fi

φFi
xi(  + εFi

, (6)

where εFi
is the approximate error. So, we can rewrite Fi(xi)

in (6) as

Fi xi(  � θ
T

Fi
φFi

xi(  + θ
T

Fi
φFi

xi(  + εFi
, (7)

where θFi
� θ∗Fi

− θFi
, and θFi

is the estimation of θ∗Fi
.

Notice that Fi(xi) � lifi(xi), so we have

fi xi(  � l
− 1
i Fi xi(  � l

− 1
i

θ
T

Fi
φFi

xi(  + l
− 1
i

θ
T

Fi
φFi

xi(  + l
− 1
i εFi

.

(8)

Substituting (8) into (2), we get

_x1 � l
− 1
1

θ
T

F1
φF1

x1(  + l
− 1
1

θ
T

F1
φF1

x1(  + g1 x1( x2 + D1,

_x2 � l
− 1
2

θ
T

F2
φF2

x2(  + l
− 1
2

θ
T

F2
φF2

x2(  + g2 x2( x3 + D2,

· · ·

_xn � l
− 1
n

θ
T

Fn
φFn

xn(  + l
− 1
n

θ
T

Fn
φFn

xn(  + gn xn( u + Dn,

(9)

where Di � di(t) + l− 1i εFi
, i � 1, 2, . . . , n.

Remark 2. From (9), the design parameters l1, l2, . . . , ln need
to meet certain conditions, which will be given in the
subsequent stability analysis. In [31], Bu et al. did not
consider the case that nonlinear functions
fi(xi), i � 1, 2, . . . , n, are unknown and how to estimate
them accurately. ,erefore, the results of this paper can be
regarded as a further study of [31]. For parameters
l1, l2, . . . , ln in (9), the stability conditions of them will be
given in the later analytical proof.

2.2. Prescribed Performance. Define the tracking error var-
iable e1 � x1 − xd, and set e satisfies the following prescribed
performance boundary (PPB) [31]:

p1(t)< e1 <p2(t), (10)

where p1(t) and p2(t) are performance functions and de-
fined as

p1(t) � sign e1(0)(  − λ1 μ(t) − μ∞sign e1(0)( ,

p2(t) � sign e1(0)(  + λ2 μ(t) − μ∞sign e1(0)( ,

μ(t) � μ0 − μ∞( e
− λ3t

+ μ∞,

(11)

where 0≤ λ1, λ2 ≤ 1, μ0 > μ∞ > 0, and λ3 > 0.

In order to ensure that the tracking error e is limited
within PPB (10), we introduce the following transformation
variable z1:

z1 � ln
h(t)

1 − h(t)
 , (12)

where h(t) � (e1(t) − p1(t)/p2(t) − p1(t)).

Lemma 2. If z1 is bounded, e1 can be limited within PPB
(10).

Proof. Since z1 is bounded, there exists a constant M> 0
such that |z1|≤M. Notice z1 � ln(h(t)/1 − h(t)) is equiv-
alent to h(t) � (ez1 /1 + ez1). So,

0<
e

− M1

1 + e
− M1
< h(t) �

e1(t) − p1(t)

p2(t) − p1(t)
<

e
M1

1 + e
M1
< 1. (13)

Clearly, we have p1(t)< e1(t)<p2(t). ,e proof is
completed. □

Remark 3. Compared with [30], prescribed performance
function (11) in this paper can guarantee the convergence of
e1 in a small overshoot, which is depicted in Figure 1.

When the tracking error e1 is limited within PPB (10) by
choosing appropriate parameters μ0, μ∞, λ1, λ2, and λ3, we
can conclude that (i) r1 � (1/h(t)(1 − h(t))(p2(t)−

p1(t)))> 0; (ii) r1 tends to a small neighborhood of a certain
constant, and then _r1 also tends to a small neighborhood of
zero. ,erefore, based on the above two properties of r1 and
Lemma 2, we use (1/2r1)z

2
1 instead of (1/2)z2

1 to explore the
boundedness of z1.

2.3. Control Aim. ,e aim of this paper is (i) to design the
composite prescribed performance control scheme so that
the tracking error e1 satisfies PPB (10) and (ii) to construct
the disturbance observer Di and neural network rules (NNs)
so that fi(xi) + di(t) can be estimated accurately.

Remark 4. It is necessary to point out that the disturbance
observer Di in this paper is not to estimate the external
disturbance di(t) but to estimate accurately the external
disturbance di(t) and unknown function fi(xi), i �

1, 2, . . . , n.

3. Control Design

In order to prove that z1 is bounded, the prescribed per-
formance control and backstepping technique will be
employed in this section. And the controller u will be
designed at step n.

Step 1. ,e time derivative of z1 becomes

_z1 � r1 l
− 1
1

θ
T

F1
φF1

x1(  + l
− 1
1

θ
T

F1
φF1

x1(  + g1 x1( x2 + D1 − _xd +Π ,

(14)
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where

r1 �
1

h(t)(1 − h(t)) p2(t) − p1(t)( 
> 0,

Π �
p1(t) _p2(t) − _p1(t)p2(t) − e1 _p2(t) − p1(t)( 

p2(t) − p1(t)
.

(15)

Remark 5. According to (10) and (12), we know that
p2(t) − p1(t)> 0, 1> h(t)> 0, and 1 − h(t)> 0, so
r1 � (1/h(t)(1 − h(t))(p2(t) − p1(t)))> 0.

Choose virtual control α1 as

α1 �
− l

− 1
1

θ
T

F1
φF1

x1(  − D1 + _xd − Π − c1z1

g1 x1( 
, (16)

where D1 is the estimation of D1 and c1 is a positive design
constant.

Define z2 � x2 − ξ21, where ξ21 is used to estimate α1
through the following second-order filter:

_ξ21 � ξ22,

_ξ22 � λ221 − λ22tanh ξ21 − α1(  − λ23tanh
ξ22
λ21

  ,

(17)

where λ21, λ22, and λ23 are design parameters. By Lemma 1,
we know that there exists a positive constant M1 such that
|ξ21 − α1|≤M1. Define e2 � ξ21 − α1 and a prediction error
z1 as z1 � z1 − z1, where z1 satisfies

_z1 � r1 l
− 1
1

θ
T

F1
φF1

x1(  + g1 x1( x2 + D1 − _xd + Π − k1z1 ,

(18)

where k1 is a positive design constant. ,e disturbance
observer is designed as

D1 � l01 z1 − ω1( ,

_ω1 � r1 l
− 1
1

θ
T

F1
φF1

x1(  + g1 x1( x2 + D1 − _xd + Π

+ l
− 1
01 c1z1 − z1( ,

(19)

where l01 and c1 are positive constants. It should be pointed
out that the purpose of introducing the prediction error here
is to provide the information of the error state so that the

following parameter adaptive law can ensure that the NN
effectively estimates the unknown function.

,e composite parameter adaptive law for θF1
is designed

as

θ
.

F1
� λF1

l
− 1
1 z1φF1

x1(  − c1l
− 1
1 z1φF1

x1(  − δ1θF1
 , (20)

where λF1
and δ1 are positive design parameters.

Define the following Lyapunov function:

V1 �
1
2r1

z
2
1 + c1z

2
1 + D

2
1  +

1
2λF1

θ
T

F1
θF1

, (21)

where D1 � D1 − D1. According to (14)–(20) and
x2 � z2 + e2 + α1, the time derivative of V1 is

_V1 � − c1 +
_r1

2r
2
1

 z
2
1 − c1 k1 +

_r1

2r
2
1

 z
2
1 + z1g1 x1( z2

+ z1g1 x1( e2,

− l01 +
_r1

2r
2
1

  D
2
1 +

D1
_D1

r1
− l01l

− 1
1

D1
θ

T

F1
φF1

x1( 

+ δ1θ
T

F1
θ

T

F1
.

(22)

If z2 is bounded, i.e., there exists a positive constant K2
such that |z2|≤K2, and according to Young’s inequality, we
have

D1
_D1

r1
≤

D1

2r
2
1

+
_D
2
1
2
≤

D1

2r
2
1

+
D
∗ 2
1
2

,

− l01l
− 1
1

D1
θ

T

F1
φF1

x1( ≤
l01l

− 1
1

D
2
1

2
+

l01l
− 1
1 χ2F1

2
θF1

�����

�����
2
,

δ1θ
T

F1
θF1
≤ −

δ1
2

θF1

�����

�����
2

+
δ1
2

θ
∗
F1

�����

�����
2
,

z1e2g1 x1( ≤
z
2
1
2

+
g1M

2
1

2
,

z1g1 x1( z2 ≤
z
2
1
2

+
g
2
1K

2
2

2
,

(23)

Time (second)

μ2 (0)

μ2 (t)

μ1 (t)

μ1 (0)

e1 (0)

e1

e1(0) > 0

(a)

Time (second)

μ2 (t)

μ1 (t)
e1μ2 (0)

μ1 (0)

e1 (0)

e1(0) < 0

(b)

Figure 1: Graphical illustration of prescribed performance function (11) with (a) e1(0)> 0; (b) e1(0)< 0.
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where ‖φF1
(x1)‖≤ χF1

. Here, the boundedness of φF1
(x1) can

be referred to in [12, 13]. Substituting (23) into (22), we
obtain

_V1 ≤ − c1 − 1 +
_r1

2r
2
1

 z
2
1 − c1 k1 +

_r1

2r
2
1

 z
2
1

− l01 −
l01l

− 1
1
2

+
_r1 − 1
2r

2
1

  D
2
1 −

δ1
2

−
l01l

− 1
1 χ2F1

2
⎛⎝ ⎞⎠ θF1

�����

�����
2

√√√√
θ

T

F1
θF1

+R1,

(24)

where R1 � (D∗21 /2) + (δ1/2)‖θ∗F1
‖2 + (g2

1K
2
2/2) + (g1M

2
1/2).

Let c1>1 − ( _r1/2r21), k1> − ( _r1/2r21), l01>(l01l
− 1
1 /2) − ( _r1 − 1/

2r21), and (δ1/2)>(l01l
− 1
1 χ2F1

/2), and define the following
compact sets:

Ωz1
� z1| z1


≤

������������
R1

c1 − 1 + _r1/2r
2
1


⎧⎨

⎩

⎫⎬

⎭,

Ωz1 � z1| z1


≤
�������������

R1

c1 k1 + _r1/2r
2
1 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

ΩD1
� D1|

D1


≤
��������������������

R1

l01 − l01l
− 1
1 /2 + _r1 − 1/2r

2
1


⎧⎨

⎩

⎫⎬

⎭,

ΩθF1

� θF1
| θF1



≤
��������������

R1

δ1/2 − l01l
− 1
1 χ2F1

/2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(25)

It can be seen that z1 ∉ Ωz1
or z1 ∉ Ωz1 or

D1 ∉ ΩD1
or

θF1
∉ ΩθF1

, and we have _V1 < 0. ,us, z1, z1, D1, and θF1
are

all semiglobally uniformly bounded.,e above conclusion is
based on the fact that the variable z2 is bounded. Now, we
need to prove that z2 is bounded.

Step i. i � 2, . . . , n − 1.
According to the definition of zi � xi − ξi1, we have

_zi � l
− 1
i

θ
T

Fi
φFi

xi(  + l
− 1
i

θ
T

Fi
φFi

xi(  + gi xi( xi+1 + Di − ξi2.

(26)

Choose virtual control αi as

αi �
− l

− 1
i

θ
T

Fi
φFi

xi(  − Di + ξi2 − cizi

gi xi( 
, (27)

where Di is the estimation of Di and ci is a positive design
constant.

Define zi+1 � xi+1 − ξi+1,1, and ξi+1,1 satisfies the fol-
lowing second-order filter:
_ξi+1,1 � ξi+1,2,

_ξi+1,2 � λ2i+1,1 − λi+1,2tanh ξi+i,1 − αi  − λi+1,1tanh
ξi+1,3

λi+1,1
  ,

(28)

where λi+1,1, λi+1,2, and λi+1,3 are design parameters. Define
ei+1 � ξi+i,1 − αi, and there exists a positive constant Mi such
that |ei+1| � |ξi+i,1 − αi|≤Mi by Lemma 1. Similar to Step 1,
define the prediction variable zi as

_zi � l
− 1
i

θ
T

Fi
φFi

xi(  + gi xi( xi+1 + Di − ξi2 − kizi, (29)

where zi � zi − zi and ki > 0.
,e disturbance observer is designed as

Di � l0i zi − wi( ,

_wi � l
− 1
i

θ
T

Fi
φFi

xi(  + gi xi( xi+1 + Di − ξi2 + l
− 1
0i cizi − zi( ,

(30)

where l0i is a positive design parameter. And the composite
parameter adaptive law for θFi

is designed as

θ
.

Fi
� λFi

l
− 1
i z1φFi

xi(  − cil
− 1
i ziφFi

xi(  − δi
θFi

 , (31)

where λFi
and δi are positive design parameters.

Define the following Lyapunov function:

Vi �
1
2

z
2
i + ciz

2
i + D

2
i +

1
λFi

θ
T

Fi

θFi
 , (32)

where Di � Di − Di.
According to (27)–(31) and xi+1 � zi+1 + ei+1 + αi, the

time derivative of Vi is

_Vi � − c1z
2
1 − cikiz

2
i + zigi xi( zi+1 + zigi xi( ei+1

− l0i
D
2
1 + Di

_Di − l0il
− 1
i

Di
θ

T

Fi
φFi

xi(  + δi
θ

T

Fi

θ
T

Fi
.

(33)

If zi+1 is bounded, i.e., |zi+1|≤Ki+1, Ki+1 is a positive
constant, and according to Young’s inequality, we have

Di
_Di ≤

Di

2
+

_D
2
i

2
≤

Di

2
+

D
∗ 2
i

2
,

− l0il
− 1
i

Di
θ

T

Fi
φFi

xi( ≤
l0il

− 1
i

D
2
i

2
+

l0il
− 1
i χ2Fi

2
θFi

�����

�����
2
,

δi
θ

T

Fi

θFi
≤ −

δi

2
θFi

�����

�����
2

+
δi

2
θ
∗
Fi

�����

�����
2
,

ziei+1gi xi( ≤
z
2
i

2
+

giM
2
i

2
,

zigi xi( zi+1 ≤
z
2
i

2
+

g
2
i K

2
i+1

2
,

(34)

where ‖φFi
(xi)‖≤ χFi

. Substituting (34) into (33), we obtain

_Vi ≤ − ci − 1( z
2
i − cikiz

2
i − l0i −

1
2

−
l0il

− 1
i

2
  D

2
i

−
δi

2
−

l0il
− 1
i χ2Fi

2
⎛⎝ ⎞⎠ θFi

�����

�����
2

√√√√
θ

T

Fi
θFi

+ Ri,

(35)
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where Ri � (c2
i /2) + (δi/2)‖θ∗Fi

‖2 + (g2
i K2

i+1/2) + (giM
2
i /2).

Let ci > 1, ki > 0, l0i > (l0il
− 1
i /2) + (1/2), and (δi/2)>

(l0il
− 1
i χ2Fi

/2), and define the following compact sets:

Ωzi
� zi| zi


≤

�����
Ri

ci − 1


⎧⎨

⎩

⎫⎬

⎭,

Ωzi
� zi| zi


≤

���
Ri

ciki


⎧⎨

⎩

⎫⎬

⎭,

ΩDi

� Di|
Di


≤

�����������������
Ri

l0i − l0il
− 1
i /2  − (1/2)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

ΩθFi

� θFi
| θFi



≤
�����������������

Ri

δi/2(  − l0il
− 1
i χ2Fi

/2 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(36)

We know that if zi ∉ Ωzi
or zi ∉ Ωzi

or Di ∉ ΩDi

or
θFi
∉ ΩθFi

, we have _Vi < 0. ,us, zi, zi, Di, and θFi
are sem-

iglobally uniformly bounded. So, to prove that zi is bounded,
we have to prove that zi+1 is bounded.

Step n. ,e time derivative of zn produces

_zn � l
− 1
n

θ
T

Fn
φFn

xn(  + l
− 1
n

θ
T

Fn
φFn

xn(  + gn xn( u + Dn − ξn2.

(37)

,e control u is designed as

u �
− l

− 1
n

θ
T

Fn
φFn

xn(  − Dn + ξn2 − cnzn

gn xn( 
, (38)

where Dn is the estimation of Dn and cn is a positive
constant. ,e prediction error zn � zn − zn, and zn satisfies

_zn � l
− 1
n

θ
T

Fn
φFn

xn(  + gn xn( u + Dn − ξn2 − knzn. (39)

,e disturbance observer Dn is designed as
Dn � l0n zn − wn( ,

_wn � l
− 1
n

θ
T

Fn
φFn

xn(  + gn xn( u + Dn − ξn2 + l
− 1
0n cnzn − zn( ,

(40)

where l0n is a positive design parameter. And the composite
parameter adaptive law for θFn

is designed as

θ
.

Fn
� λFn

l
− 1
n znφFn

xn(  − cnl
− 1
n

znφFn
xn(  − δn

θFn
 , (41)

where λFn
and δn are positive design parameters.

Consider the following Lyapunov function:

Vn �
1
2

z
2
n + cnz

2
n + D

2
n +

1
λFn

θ
T

Fn

θFn
 , (42)

where Dn � Dn − Dn.
According to (38)–(41), the time derivative of Vn is

_Vn � − cnz
2
n − cnknz

2
n − l0n

D
2
n + Dn

_Dn

− l0nl
− 1
n

Dn
θ

T

Fn
φFn

xn(  + δn
θ

T

Fn

θ
T

Fn
.

(43)

Consider the following facts:

Dn
_Dn ≤

Dn

2
+

D
∗ 2
n

2
,

− l0nl
− 1
n

Dn
θ

T

Fn
φFn

xn(  + δn
θ

T

Fn

θ
T

Fn
,

δn
θ

T

Fn

θFn
≤ −

δn

2
θFn

�����

�����
2

+
δn

2
θ
∗
Fn

�����

�����
2
,

(44)

where ‖φFn
(xn)‖≤ χFn

. Substituting (44) into (43), we obtain

_Vn ≤ − cnz
2
n − cnknz

2
n − l0n −

1
2

−
l0nl

− 1
n

2
  D

2
n

−
δn

2
−

l0nl
− 1
n χ2Fn

2
⎛⎝ ⎞⎠ θFn

�����

�����
2

+ Rn,

(45)

where Rn � (D∗ 2n /2) + (δn/2)‖θ∗Fn
‖2. Let cn > 0, kn > 0,

l0n > (l0nl− 1n /2) + (1/2), and (δn/2)> (l0nl− 1n χ2Fn
/2), and define

the following compact sets:

Ωzn
� zi| zn


≤

���
Rn

cn


⎧⎨

⎩

⎫⎬

⎭,

Ωzn
� zn| zn


≤

����
Rn

cnkn


⎧⎨

⎩

⎫⎬

⎭,

ΩDn

� Dn| Dn


≤

������������������
Ri

l0n − l0nl
− 1
n /2  − (1/2)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

ΩθFn

� θFn
| θFn



≤
�����������������

Rn

δn/2(  − l0nl
− 1
n χ2Fn

/2 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(46)

Obviously, zn ∉ Ωzn
or zn ∉ Ωzn

or Dn ∉ ΩDn

or
θFn
∉ ΩθFn

, and we have _Vn < 0. ,us, zn, zn, Dn, and θFn
are

semiglobally uniformly bounded. It can be seen that the
controller u can guarantee that zn is bounded, the bound-
edness of zn guarantees that zn− 1 is bounded, and the like,
and z2 guarantees that z1 is bounded. So, we get z1 is
bounded in turn. According to Lemma 2, the tracking error
e1 satisfies PPB (10). We obtain the following main result.

Theorem 1. Consider strict-feedback nonlinear system (2)
with uncertainties and unknown time-varying disturbances.
If virtual controllers (16), (27), disturbance observers (19),
(30), (40), the RBFNN updating laws (20), (31), (41), and real
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controller (37) are designed, it is guaranteed that the tracking
error e1 satisfies PPB (10).

Remark 6. In this paper, neural network technology is
adopted to transform system (2) into the equivalent of
system (9). If the external disturbance Di � 0 in (9), it can be
found from the construction of the disturbance observer that
li � 0 and l0i � 0, i � 1, 2, · · ·, n. So, the control method in
this paper can be applied to a wider range.

Remark 7. ,e traditional PPC control method can also
be used in this paper, but the control effect is less than the
proposed control method in this paper, which will
be given intuitively through the figures in the
simulations.

4. Simulation Studies

In the simulation, the following second-order strict-feed-
back nonlinear system is considered:

_x1 � −
sin x1( 

2 + sin x1( 
√√√√√√√√√√

f1 x1( )

+
1

2 + 0.1 sin x1( 
√√√√√√√√√√√√

g1 x1( )

x2 + sin(0.15t)√√√√√√√√
d1(t)

,

_x2 � −
x1

x2 + sin x1( 
− 0.25x2

√√√√√√√√√√√√√√√√√√√√
f2 x2( )

+ 3 − 0.2 sin x2( ( 
√√√√√√√√√√√√√√

g2 x2( )

u + 2 sin(0.15t)√√√√√√√√√√
d2(t)

,

y � x1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

Denote the method in this paper as DOB-PPC. In order
to compare with DOB-PPC, define F1(x1) � f1(x1) + d1(t)

and F2(x2) � f2(x2) + d2(t), and the traditional PPC
control method (denoted as T-PPC) is designed as

u �
− ϑ

T

F2
φF2

x2(  + ξ22 − c2z2

g2 x2( 
,

_ξ21 � ξ22,

_ξ22 � λ221 − λ22tanh ξ21 − α1(  − λ23tanh
ξ22
λ21

  ,

α1 �

ϑ
T

F1
φF1

x1(  + _xd − Π − c1z1

g1 x1( 
,

ϑ
.

F1
� λF1

z1φF1
x1(  − δ1ϑF1

 ,

ϑ
.

F2
� λF2

z2φF2
x2(  − δ2ϑF2

 ,

z1 � tanh
e

μ
 ,

μ � (2.5 − 0.3)exp(− 3.0t) + 0.3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

,e stability proof of T-PPC (48) is given in Appendix 1.
It can be found that only the RBFNN is used to estimate
system uncertainty in T-PPC (48). ,e parameters of T-PPC
are chosen as λF1

� λF2
� 40, c1 � c2 � 5, λ21 � 150,

λ22 � λ23 � 5, and δ1 � δ2 � 0.5. N1 � 17 andN2 � 45
(N1 andN2 are the dimensions of ϑF1

and ϑF2
, respectively).

,e centers of x1 and x2 are evenly spaced in [0, 8] and
[0, 8] × [− 1, 3], respectively.

For method of DOB-PPC, the above parameters are the
same. In addition, select l1 � l2 � 10, l01 � l02 � 20,
c1 � c2 � 3, k1 � k2 � 5, and λ1 � λ2 � (1/2). ,e dimen-
sion of θF1

is N1 � 17, and the dimension of θF2
is N2 � 81.

,e centers of x1 and x2 are the same as ones in the method
of T-PPC. ,e initial value x(0) � [x1(0), x2(0)]T � [2, 2]T,
and xd � sin(t). Firstly, the tracking error effect of T-PPC
and DOB-PPC is compared, and the result in Figure 2

Time (second)

0

1

2

3

e

0 5 10 15

e by using DOB-PPC
e by using T-PPC

(a)

Time (second)

–0.2

–0.1

0

0.1

0.2

e

e by using DOB-PPC
e by using T-PPC

10 11 12 13 14 15

(b)

Figure 2: Tacking error e of system (47) for two methods in time period (a) [0, 15 s]; (b) [10 s, 15 s].
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(x

1)
 +
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1 

(t)

f1 (x1) + d1 (t)
ϑT
F1φF1

(x1)by using T-PPCˆ

(a)

f 1 
(x

1)
 +

 d
1 

(t)

f1 (x1) + d1 (t)
ϑT
F1φF1

(x1)by using T-PPCˆ

Time (second)

0

0.5

1

1.5

2

10 11 12 13 14 15

(b)

f2 (x2) + d2 (t)
ϑT
F2φF2

(x2)by using T-PPCˆ
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–10
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0

5
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15
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25

0 5 10 15

f 2 
(x

2)
 +

 d
2 

(t)

(c)

f2 (x2) + d2 (t)
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F2φF2

(x2)by using T-PPCˆ

f 2 
(x

2)
 +

 d
2 

(t)

Time (second)

–2

–1

0

1

2

3

4

5

10 11 12 13 14 15

(d)

Figure 3: Estimation of f1(x1) + d1(t) by using T-PPC in time period (a) [0, 15 s]; (b) [10 s, 15 s]; estimation of f2(x2) + d2(t) by using T-
PPC in time period (c) [0, 15 s]; (d) [10 s, 15 s].
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(b)

Figure 4: Continued.
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confirms that the error effect of DOB-PPC is better than that
of T-PPC.

,e estimation of f1(x1) + d1(t) and f2(x2) + d2(t) for
T-PPC and DOB-PPC is shown in Figures 3 and 4. It can be
found that the estimated effect of f1(x1) + d1(t) and

f2(x2) + d2(t) is not satisfactory by using T-PPC, while this
estimated effect is greatly improved by using DOB-PPC.

From (25), _r1 appears in compact sets Ωz1
,Ωz1, and ΩD1

.
If _r1 is infinite, this will cause the above compact sets to not
exist. By observing Figure 5, we find that r1 tends to a certain

–10

0

10

20

30

40

0 5 10 15

f 2 
(x

2)
 +

 d
2 

(t)

Time (second)

ˆ
f2 (x2) + d2 (t)
θT
F2φF2

(x2) + D2by using DOB-PPCˆ

(c)

–5

0

5

10 11 12 13 14 15

f 2 
(x

2)
 +

 d
2 

(t)

Time (second)

ˆ
f2 (x2) + d2 (t)
θT
F2φF2

(x2) + D2by using DOB-PPCˆ

(d)

Figure 4: Estimation of f1(x1) + d1(t) by using DOB-PPC in time period (a) [0, 15 s]; (b) [10 s, 15 s]; estimation of f2(x2) + d2(t) by using
DOB-PPC in time period (c) [0, 15 s]; (d) [10 s, 15 s].
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15
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.

.

r1
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Figure 5: Time response of (a) r1 and (b) _r1.
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Figure 6: Time response of controller u for two methods in time period (a) [0, 15 s]; (b) [0, 1.5 s].
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positive value, and _r1 tends to zero, and this simulation
result also confirms the rationality of (z2

1/2r1) in Remark 3.
Finally, the control input of the two methods is shown in
Figure 6. It can be seen from Figure 6 that the energy of
DOB-PPC is greater than that of T-PPC at the beginning of
the control process, and then the energy of the two control
methods quickly approaches the same level. ,e results of
the two methods are that the proposed DOB-PPC can
significantly improve the tracking performance and the
estimation accuracy of system uncertainties. So, it can be
concluded that the proposed DOB-PPC is more effective
than T-PPC.

5. Conclusion

In this paper, the composite prescribed performance
control scheme is investigated for uncertain strict-feed-
back systems with unknown external disturbances. To
estimate the unknown nonlinear functions fi(xi) and
unknown disturbances di(t), RBFNNs and disturbance
observers are employed. ,e observer Di constructed here
does not estimate the external disturbance di(t) but es-
timates the external disturbance di(t) and approximates
error εFi

. With the composite NN updating laws and
disturbance observers, fi(xi) + di(t) can be accurately
estimated. Meanwhile, the whole closed-loop system can
ensure stability by using PPC and backstepping technique.
Moreover, the tracking error e1 satisfies PPB (10). Finally,
an example shows the effectiveness of the proposed
method. ,rough the research in this paper, DOB-PPC
with nonlinear control inputs will become the next re-
search direction.

Appendix

By using RBFNNs,

Fi xi(  � ϑ∗T

Fi
φFi

xi(  + εFi
, i � 1, 2, (A.1)

where εFi
is bounded, i.e., there exists a positive constant δ∗i

such that |εFi
|≤ δ∗i . So, we have

Fi xi(  � ϑ T

Fi
φFi

xi(  + ϑ T

Fi
φFi

xi(  + εFi
xi( , (A.2)

where ϑ Fi
� ϑ ∗

Fi

− ϑ Fi
, and ϑ Fi

is the estimation of ϑ∗
Fi
.

,erefore, second-order nonlinear system (47) can be re-
written as

_x1 � ϑ T

F1
φF1

x1(  + ϑ T

F1
φF1

x1(  + g1 x1( x2 + εF1
x1( ,

_x2 � ϑ T

F2
φF2

x2(  + ϑ T

F2
φF2

x2(  + g2 x2( u + εF2
x2( ,

y � x1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(A.3)

For comparison with traditional PPB (1), we let λ � 1, so
the PPB of tracking error e � x1 − xd is set as

− μ(t)< e< μ(t), μ(t) � μ0 − μ∞( e
− λ1t

+ μ∞. (A.4)

Define transformation variable z1 � tanh(e/μ). Simi-
larly, we only need to prove z1 is bounded, which can
guarantee that the tracking error e satisfies PPB (A.4). ,e
following two steps explore the effectiveness of control
method (48).

Step 1: the time derivative of z1 becomes

_z1 � r1
ϑ T

F1
φF1

x1(  + ϑ
T

F1
φF1

x1(  + g1 x1( x2 + εF1
x1(  − _xd + Π ,

(A.5)

where r1 � (1/μ(1 − (e/μ)2))> 0 andΠ � − (e _μ/μ).
Choose virtual control α1 as

α1 �
− l

− 1
1

ϑ
T

F1
φF1

x1(  + _xd − Π − c1z1

g1 x1( 
, (A.6)

where c1 is a positive design constant. Define
z2 � x2 − ξ21, where ξ21 is used to estimate α1 through
the following second-order filter:

_ξ21 � ξ22,

_ξ22 � λ221 − λ22tanh ξ21 − α1(  − λ23tanh
ξ22
λ21

  ,

(A.7)

where λ21, λ22, and λ23 are design parameters.
According to Lemma 1, when the appropriate pa-
rameters λ21, λ22, and λ23 are selected, |ξ21 − α1| is
bounded. We assume this upper bound is M1. Define
e2 � ξ21 − α1, and the parameter adaptive law for ϑF1

is
designed as

ϑ
.

F1
� λF1

z1φF1
x1(  − δ1ϑF1

 , (A.8)

where λF1
and δ1 are positive design parameters.

Define the following Lyapunov function:

V1 �
1
2r1

z
2
1 +

1
2λF1

ϑ
T

F1
ϑF1

. (A.9)

According to (A.5)–(A.8) and x2 � z2 + e2 + α1, the
time derivative of V1 is

_V1 � − c1 +
_r1

2r
2
1

 z
2
1 + z1g1 x1( z2 + z1g1 x1( e2

+ z1εF1
x1(  + δ1ϑ

T

F1
ϑ

T

F1
.

(A.10)

If z2 is bounded, i.e., there exists a positive constant K2
such that |z2|≤K2, and according to Young’s in-
equality, we have
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z1e2g1 x1( ≤
z
2
1
2

+
g1M

2
1

2
,

z1g1 x1( z2 ≤
z
2
1
2

+
g
2
1K

2
2

2
,

δ1ϑ
T

F1
ϑF1
≤ −

δ1
2

ϑF1

�����

�����
2

+
δ1
2

ϑ∗
F1

�����

�����
2
,

z1εF1
x1( ≤

z
2
1
2

+
δ ∗ 21
2

.

(A.11)

Substituting (A.11) into (A.10), we obtain

_V1 ≤ − c1 −
3
2

+
_r1

2r
2
1

 z
2
1 −

δ1
2

ϑF1

�����

�����
2

+ R1, (A.12)

where R1 � (g1M
2
1/2) + (g2

1K
2
2/2) + (δ1/2)‖ϑ∗

F1
‖2 +

(δ ∗ 21 /2). Let c1 > (3/2) − (_r1/2r21), and define the fol-
lowing compact sets:

Ωz1
� z1| z1


≤

�����������������

R1

c1 − (3/2) + _r1/2r
2
1 


⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

Ωϑ
F1

� ϑF1
| ϑF1



≤

������
R1

δ1/2( 


⎧⎨

⎩

⎫⎬

⎭.

(A.13)

It can be seen that z1 ∉ Ωz1
or ϑF1
∉ Ωϑ

F1

, and we have
_V1 < 0. ,us, z1 and ϑF1

are all semiglobally uniformly
bounded.,e above conclusion is based on the fact that
the variable z2 is bounded. Now, we need to prove that
z2 is bounded.
Step 2:
,e time derivative of z2 produces

_z2 � ϑ
T

F2
φF2

x2(  + ϑ
T

F2
φF2

x2(  + g2 x2( u + εF2
x2(  − ξ22.

(A.14)

,e control u is designed as

u �
− ϑ

T

F2
φF2

x2(  + ξ22 − c2z2

g2 x2( 
, (A.15)

where c2 is a positive constant. And the parameter
adaptive law for ϑF2

is designed as

ϑ
.

F2
� λF2

z2φF2
x2(  − δ2ϑF2

 , (A.16)

where λF2
and δ2 are positive design parameters.

Consider the following Lyapunov function:

V2 �
1
2

z
2
2 +

1
λF2

ϑ
T

F2
ϑ F2

 . (A.17)

According to (A.15) and (A.16), the time derivative ofV2 is

_V2 � − c2z
2
2 − z2εF2

x2(  + δ2ϑ
T

F2
ϑ

T

F2
. (A.18)

Consider the following facts:

− z2εF2
x2( ≤

z
2
2
2

+
δ ∗ 22
2

,

δ2ϑ
T

F2
ϑF2
≤ −

δ2
2

ϑF2

�����

�����
2

+
δ2
2

ϑ∗
F2

�����

�����
2
.

(A.19)

Substituting (A.19) into (A.18), we obtain

_V2 ≤ − c2 −
1
2

 z
2
2 −

δ2
2

ϑF2

�����

�����
2

+ R2, (A.20)

where R2 � (δ ∗ 22 /2) + (δ2/2)‖ϑ∗
F2

‖2. Let c2 > (1/2), and
define the following compact sets:

Ωz2
� z2| z2


≤

��������
R2

c2 − (1/2)


⎧⎨

⎩

⎫⎬

⎭,

Ωϑ
F2

� ϑFn
| ϑFn



≤

������
R2

δ2/2( 


⎧⎨

⎩

⎫⎬

⎭.

(A.21)

Obviously, z2 ∉ Ωz2
or ϑF2
∉ Ωϑ

F2

, and we have _V2 < 0.

,us, z2 and ϑF2
are semiglobally uniformly bounded. So, the

controller u can guarantee that z2 is bounded, and the
boundedness of z2 guarantees that z1 is bounded. ,erefore,
the tracking error e satisfies PPB (A.4). ,e above discussion
proves the controllability of method (48).
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