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Investigation of joint torque constraint compliance is of significance for robot manipulators especially working in complex
environments. A lot of which is attributed to that, on the one hand, it is beneficial to the improvement of both safety and reliability
of themission execution. On the other hand, the energy consumption required by the robot to complete the desiredmission can be
reduced. Most existing schemes do not take the joint torque limit and other inherent physical structure limits in a manipulator
into account at the same time. In addition, many unavoidable uncertainties such as the external environmental disturbance and/or
electromagnetism interferences in the circuit systemmay influence the accuracy and effectiveness of the task execution for a robot.
In this study, we cast light on the acceleration level control of redundant robot manipulators considering both four physical
constraint limits and interference rejection. A robust unified quadratic-programming-based hybrid control scheme is proposed,
where the joint torque constraints are converted as two inequality constraints based on the robots’ dynamics equation. A re-
current-neural-network-based controller is designed for solving the control variable. Numerical experiments performing in
PUMA 560 manipulator and planer manipulator illustrate that a rational torque distribution is obtained among the joints and the
considered physical structural vectors are all restricted to the respective constraint range. In addition, even disturbed by the noise,
the manipulator still successfully tracks the desired trajectory under the proposed control scheme.

1. Introduction

With the gradually mature robotic technology, the robot is
being applied to all kinds of complicated or dangerous tasks
such as deep-sea exploring, search, and rescue tasks in
quake-hit areas [1]. It imposes a challenge on the safety and
reliability of the mission execution for a robot [2, 3]. A
manipulator is considered to be redundant if its degrees of
freedom (DOFs) is more than the minimal ones required by
the robot to complete the desired end-effector task [4–8].
Due to redundancy, except that the manipulator can
complete the primary end-effector task, optimization of

some performance indices and multiple additional subtasks
such as physical constraints compliance [9, 10], avoiding
collision with the detected obstacles [11, 12], repetitive
motion planning [13, 14], etc., can be achieved simulta-
neously for redundant manipulators [15]. Multiobjectives-
integrated hybrid tasks have been achieved in both a single
manipulator [4–6] and collective ones [7–9]. As one of the
important physical variables, joint torque limits compliance
of a redundant manipulator is necessary to be considered. If
the joint torque is suddenly enlarged, the robotic structure or
the surrounding things will be possible to be damaged.
Moreover, if too large torque is always imposed on the
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manipulator, the service life of the motor embedded inside
the robot will be reduced. More importantly, if the torque is
overload, the desired end-effector task cannot be done at all
owing to the deviation between the desired driving force and
the actual driving force output by the motor-driven robot.
Joint torque optimization is equivalent to optimize the input
power of the manipulators’ joint actuator [15, 16].+erefore,
to improve both the safety and reliability of mission exe-
cution for a robot manipulator and reduce energy con-
sumption while completing the desired task, it is necessary to
consider the joint torque limits of redundant manipulator
among the robot control scheme.

Many efforts taking joint torque limits into account have
been made. +e easier schemes are solved through the null-
space or pseudoinverse method [17, 18]. In addition to the
found instability problem for both, the pseudoinverse
method is with the higher computational cost due to the
pseudoinverse of the Jacobian matrix needs to be computed.
Moreover, high demand for the robot working in a com-
plicated environment makes the robot expected to simul-
taneously achieve the primary end-effector task andmultiple
secondary subtasks. It has no ability to meet this require-
ment obviously owing to the pseudoinverse method that
does not handle such physical constraints inherent in the
robot. To solve it, the quadratic-programming- (QP-) based
optimization scheme is developed and widely used, whose
typical feature is that these subtasks such as obstacle
avoidance and physical constraints are uniformly described
as independent attachment equality or inequality constraint.

+e literature [19] investigated the inverse kinematics
problem of redundant manipulators subject to torque limit,
where minimum torque infinity norm (MIN) was chosen as
the objective function that was to be minimized, the primary
task was described as an equality constraint. +erefore, a
time-varying QP formulation was obtained, which was
solved by the recurrent neural network (RNN) or called
Lagrange neural network. Merely, the joint angle, velocity,
and acceleration limits were ignored. As an extension of [19],
Zhang et al. considered joint angle physical constraint in
[20] by describing it as an inequality constraint. +e re-
sultant QP formulation was solved with a dual neural
network, where the cost function was chosen as a minimum
torque norm (MTN). In [15] and [21], physical constraints
such as joint velocity and joint acceleration were considered
in the QP formulation and a linear-variational-inequalities-
based primal-dual neural network was then employed to
solve the control variable. Five schemes were investigated in
[15] by minimizing different objective functions. It was
concluded that the minimum acceleration norm (MAN) was
superior to the MTN scheme. However, these three papers
did not take the joint torque limit into account. In [16] and
[21], the bicriteria joint torque minimization was consid-
ered, where the objective functions were chosen as a
weighted combination of the MTN and MIN schemes. In
[14], bicriteria minimization integrating both the MTN and
the repetitive motion planning schemes was studied.
However, any joint limits were not considered in this paper.
In [22], the motion-force control problem of redundant
manipulators was investigated based on RNN. +e joint

acceleration limit and the dynamics were not be considered
yet. Among the above-mentioned control scheme, they did
not take physical limits including joint torque, joint angle,
velocity, and acceleration into account at the same time.
Considering the physical structure of a robot manipulator,
whose every joint is usually driven by a motor, the reachable
workspace and the output torque of a robot are eventually
constrained. No matter what any physical constraints are
satisfied, the robot would have no ability to execute the
desired task, and the output control variables are
unavailable.

A consensus in [14–16, 19–21] is that neural networks
are utilized to control the redundant manipulators. Recently,
the neural network method is popular and has been widely
used, such as in [22–30] and references therein due to its
being parallel, nonlinear, and simple to be realized by
hardware [31]. However, most of them are based on an
assumption of disturbance-free inverse kinematic control of
the manipulators among the reported products. In practice,
many uncertainties such as the external environmental
disturbance and/or electromagnetism interferences in cir-
cuit system inevitably exist during the control signal
transmission [32–35]. Disturbed by them, the accuracy and
effectiveness of the task execution may be influenced greatly
by a robot system.

To sum up, although some brilliant advances have been
made in joint torque optimization for redundant manipu-
lators, there exist some limits. For one thing, some works do
not take the torque limit into account or joint limits such as
velocity, angle, and acceleration are not considered. For
another thing, the existing torque optimization works take
the disturbance into account except for reference [14].
However, [14] did not take any physical limits from robots
into account. Motivated by it, this paper investigates the
inverse kinematics control problem of redundant manipu-
lator considering both the interference rejection and the
above-mentioned four physical constraints compliance and
proposes a robust unified QP-based hybrid optimization
scheme. Among the resultant QP scheme, the MAN is
chosen as the objective function, and the inverse kinematics
problem is described as an equality constraint. Joint angle,
velocity, and acceleration limits are uniformly described as
inequality constraints and solved in acceleration level. Joint
torque limits are converted to two inequality constraints
based on the robot’s dynamics equation. To illustrate the
difference between this paper and the previous QP-based
works, a comparison between them is conducted and listed
in Table 1. +e main contributions of this paper are sum-
marized as follows:

(1) Based on RNN, this paper investigates the acceler-
ation level inverse kinematics control problem of
redundant manipulators with physical constraints
compliance and disturbance rejection. A multi-
objectives-integrated robust unified QP hybrid
scheme is proposed.

(2) Different from the previous works, this paper con-
siders joint angle, velocity, acceleration, and joint
torque limits simultaneously. A simple way is given
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to handle the considered four double-sides in-
equality constraints because they are built in dif-
ferent levels.

(3) Under the hybrid scheme, high joint acceleration
and joint torque can be avoided during the mission
execution. Constant-valued and time-varying noises
are investigated, validating the robustness of the
proposed scheme against external interferences.

(4) +e theoretical analysis and numerical experiment
combinatorially show that the effectiveness and
feasibility of the designed dynamic RNN controller
for the redundant manipulators’ acceleration level
control.

2. QP Problem Formulation

In this paper, we are aimed at achieving that in addition to
successfully complete the desired end-effector tracking task,
high joint angle, velocity, acceleration, and torque are all
avoided, and they all should be restricted within the re-
spective constrained range. At the same time, the control
scheme is expected to be robust against external interfer-
ences. +erefore, three objectives need to be achieved si-
multaneously. +ey are as follows:

Objective 1 (inverse kinematic control): +e inverse
kinematic control of the manipulator is a fundamental
problem in robotic control. Given the desired trajectory
of the manipulators’ end-effector, to find the corre-
sponding joint variables is called the inverse kinematics
problem of the robot. As for Objective 1, we have the
following:

r⟶ rd, (1)

where rd ∈ Rm denotes the desired end-effector coor-
dinate that the robot is expected to follow in Cartesian
space. +e actual end-effector coordinate achieved by
the manipulator is denoted by the vector r and r ∈ Rm.
In addition, the relationship between the Cartesian
coordinate r of the manipulators’ end-effector and its
joint space coordinate vector θ is described as follows:

r � f(θ), (2)

where θ ∈ Rn. f(·) denotes a nonlinear mapping from
joint space to Cartesian space.

Objective 2 (physical constraint compliance): Every joint is
usually driven by a motor for a manipulator. +erefore its
reachable workspace and the output joint torque, velocity,
and acceleration are all limited. No matter which con-
straints are violated, the accuracy of task execution for a
manipulator will be affected. For practicability and safety,
therefore, overloaded or high joint velocity, acceleration,
and joint torque should be avoided when the manipulator
executes the desired task. +ese above-mentioned robot
physical limits can be described by the following two-sides
inequality constraints:

θ− ≤ θ≤ θ+
, (3a)

θ−
.

≤ θ
.

≤ θ+
.

, (3b)

θ−
..

≤ θ
‥
≤ θ+

..

, (3c)

τ− ≤ τ ≤ τ+
, (3d)

where the variables θ, θ
.

, θ
‥
, and τ ∈ Rn are joint angle

vector, joint velocity vector, joint acceleration vector,
and joint torque vector of themanipulator, respectively.
θ− , θ−

.

, θ−
..

, τ− and θ+, θ+
.

, θ+
..

, τ+ correspond to lower
bound and upper bound of θ, θ

.

, θ
‥
, τ, respectively.

Due to redundancy (m< n), the unique solution satisfying
equation (2) does not exist. In addition, because joint
variables θ, θ

.

, θ
‥
, and τ are built in different levels, directly

solving them is difficult. In this paper, the control problem
is solved at the acceleration level. Specially, computing the
second-derivatives of equation (2), the acceleration level
kinematics is described as follows:

€r � Jθ
‥

+ _Jθ
.

, (4)

where _J is derivative of J. J ∈ Rm×n is a Jacobian matrix,
determined by the DH parameters of the manipulator.
In general, the manipulators’ physical structure and
DH parameters are known in advance; therefore J and _J

are convenient to be obtained. €r is the second-deriv-
ative of r, denoting acceleration vector of the robot in
Cartesian space.
As for the two-sides inequality constraints equations
(3a)–(3c), based on [36, 37], they can be described as
follows:

Table 1: Comparison between this paper and the existing QP-based torque schemes.

Methods Joint angle limit Joint velocity limit Joint acceleration limit Joint torque limit Disturbances Dynamics
Our Yes Yes Yes Yes Yes Yes
[19] No No No No No Yes
[20] Yes No No No No Yes
[15] Yes Yes Yes No No Yes
[16] No No No Yes No Yes
[21] Yes Yes Yes No No Yes
[14] No No No No Yes Yes
[22] Yes Yes No Yes No No
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ξ+
� min κ1 θ+

− ϑ − θ( , κ2 θ+
.

− θ
.

 , θ+
..

 ,

ξ−
� max κ1 θ−

+ ϑ − θ( ), κ2 θ−
.

− θ
.

 , θ−
..

 ,

(5)

where constants ϑ, κ1, κ2 > 0 ∈ R are adjusted by the
designer based on the required experimental results.
For τ, based on the manipulator’s dynamics, it is ob-
tained [15, 20] that

τ � M(θ)θ
‥

+ c(θ, θ
.

) + g(θ), (6)

where M(θ) ∈ Rn×n is the inertia matrix, c(θ, θ
.

) ∈ Rn is
the Coriolis and centrifugal force vector, and g(θ) ∈ Rn is
the gravitational force vector. +erefore, equation (3d)
can be rewritten as two inequality constraints related to θ

‥
:

M(θ)θ
‥
≤ τ+

− c(θ, θ
.

) − g(θ),

− M(θ)θ
‥
≤ − τ−

+ c(θ, θ
.

) + g(θ).

⎧⎪⎨

⎪⎩
(7)

Objective 3 (disturbance rejection): Many uncertainties
originating from external and internal interferences are
possible to influence both the accuracy and effective-
ness of the manipulator’s mission execution. Uncer-
tainties caused by the change of external environment
or interaction between the robot and environment are
viewed as external disturbances. Uncertainties caused
by the internal parameters deviation among the ma-
nipulator structure are then viewed as the internal
disturbances, such as differential error.

In this paper, we focus on the external disturbance re-
jection. +e rejection investigation of the internal disturbance
can refer to [14]. Uncertainties that disturb the task execution
precision of the robot system can be described mathematically.
As described in [35], the external disturbances can be math-
ematically described as linear-form disturbance, sine-form,
exponential-form, and random disturbances and so on, re-
spectively. Specifically, offset errors in robot hardware
implementation could be described as linear disturbances. In
the process of signal processing and transmission for robots,
the signal disturbances caused by electromagnetic interference
are described as sine-form disturbances. +e case of instan-
taneous decline of a power source which causes the loss of
control signal is viewed as the exponential-decay-form dis-
turbance. Interferences caused by the change of external en-
vironment is then described as a random disturbance. +e
Objective 1 disturbed by the external disturbance in acceler-
ation level can be rewritten as follows:

€r + ω⟶ €rd , Jθ
‥

+ _Jθ
.

+ ω⟶ €rd, (8)

where ω ∈ Rm denotes the external disturbance vector. €rd is
the second-order derivation of rd, denoting the desired
acceleration vector.

To reject these noises and achieve €r + ω⟶ €rd, inspired
by [38–40], an integration-enhanced negative feedback is
introduced in equation (8), that is to say,

Jθ
‥

� rd

‥
− _Jθ

.

− α r − rd(  − β Jθ
.

− _rd  − c 
t

0
r − rd( dt + ω,

(9)

where constants α, β, c> 0 ∈ R are used to scale the tracking
accuracy to the desired tracking trajectory. _rd denotes the
desired velocity vector. +e specific derivation of equation
(9) would be shown in the appendix.

In conclusion, the above-mentioned three objectives are
able to be uniformly described as a dynamic QP formulation:

min
θ
‥ θ
‥T θ

..

2
⎛⎝ ⎞⎠, (10a)

s.t. Jθ
‥

� b0, (10b)

M(θ)θ
‥
≤ b1, (10c)

− M(θ)θ
‥
≤ b2, (10d)

ξ+
� min κ1 θ+

− ϑ − θ( , κ2 θ+
.

− θ
.

 , θ+
..

 , (10e)

ξ−
� max κ1 θ−

+ ϑ − θ( ), κ2 θ−
.

− θ
.

 , θ−
.

 , (10f)

where the cost function is chosen as the minimization of the
joint acceleration norm. b0, b1, and b2 are defined as
b0 � €rd − _Jθ

.

− αe − β _e − c 
t

0 edt +ω, b1 � τ+ − c(θ,θ
.

)− g(θ),
b2 � − τ− + c(θ,θ

.

) + g(θ), respectively. e � r − rd, denoting the
tracking error between the desired trajectory and the actual
trajectory achieved by the manipulator, and _e is derivative of
e, _e � Jθ

.

− _rd.

Remark 1. For comparison, we give the velocity level QP
formulation without considering the joint acceleration and
torque limits in [12], as follows:

min
θ
.

θ
. T θ

.

2
⎛⎝ ⎞⎠, (11a)

s.t. Jθ
.

� _rd − k1 r − rd( , (11b)

max k2 θ−
− θ( ), θ−

.

 ≤ θ
.

≤min θ+
.

, k2 θ+
.

− θ  ,

(11c)

where the minimization of the joint velocity norm is chosen
as the cost function because the kinematics of redundant
manipulator is solved in velocity level. Parameters k1 is
similar to α, β, c in equation (10), k2 > 0 ∈ R.

3. RNN Solver

In this section, we will design a dynamic neural solver to
solve equation (10) based on RNN. +en, the theoretical
proof is given that under the designed solver, the optimal
solution of equation (10) can be found.
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To solve equation (10), a Lagrange function is defined as
follows:

L � θ
‥Tθ
‥

2
+ λT

1 b0 − Jθ
‥

  + λT
2 M(θ)θ

‥
− b1  + λT

3 − M(θ)θ
‥

− b2 ,

(12)

where λ1, λ2, and λ3 are the Lagrange multiplier. Based on
the KKT conditions, the optimal solution of equation (12)
can be equivalently rewritten as follows:

θ
‥

� PΩ θ
‥

−
zL

zθ
‥ , (13a)

Jθ
‥

� b0, (13b)

λ2 � 0, if M(θ)θ
‥
≤ b1,

λ2 > 0, othewise,

⎧⎨

⎩ (13c)

λ3 � 0, if − M(θ)θ
‥
≤ b2,

λ3 > 0, othewise,

⎧⎨

⎩ (13d)

where PΩ is a projection operation to a set Ω, and PΩ(x) �

argminy∈Ω‖y − x‖ [41]. Equations (13c) and (13d) can be
further written as follows:

λ2 � max λ2 + M(θ)θ
‥

− b1 , 0 ,

λ3 � max λ3 − M(θ)θ
‥

− b2 , 0 .

(14)

+e designed RNN controller is as follows:

ϵθ
...

� − θ
‥

+ PΩ J
Tλ1 − M(θ)

Tλ2 + M(θ)
Tλ3 , (15a)

ϵ _λ1 � b0 − Jθ
‥
, (15b)

ϵ _λ2 � max M(θ)θ
‥

− b1 + λ2 , 0  − λ2, (15c)

ϵ _λ3 � max − M(θ)θ
‥

− b2 + λ3 , 0  − λ3, (15d)

where (ϵ> 0) is a constant which is used to scale the con-
vergence rate of the neural network. In general, the smaller ϵ,
the faster the RNN controller converges.

Rewrite the designed RNN controller equation (15) as
follows:

ϵ

θ
...

_λ1
_λ2
_λ3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

− θ
‥

+ PΩ(θ
‥

+ δ − θ
‥
)

− λ1 + λ1 + b0 − Jθ
‥

 

− λ2 + λ2 + M(θ)θ
‥

− b1 

− λ3 + λ3 − M(θ)θ
‥

− b2 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

where δ � JTλ1 − M(θ)Tλ2 + M(θ)Tλ3.

Let η � [θ
‥T

, λT
1 , λT

2 , λT
3 ]T, equation (16) is reformulated as

follows:
ϵ _η � − η + PΩ(η − F(η)), (17)

in which

F(η) �

θ
‥

− J
Tλ1 + M(θ)

Tλ2 − M(θ)
Tλ3

Jθ
‥

− b0

− M(θ)
Tθ
‥

− b1

M(θ)
Tθ
‥

+ b2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

+erefore, the gradient of F is as follows:

∇F �
zF

zη
�

I − J
T

M(θ)
T

− M(θ)
T

J 0 0 0

− M(θ)
T 0 0 0

M(θ)
T 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

∇F(η) + ∇FT(η) �

2I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is positive semidefinite;

thereforeF(η) is a monotone function. Following [9], it can
be said that the constructed RNN controller equation (15)
will globally converge to an equilibrium that is equivalent to
the optimal solution of equation (10).

4. Numerical Experiments

In this part, numerical experiments are performed based on
MATLAB ROBOTIC TOOLBOX. +e effectiveness and
robustness of the proposed QP control scheme equation (10)
are shown by a six-DOFs PUMA 560 manipulator and a
four-DOFs planer manipulator to show application feasi-
bility of the proposed scheme equation (10) in all kinds of
redundant robot manipulators.

4.1. PUMA 560 Manipulator Experiments. In this experi-
ment, two different trajectory tracking experiments, i.e., the
butterfly and triangle trajectories, are conducted. Table 2
shows DH parameters of the used PUMA 560 redundant
manipulator. Other parameters involved in the simulation
experiment are concluded in Table 3, where θ(0), θ

.

(0), θ
‥
(0)

denote the initial value of θ, θ
.

, θ
‥
at the initial instant, re-

spectively. +e simulation duration Td is 20 s.

4.1.1. Butterfly Trajectory Tracking. Assume that the ma-
nipulator is required to track a butterfly trajectory with the
following definition:

rd �

0.05 sin(0.5t)(exp(a) − 2b) + 0.4521

0.05 cos(0.5t)(exp(a) − 2b) − 0.3

0.6318

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (20)
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where a � cos(0.5t), b � cos(2t). Firstly, a comparison
between the velocity level scheme equation (11) and the
acceleration level scheme equation (10) is conducted with
corresponding simulative results illustrated in Figure 1.
Figures 1(a)–1(f) represent results achieved by equation
(11). Figures 1(g)–1(l) represent the ones achieved by
equation (10). From left to right are 3D tracking results,
planer tracking results, tracking error profiles at x-axis,
y-axis, and z-axis, joint speed profiles, joint acceleration
profiles, and joint torque profiles consecutively. Note that in
the velocity level experiment, parameters k1 and k2 are
valued as 10 and 20, respectively. We observe from
Figures 1(a) and 1(b) that the actual trajectory (black color
path) achieved by the manipulator successfully coincides
with the desired butterfly path (red color path). It can also be
observed from Figure 1(c) that the deviations between the
desired trajectory and the actual trajectory at x-axis, y-axis,
and z-axis quickly reduces to zero. Following Figure 1(d),
the manipulator’s six joint speeds are smooth and within the
respective constraint ranges. For now, equation (11) without
considering the joint acceleration limit seems to be effective
for the kinematic control of the PUMA 560 manipulator.
However, in this case that does not consider the joint ac-
celeration limit, the manipulator’s acceleration and torque
profiles are extremely high (up to − 200(rad/s2) and
− 600Nm, respectively) at the beginning, as shown in
Figures 1(e) and 1(f). It is unreasonable in practice, obvi-
ously. Compared to the velocity level scheme equations (11)
and (10) taking the joint acceleration and the joint torque
limits into account, the kinematics problem is solved in
acceleration level. Following the simulation results illus-
trated in Figures 1(g)–1(l), what the naked eye can see is that
the manipulator does not only track the desired butterfly
trajectory, its joint speed, joint acceleration, and torque are

all restricted to the constrained range. As shown in
Figure 1(k), when the acceleration of the joint 1 exceed its
lower bound, the joint acceleration would be restricted and
maintained in its lower bound, avoiding the high acceler-
ation and joint torque. +erefore, it is concluded that the
acceleration level optimization scheme considering the joint
acceleration and torque limits is superior to the velocity level
for the butterfly path tracking.

4.1.2. Triangle Trajectory Tracking. To further validate the
effectiveness and superiority of the proposed hybrid accel-
eration level scheme equation (10), in this experiment, the
manipulator is required to track a triangle trajectory with the
following definition:

rd �

0.075 sin(ρ) − 0.0325 cos(2ρ) + 0.48

0.075 cos(ρ) − 0.0325 sin(2ρ) − 0.10

0.6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (21)

where ρ � (2πt/10). Comparative results between the
scheme equation (11) and the scheme equation (10) are
illustrated in Figure 2. Figures 2(a)–2(f) represent results
achieved by equation (11). Others represent ones achieved
by equation (10). +e simulation environment and pa-
rameters in the triangle trajectory tracking experiment are
the same as the butterfly trajectory tracking experiment.
Similar to the previous butterfly experiment, we observe
from Figures 2(a)–2(f) that the manipulator successfully
tracks the desired triangle path with a tracking error being
10− 4 level, and the manipulator’s six joint speeds are smooth
and within the respective constraint ranges. However, the
manipulator’s acceleration and torque profiles that are
shown in Figures 2(e) and 2(f) are extremely high (up to
(200 rad/s2) and 600Nm, respectively) at the beginning.
When both the inherent joint acceleration limit and torque
limit are considered, the manipulator does not only track the
desired triangle trajectory. Its joint speed, joint acceleration,
and torque are all restricted to the respective constrained
ranges. As shown in Figure 2(k), when the acceleration of
joint 1 exceeds its upper bound, the joint acceleration would
be restricted and maintained in the upper bound, avoiding
the high acceleration and joint torque. +erefore, it is
concluded that the acceleration level optimization scheme
equation (10) considering the joint acceleration and torque
limits is superior to the velocity level scheme equation (11).
+is experiment validates the effectiveness of the proposed
hybrid scheme equation (10) and the RNN controller
equation (15) for butterfly trajectory tracking task.

4.1.3. Robustness Comparison. In real scenes, the external
disturbance is unavoidable and may influence the tracking
accuracy of the manipulator in the trajectory tracking
mission. To this, we propose a robust hybrid QP minimi-
zation scheme equation (10) by introducing integration-
enhanced feedback to reject these interferences. In general,
these disturbances can be mathematically described as
constant-valued noise and time-varying noise.

Table 3: Parameters involved in the simulative experiment.

Parameters Value Parameters Value
θ(0) 0 ∈ R6 θ+ +4
θ
.

(0) 0 ∈ R6 θ− − 4
θ
..

(0) 0 ∈ R6 θ
. +

+4
(ε) 0.002 θ

. −

− 4
α 21 θ

..+

+4
β 7 θ

.. −

− 4
c 21 ϑ 0.1
κ1 20 τ+ 40
κ2 20 τ− − 40

Table 2: +e D-H parameter of the redundant manipulator PUMA
560 used in this paper.

Link a (m) α (rad) d (m)
1 0 (π/2) 0
2 0.4318 0 0
3 0.0203 − (π/2) 0.15005
4 0 (π/2) 0.4318
5 0 − (π/2) 0
6 0 0 0.2
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Complexity 7



4

2

0

–2

–4

Jo
in

t s
pe

ed
 (r

ad
/s

)

θ1

θ2

θ3

.

.

.

θ4

θ5

θ6

.

.

.

0 5 10
t (s)

15 20

(j)

2

1

0

–1

–4

–3

–2
1
0

–1

–4
–3
–2

Jo
in

t a
cc

el
er

at
io

n 
(r

ad
/s

2 )

θ1

θ2

θ3

..

..

..

θ4

θ5

θ6

..

..

..

0 5 10
t (s)

15 20
0 0.02 0.04 0.06

Lower bound

0.08 0.1

(k)

40

30

20

10

0To
rq

ue
 (N

m
)

–10

–20
0 5 10

t (s)
15 20

τ1

τ2

τ3

τ4

τ5

τ6

(l)

Figure 1: Comparison between the velocity level scheme equation (11) (a–f) and the acceleration scheme equation (10) (g–l) when the
manipulator is expected to follow a butterfly path. From left to right are 3D tracking results, planer tracking results, tracking error profiles,
joint speed profiles, joint acceleration profiles, and joint torque profiles.
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In this part, we would show the robustness of the scheme
equation (10) against external disturbances, where four
common types of time-varying external disturbances are
considered. +ey are linear disturbances denoting offset
errors in robot hardware implementation, sine-form dis-
turbances caused by signal electromagnetic interference in
the process of signal processing and transmission, the ex-
ponential-decay-form disturbance, and random disturbance
caused by the change of the external environment, respec-
tively. For comparison, the conventional acceleration level
scheme is given as follows:

min
θ
‥ θ

‥T θ
‥

2
⎛⎝ ⎞⎠, (22a)

s.t. Jθ
‥

� €rd
− _Jθ

.

− δ1e − δ2 _e + ω, (22b)

M(θ)θ
‥
≤ b1, (22c)

− M(θ)θ
‥
≤ b2, (22d)

ξ+
� min κ1 θ+

− ϑ − θ( , κ2 θ+
.

− θ
.

 , θ+
‥

 , (22e)

ξ−
� max κ1 θ−

+ ϑ − θ( ), κ2 θ−
.

− θ
.

 , θ−
‥

 , (22f)

where δ1, δ2 > 0 ∈ R are feedback gain parameters, which are
used to scale the trajectory tracking accuracy. δ1 � 21, δ2 � 7
in the noise-rejection experiments; other parameters are the
same as the ones used in equation (10). Figure 3 shows
tracking results of two desired trajectories achieved by
schemes (10) and (22) disturbed by the constant-valued
noise and time-varying random noise, respectively. In
simulative experiments, the constant-valued disturbance
and time-varying random disturbance are formulated as 1
and rand, respectively, where rand ∈ 0, 1{ }. Figure 3 shows
the trajectory tracking results achieved by equation (22) and
our scheme equation (10). Following it, it can be observed
that the conventional scheme equation (22) successfully
tracks the triangle and butterfly shapes of the desired fol-
lowing trajectories. However, due to the disturbance by the
constant-valued and time-varying random noise, the actual
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Figure 2: Comparison between the velocity level scheme equation (11) (a–f) and the acceleration scheme equation (10) (g–l) when the
manipulator is expected to follow a triangle path. From left to right are 3D tracking results, planer tracking results, tracking error profiles,
joint speed profiles, joint acceleration profiles, and joint torque profiles.
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trajectories generated by the manipulator deviate from the
desired position. +is is to say that equation (22) fails in
rejecting these two kinds of noise. On the contrary, although
disturbed by the noise, our scheme equation (10) accurately
and stably generates the desired triangle and butterfly
trajectories.

Figure 4 shows the tracking error profiles achieved by
equations (22) and (10) disturbed by the other three time-
varying external noises, where the tracking error is defined
as

����������
e2x + e2y + e2z


. Linear disturbances, sine disturbances, and

exponential disturbances are formulated as
[0.03t, 0.02t, 0.01t]T,
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Figure 3: Comparison between schemes equations (22) and (10) under (a) constant-valued noise ω � 1 and (b) time-varying random noise
ω � rand ∈ 0, 1{ }, respectively.
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Figure 4: (a–f) Tracking error comparison for butterfly and triangle trajectory tracking tasks under sine-form noise, exponential noise, and
linear noise, respectively. Top: butterfly trajectory. Below: triangle trajectory.
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[0.01 sin(2t), 0.01 cos(0.5t), 0.01 sin(t)]T, and
[0.35 exp(− 0.5t), 0.15 exp(− 0.8t); 0.1 exp(− t)]T, respec-
tively. Based on the simulative results, we conclude that
under control of the schemes equations (10) and (22), the
manipulator disturbed by the sine-form noise and expo-
nential-form noise can track the desired butterfly and tri-
angle trajectories. +e tracking error can reach 10− 3 level.
For linear disturbance, the tracking errors achieved by the
scheme equation (22) would not converge to zero, as shown
in Figures 4(c) and 4(f). In contrast, the tracking errors
corresponding to our proposed scheme equation (10) would
evaluate toward zero quickly and maintain a bounded value.

4.2. Planer Manipulator Experiments. +e 4-DOFs planer
redundant manipulator is employed in this experiment,

which is assumed to track a circle trajectory with the fol-
lowing definition:

rd �
0.5 + 0.1 cos(0.5t)

0.3 + 0.1 sin(0.5t)
 . (23)

Table 4 gives the DH parameters corresponding to the
used planer manipulator in this study. Among the simu-
lation setup, θ(0) � [(π/2), − (π/3), − (π/4), 0]Trad,
τ+ � 2Nm, τ− � − 0.3Nm, θ

.

(0) � 0 ∈ R4(rad/s), and
θ
‥
(0) � 0 ∈ R4(rad/s)2, θ+

‥
� − θ−
‥

� 1. Other parameters
remain the same as the previous experiment. Simulation
duration is 15 s.

Simulative results achieved by the proposed hybrid
scheme equation (10) are illustrated in Figure 5 when the
manipulator is expected to follow a circle path. Similar to the

Table 4: +e D-H parameter of the planer redundant manipulator with 4-DOFs.

Link a (m) α (rad) d (m)
1 0.3 0 0
2 0.3 0 0
3 0.2 0 0
4 0.2 0 0

x (m)

Desired
trajectory

Actual
trajectory

–0.2 0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.5

0.4

0.6

y (
m

)

(a)

θ1
θ2

θ3
θ4

–0.2

–0.1

0

0.1

0.2

0.3

Jo
in

t v
el

oc
ity

 (r
ad

/s
)

50 10 15
t (s)

(b)

–1
–0.5

0
0.5

1
Upper bound

Lower bound

0 0.1 0.2 0.3 0.4 0.5 0.6

θ1
θ2

θ3
θ4

–1

–0.5

0

0.5

1

Jo
in

t a
cc

el
er

at
io

n 
(r

ad
/s

2 )

50 10 15
t (s)

(c)

0 0.1 0.2 0.3 0.4

0

1

2

0.5 1
–0.3

–0.25
–0.2

Upper bound

Below
bound

τ1
τ2

τ3
τ4

–0.5

0

0.5

1

1.5

2

2.5

To
rq

ue
 (N

m
)

50 1510
t (s)

(d)

λ2

0.12 0.14 0.16 0.18 0.2
0

0.01

0.02

0.03

0

0.005

0.01

0.015

0.02

0.025

0.03

50 1510
t (s)

(e)

λ3

0.5 0.6 0.7 0.8 0.9 1
0
1
2
3
4
5

×10–3

×10–3

0

1

2

3

4

5

50 1510
t (s)

(f )

Figure 5: Simulative results achieved by equation (10) when the manipulator is expected to follow a circle path. (a) Tracking result. (b) Joint
speed profiles. (c) Joint acceleration profiles. (d) Joint torque profiles. (e) State variables λ2. (f ) State variables λ3.
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previous experiment, the actual trajectory achieved by the
planer manipulator quickly coincides with the desired path,
simultaneously avoiding high joint velocity, acceleration, and
torque values. Following Figures 5(c) and 5(d), when joint
acceleration and joint torque vectors exceed their respective
bound, they would be restrained within the upper or lower
bound. Figures 5(e) and 5(f) show the process profiles cor-
responding to state variables λ2 and λ3. When the inequality
constraints equations (10c) and (10d) are not satisfied, i.e., joint
torque bounds of the manipulator are not reached, λ2 and λ3
would remain on zero. On the contrary, λ2 and λ3 would be
greater than zero. Figure 6 shows circle trajectory tracking
results achieved by equation (10) disturbed by five external
noises and the corresponding tracking errors. It can be seen
from it that for the considered five noises, the manipulator
successfully tracks the desired circle trajectory with different
tracking accuracies. Compared to other types of noises, the
influence of random noise on the trajectory tracking error of
the manipulator is stronger.

Based on Figures 1–6, we can conclude that under the
proposed hybrid scheme equation (10), the manipulator can
accurately track the desired trajectory, simultaneously
avoiding high joint velocity, acceleration, and joint torque.
In addition, equation (10) is robust against the constant-
valued external disturbance and four types of time-varying
external disturbances.

5. Conclusion

In this paper, a robust multiobjectives-integrated hybrid
scheme equation (10) has been proposed and used for
controlling a redundant manipulator to track the desired
trajectory. Under equation (10), high joint velocity, accel-
eration, and joint torque may exceed the manipulator ac-
tuators’ ability that can be avoided.+ey all are restrained on
respective constraint bound. In addition, integrated-en-
hanced feedback has been generalized into the inverse

kinematics of themanipulator to reject the influence of external
disturbances on the tracking tasks. Numerical experiments
have been performed on the PUMA 560 manipulator and the
planer manipulator, validating the effectiveness and robustness
of the hybrid scheme equation (10).

Multiple robots cooperative control is being investigated
and has made success in environmental monitoring [42] and
source seeking [43]. In future work, we will be devoted to the
motion-force hybrid cooperative control of multiple robots
at dynamics level.

Appendix

In this appendix, the authors give the derivation process of
equation (9). +e velocity level inverse kinematics of the
manipulator is usually described as follows [6, 9, 12]:

_r � _rd − μ r − rd( , (A.1)

where μ> 0 is a constant, which is used to scale accuracy of
the trajectory tracking task.

Define a new error function ℓ � _r − _rd + μ(r − rd). Based
on [38, 39], the time-derivative evolution formulation of the
error function ℓ can be constructed as follows:

_ℓ � − μ1ℓ − μ2 
t

0
ℓdt, (A.2)

where the same as μ, μ1, μ2 > 0 ∈ R. Differentiating ℓ, we
obtain that
_ℓ � €r − €rd + μ _r − _rd( . (A.3)

Combining equations (A.2) with (A.3), we have the
following:

€r � €rd − μ _r − _rd(  − μ1 _r − _rd(  − μ1μ r − rd( 

− μ2 
t

0
_r − _rd( dt − μ2μ

t

0
r − rd( dt.

(A.4)
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Figure 6: Circle trajectory tracking results and tracking errors achieved by equation (10) disturbed by the external disturbances.
(a) Constant-valued noise ω � 1. (b) Random noise ω ∈ 0, 1{ }. (c) Sine-form noise ω � [0.01 sin(2t), 0.01 cos(0.5t)]T. (d) Exponential-form
noise ω � [0.35 exp(− 0.5t), 0.15 exp(− 0.8t)]T. (e) Linear noise ω � [0.03t, 0.02t]T.
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It can be further rewritten as follows:

€r � €rd − μ + μ1(  _r − _rd) − μ1μ + μ2(  r − rd(  − μ2μ
t

0
r − rd( dt.

(A.5)

Because μ, μ1, μ2 are constants >0, therefore, equation
(A.5) can be converted as follows:

Jθ
‥

� €rd
− _Jθ

.

− α r − rd(  − β Jθ
.

− _rd  − c 
t

0
r − rd( dt,

(A.6)

by using α, β, c to replace μ1μ + μ2, μ + μ1, μ2μ, respectively.
Li et al. have proved the inherent noise tolerance of equation
(A.2) to constant-valued and time-varying disturbances in
[38].+erefore, robustness proof of equation (A.6) disturbed
by external disturbances (i.e., equation (9)) is omitted here.
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