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Residual useful lifetime (RUL) prediction plays a key role of failure prediction and health management (PHM) in equipment.
Aiming at the problems of residual life prediction without comprehensively considering multistage and individual differences in
equipment performance degradation at present, we explore a prediction model that can fit the multistage random performance
degradation. Degradation modeling is based on the randomWiener process. Moreover, according to the degradation monitoring
data of the same batch of equipment, we apply the expectation maximization (EM) algorithm to estimate the prior distribution of
the model. .e real-time remaining life distribution of the equipment is acquired by merging prior information of real-time
degradation data and historical degradation monitoring data..e accuracy of the proposed model is demonstrated by analyzing a
practical case of metalized film capacitors, and the result shows that a better RUL estimation accuracy can be provided by our
model compared with existing models.

1. Introduction

Prognostics and health management (PMH) has been a
systematic method utilized to evaluate the reliability or
residual life of actual life-cycle conditions in a system,
predict failure degree, reduce the risk in operating, improve
task completion rate, and make maintenance decisions.
Prognostics is usually characterized by estimating the RUL
of a system based on condition monitoring (CM) data [1, 2].
Once a prognosis is available, some health management
tactics, such as maintenance, replacement, and logistic
support, can be performed properly to obtain the opera-
tional objectives, which is required [3, 4].

In general, RUL prediction is an important step in PMH.
Over the last decade, there are a great deal of research studies
as to RUL prediction have been developed for a large wide
range of industrial products, for example, bearings [5, 6],
gearboxes [7], lithium batteries [8], organic light emitting
diodes [9], and laser generators [10]..emain idea of RUL is
to realize the life prediction by obtaining the distribution or
expectation of RUL according to the effective information
such as equipment failure mechanism, CM data, and failure

time data [11, 12]. For fields with high safety and reliability
requirements, for instance, aerospace and electronic
equipment, whose performance gradually decreases as ser-
vice time increases, their final failure is manifested as de-
graded failure. At the same time, due to measurement errors,
environmental interference, and other factors, the degra-
dation process has a certain degree of randomness. At
present, life prediction based on statistical data is a central
issue in current research [13, 14]. Based on the probability
density function (PDF) of the RUL with the randomness of
the degradation process, the PDF of the RUL density can be
obtained.

In life prediction based on statistical data, stochastic
processes are often used to fit the degradation process, such
as Gamma process [15, 16], Wiener process [17, 18], and
Inverse Gaussian process [19, 20]. .e Wiener process is
convenient to describe the degradation system that has a
random nonmonotonic independent incremental process,
which are influenced by external environment, internal state
changes, and load conditions [21]. Li et al. in [22] proposed a
novel RUL prediction models combined with degradation
processes described by establishing the system age process
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and the system state process. .ey calculated the PDF of the
RUL based on a closed-form solution by calculating the
degradation trajectories values. Si et al. in [2] derived a
random Wiener process model to predict the RUL of
equipment by merging a recursive filtering algorithm and an
EM algorithm for parameter estimation. With due consid-
eration of the influence of measurement error, a nonlinear
random Wiener model is proposed to predict remaining
useful life [23].

.e above research has enriched the application of
stochastic processes in life prediction; however, a large
number of the current degradation models made assump-
tions that the degradation process is subject to a single
degradation law. Due to the staged changes in internal
failure mechanism and dynamic changes in external envi-
ronmental condition, many degradation process of equip-
ment is characterized by multistage degradation [24].
However, for the current research in the Wiener process of
the performance degradation modeling, there are few of
them who target on multistage performance degradation
models. .erefore, Wang et al. in [25] further proposed a
two-stage degradation model of both Gamma process and
Wiener process. In reference to the attenuation process of
the brightness of light emitting diodes, Wang et al. in [9]
assumed that individual differences exist in the change
points and utilized a two-stage Wiener process model and
Bayesian estimation method to analyze the degradation data
under logarithmic transformation. In addition, how to in-
tegrate the degradation data of similar equipment to esti-
mate the hyperparameters of the degradation model is the
key to the RUL prediction. A two-stage maximum likelihood
estimation (TSMLE) method was utilized to calculate the
hyperparameters of the degradation model to achieve life
prediction in some literatures [26]. Zhang et al. in [27]
proposed a real-time residual life prediction algorithm in-
cluding the Cumulative Sum (CUSUM) method and the
Brownian motion with drift. However, the CUSUMmethod
is only suitable for change-point degradation analysis and
lacks the use of prior knowledge; when degradation data is
small, the estimation accuracy of the two-step method is not
high. Additionally, the change points in the multistage
stochastic degradation process are sometimes scattered, so
the RUL prediction based on the random process of the
change point analysis is often not accurate enough.

Aiming at the above problems, in this paper, a multistage
random degradation model based on the Wiener process is
proposed to estimate the RUL of equipment aiming at above
issues. Assuming that the parameters of the degradation
model follow, respectively, certain random distributions to
describe the differences between single equipment, an EM
algorithm is used for iteratively estimating the prior dis-
tribution of the degradation model parameters based on the
historical degradation data and historical failure time data.
Finally, we apply the Bayesian algorithm to update the
posterior distribution parameters of our model at each stage.
By analyzing the degradation process of metallized film
capacitors, the remaining life expectancy of individual ca-
pacitors can be predicted.

2. Residual Life PredictionModel of Equipment

2.1. Model Analysis and Assumptions. Generally, a degra-
dation model of the Wiener process can be described as

X(t) � ut + σB(t), (1)

where u is the drift coefficient, σ is the diffusion coefficient,
and B(t) is the standard Brownian motion.

When we predict the remaining life of the equipment,
the following assumptions should be made:

(1) If the performance degradation of the equipment
exceeds the failure threshold, degradation failure will
occur.

(2) .e performance degradation of equipment has the
characteristics of multiple stages, each performance
degradation stage obeys the Wiener process, and it is
divided by a certain fixed degradation amount.

(3) .e drift coefficient μ and diffusion coefficient σ of
the Wiener process are random variables. We as-
sume that ω � 1/σ2 and f � (u,ω) as joint prior
distribution of u and ω, which obeys the Gaussian-
Gamma distribution. f (u,ω) can be expressed as

f(μ,ω) �
ω1/2
���
2πc

√ exp
−ω(μ − c)

2

2 d
􏼠 􏼡

·
b

a

Γ(a)
ωa−1 exp(−bω),

(2)

where a, b, c, and d represent the hyperparameters in prior
distribution of u and ω.

2.2. Performance Degradation Modeling. In fact, the deg-
radation process of the equipment is characterized by
multistage and randomness. A multistage degradation
model of equipment can be expressed as

X(t) � X(0) + X1(t)􏼂 􏼃I 0,t1( )(t) + X t1( 􏼁 + X2 t − t1( 􏼁􏼂 􏼃

· I t1 ,t2( )(t) + · · · + X tn( 􏼁 + Xn t − tn( 􏼁􏼂 􏼃I tn,∞( )(t),

(3)

where I(t) is the indicative function, X(0) is the initial value
of the Wiener degradation model, and ti represents the time
that the performance degradation of each stage reaching its
boundary value. Xk(k � 1, 2, . . . , n) is the performance
degradation process of each stage.

.e degradation process of the equipment in each stage
can be described by using theWiener process without loss of
generality, so the performance degradation amount X(t) of
the equipment can be expressed as

X(t) � X(0) + μ1t + σ1B(t)􏼂 􏼃I 0,t1( )(t) + D1 + μ2 t − t1( 􏼁􏼂

+ σ2B t − t1( 􏼁􏼃I t1 ,t2( )(t) + · · · + Dn + μn t − tn( 􏼁􏼂

+ σnB t − tn( 􏼁􏼃I tn,∞( )(t),

(4)
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where Dk is the boundary value of kth performance deg-
radation stage, Dn represents the degradation failure
threshold, and μk and ωk are the drift coefficient and dif-
fusion coefficient of the kth stage of Wiener degradation,
respectively.

.e remaining life Lτ of the equipment represents the
time from the performance degradation value X(τ) at
current time τ to the failure threshold Dn According to the
definition of performance failure, the remaining life is
expressed as

Lτ � inf t: X(t + τ)≥Dn, t> 0􏼈 􏼉. (5)

Denote T as the life of the equipment, according to the
relationship between the life and the remaining life, and it
can be expressed as

T � inf t: X(t) ≥Dn, t> 0􏼈 􏼉 � Lτ + τ. (6)

Denote ξk as the time when the device reaches the
threshold value Dk of the kth stage of performance degra-
dation from the initial moment, and ξk can be expressed as

ξk � inf t: X(t)≥Dk, t> 0􏼈 􏼉,

� ξk−1 + inf t: X′(t)≥Dk − Dk−1, t> 0􏼚 􏼛,
(7)

where X′(t) � μkt + σkB(t). Because the failure time of the
Wiener process obeys the Inverse Gaussian distribution, ξk

obeys the Inverse Gaussian distribution fΔξ(Δξ|μk,ωk), and
it is formulated as

fΔξ Δξ|μk,ωk( 􏼁 �
ω1/2

k ΔDk��������

2π Δξk( 􏼁
3

􏽱 exp
ωk ΔDk − μkΔξk( 􏼁

2

2Δξk

􏼠 􏼡.

(8)

.erefore, the probability density distribution function
in the kth stage degradation process of the equipment can be
formulated as

f Δξk|μk,ωk( 􏼁 � 􏽚
∞

0
fΔξξk|ξk−1􏼐 􏼑dξk � 􏽚

∞

0
fΔξ ξk − ξk−1( 􏼁􏼐 􏼑dξk.

(9)

When the performance degradation value X(τ) at τ of
the equipment meets the condition X(ξk−1)≤X(τ)≤X(ξk),
the remaining life of the degradation stage of equipment can
be expressed as

Lτ � ξk − τ( 􏼁 + Δξk+1 + Δξk+2 + · · · + Δξn. (10)

.e probability density distribution function of the
remaining life Lτ of equipment degradation is expressed as

fLτ
Lτ|μk,ωk, μk+1,ωk+1, . . . , μn,ωn( 􏼁 � 􏽚

∞

τ
􏽚
∞

τ
· · · 􏽚
∞

τ
fΔξ lτ + τ(

− ξn−1)fΔξ ξn−1 − ξn−2( 􏼁,

. . . , fΔξ ξk − τ( 􏼁dξkdξk+1,

. . . , dξn−1.

(11)

Because of E(Δξk) � ΔDk/μk, the expectation of
remaining life Lτ can be expressed as

E Lτ( 􏼁 �
Wk − X(τ)

μk

+
ΔDk+1

μk+1
+ · · ·
ΔDn

μn

. (12)

3. Bayesian Deduction of Hyperparameters

When the boundary value Dk of each performance degra-
dation stage is determined, μ and σ of the Wiener process
jointly determining the probability density distribution of
the remaining life, the parameters μ and ω need to be solved.
Because the degradation process of individual equipment is
different, in order to describe it conveniently, we assume that
μ and ω obey the following conjugate prior distribution:

ω � σ−2∼Gamma(a, b),

μ|ω∼N
c, d

ω
􏼠 􏼡.

(13)

When the real-time degradation data
X � (X1, X2, . . . Xn) is obtained, we can utilize the Bayesian
formula to derive the posterior distribution π(μ,ω|X),
which is formulated as

π(μ,ω|X) �
L(X|μt, nω) · π(μ,ω)

􏽒
∞
0 􏽒
∞
−∞ L(X|μt, nω) · π(μ,ω)dμdω

, (14)

where L(X|μt, nω) presents log-likelihood function for
parameters μ and ω, which is expressed as

L(X|μt, nω) � 􏽙
n

i�1

ω1/2
��������
2πΔΛ ti( 􏼁

􏽱 exp
−ω ΔXi − μΔΛ ti( 􏼁( 􏼁

2

2ΔΛ ti( 􏼁
􏼠 􏼡.

(15)

π(μ,ω) is the joint prior density function of μ and ω,
which is formulated as

π(μ,ω) �
ω1/2
����
2πd

√ exp
−ω(μ − c)

2

2d
􏼠 􏼡

b
aωa−1

Γ(a)
exp(−bω).

(16)
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In view of the derivation above, we combine equations
(14)–(16) to obtain the following form:

π(μ,ω|X)∝L(X|μ,ω) · π(μ,ω)∝ω(n+1)/2+a−1
· exp −

ω
2

μ2Λ tn( 􏼁 − 2μXn + 􏽘
n

i�1

ΔX2
i

ΔΛ ti( 􏼁
⎛⎝ ⎞⎠ −

ω
2

(μ − c)
2

d
􏼠 􏼡 − bω⎛⎝ ⎞⎠∝

⎧⎨

⎩ ,

ω(n+1)/2+a−1 exp −ω b +
c
2

2 d
−

Xnd + c( 􏼁
2

2 Λ tn( 􏼁d
2

+ d􏼐 􏼑
⎛⎝ ⎞⎠ + 􏽘

n

i�1

ΔX2
i

2ΔΛ ti( 􏼁

⎧⎨

⎩

⎫⎬

⎭ · ω1/2 exp
ω
2

μ − Xnd + c/Λ tn( 􏼁d + 1( 􏼁
2

d/Λ tn( 􏼁d + 1
􏼠 􏼡􏼨 􏼩.

(17)

Because the conjugate prior distribution of random
parameters and its posterior distribution have the same
distribution function, the difference is only the change of the
hyperparameter value in different degradation stages.
According to equation (17), we can obtain the posterior
estimation values ak

′, bk
′, ck
′, and dk

′ of the hyperparameters in
the kth performance degradation stage deduced as

ak
′ �

nk

2
+ ak,

bk
′ � bk +

c
2
k

2dk

−
Xn,kdk + ck􏼐 􏼑

2

2 Λ tn,k􏼐 􏼑d
2
k + dk􏼐 􏼑

+ 􏽘
n

i�1

ΔX2
i,k

2ΔΛ ti,k􏼐 􏼑
,

ck
′ �

Xn,kdk + ck

Λ tn,k􏼐 􏼑dk + 1
,

dk
′ �

dk

Λ tn,k􏼐 􏼑dk + 1
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

.e posterior mean μ′ and ω′ of μ and ω can be obtained
from a′, b′, c′, and d′, and from equation (17), the kth
performance degradation stage is expressed as

π μk,ωk|tΔnXk( 􏼁 �
b
′ak
′

k ωak
′−1

k

Γ ak
′( 􏼁

exp −ωkbk
′( 􏼁

·
ωk
′

����

2πdk
′

􏽱 exp −
ωk μk − ck

′( 􏼁
2

����

2πdk
′

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(19)

After getting the result of π(μk,ωk|tΔnXk), we can
obtain the posterior mean values μk

′ andωk
′ in kth stage to

realize the prediction of the remaining life of the equipment.

4. Parameter Estimation of Degradation Model

4.1. Determination of the Complete Maximum Likelihood
Function of the Hyperparameters. When the boundary value
of each stage of performance degradation is determined, the

probability density distribution of the remaining life Lτ can
be determined by the Wiener process parameters μ and ω in
each performance degradation stage. .erefore, parameters
μ and ω is required to estimate. Because we assumed that the
unknown parameters μ and ω are random variables, the
unknown hyperparameters in the prior distribution of
parameters can be estimated based on the historical per-
formance degradation data and historical failure time data
[28].

For the same kind of equipment, we can collect the
degradation data of N equipments as priori information in
CM time. Assuming that the performance degradation data
of the ith (i� 1,2, . . ., N) equipment at the jth (j� 1,2, . . ., n)
measurement is denoted as Xij, the corresponding mea-
surement time is tij. .e k Δxkand Δtk of the historical data
sample of the kth performance degradation stage are, re-
spectively, expressed as

Δxk �

Δx11,k Δx12,k · · ·Δx1n,k

Δx21,k Δx22,k · · ·Δx2n,k

⋮ ⋮ ⋮

ΔxN1,k ΔxN2,k · · ·ΔxN n,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Δtk �

Δt11,k Δt12,k · · ·Δt1n,k

Δt21,k Δt22,k · · ·Δt2n,k

⋮ ⋮ ⋮

ΔtN1,k ΔtN2,k · · ·ΔtNn,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(20)

.e probability density function of the degradation
increment ΔXk(t), in the kth stage of degradation based
on the characteristics of the Wiener process, can be
expressed as

f ΔXk( 􏼁 �
1

�������

2πΔtkσ
2
k

􏽱 exp −
ΔXk − μkΔtk( 􏼁

2σ2kΔtk

􏼢 􏼣. (21)

.erefore, the complete likelihood functions of hyper-
parameters ak, bk, ck, anddkof the historical degradation
data tij,k, Xij,k in the kth stage are expressed as
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L ΔXk|ak, bk, ck, dk( 􏼁 � 􏽙
N

i�1
􏽙

n

j�1
h ΔXij,k􏼐 􏼑 · 􏽙

N

i�1
π μi,k,ωi,k􏼐 􏼑

� 􏽙
N

i�1
􏽙

n

j�1

ω1/2
i,k�������

2πΔtij,k

􏽱

· exp −
ωi,k ΔXij,k − μi,kΔtij,k􏼐 􏼑

2

2Δtij,k

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ · 􏽙
N

i�1

·
b

ak

k ωak−1
i,k

Γ ak( 􏼁
exp −ωi,kbk􏼐 􏼑

·
ω1/2

i,k����
2πdk

􏽰 exp −
ωi,k μi,k − ck􏼐 􏼑

2

2dk

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(22)

In theory, we can obtain the priori estimates of hyper-
parameters for the kth stage Wiener process 􏽢a k, 􏽢b k, 􏽢c k, and
􏽢d k through the traditional maximum likelihood estimation
(MLE), and it can be expressed as

ψ 􏽢ak( 􏼁 − ln 􏽢ak � 􏽘
N

i�1
ln

ωi,k

N
+ lnN − ln􏽘

N

i−1
ωi,k,

􏽢bk � N ·
􏽢ak

􏽐
N
i�1 ωi,k

,

􏽢ck � 􏽘
N

i�1
μi,kωi,k,

􏽢dk � 􏽘
N

i�1

ωi,kμ
2
i,k − 2􏽢ckμi,kωi,k + 􏽢c

2
kωi,k􏼐 􏼑

N
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

where ψ(·) is the digamma distribution function, μi,k andωi,k

are implicit data, and the unknown items of the implicit data
must be output first, otherwise, we cannot obtain the results
of 􏽢a k, 􏽢b k, 􏽢c k, and 􏽢d kdirectly.

4.2. Estimation of Hyperparameter. .e EM algorithm is an
effective method for maximum likelihood estimation [29]. It
is mainly used for parameter estimation of missing data, for
instance, the EM algorithm can be applied to estimate the
parameters of likelihood function when observed data is
incomplete or the expression of the likelihood function is so
complicated that the traditional estimation method of the
maximum likelihood function could be failure.

Each recursive iteration process of the EM algorithm
contains E steps and M steps. .e first step of the EM al-
gorithm (E-step): given the observed data ΔXk and current
hyperparameter ak, bk, ck, and dk estimated value, we can get
the conditional expected value of unknown latent variable
Z � (μ,ω) in complete data log-likelihood function
L(ΔXk|ak, bk, ck, dk). .e second step of the EM algorithm
(M-step): solve the ak, bk, ck, anddk and make them as
parameter estimate values for the next iteration.

In E-step, if iteration process performs r times in the kth
stage of the degradation process, al,k, bl,k, cl,k, and dl,k are the
estimated value in lth (1≤ l≤ r). .e expectation that each
unknown item contains implicit data μi,k,ωi,k in the l+ 1 step
iteration process is

E ωi,k􏼐 􏼑 �
􏽢al,k + Ni/2

􏽢bl,k + 􏽢c
2
l,k/2􏽢dl,k − 􏽢dl,kXiNi,k

+ 􏽢cl,k􏼐 􏼑
2
/2􏽢dl tiNi,k

􏽢dl,k + 1􏼐 􏼑 + 􏽐
Ni

j�1 ΔX
2
ij,k/2ΔΛ tij,k􏼐 􏼑

,

E lnωi,k􏼐 􏼑 � ψ 􏽢al,k + Ni/2􏼐 􏼑 − ln 􏽢bl,k + 􏽢c
2
l,k/2dl.k − dl,kXiNi,k

+ 􏽢cl,k􏼐 􏼑
2
/2dl,k dl,ktiNi,k

+ 1􏼐 􏼑 + 􏽘

Ni

j�1
ΔX2

ij,k/2tij,k
⎛⎝ ⎞⎠,

E ωi,k, μi,k􏼐 􏼑 � E ωi,k􏼐 􏼑 ·
􏽢dl,kXiNi.k

+ 􏽢cl,k

tiNi,k
􏽢dl,k + 1

,

E ωi,k, μ2i,k􏼐 􏼑 � E ωi,k􏼐 􏼑 ·
􏽢dl,kXiNi,k

+ 􏽢cl,k

tiNi,k
􏽢dl,k + 1

⎛⎝ ⎞⎠

2

+
􏽢dl,k

tiNi,k
􏽢dl,k + 1

.

(24)
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In M-step, we substitute the expectations of μi,k and ωi,k

that are obtained in E-step into equation (23), and the es-
timated values of hyperparameters 􏽢al+1, 􏽢bl+1, 􏽢cl+1, and
􏽢dl+1after l+ 1 iterations under the kth stage degradation can
be obtained as

ψ 􏽢al+1,k􏼐 􏼑 − ln 􏽢al+1,k � 􏽘
N

i�1
E

lnωi,k􏼐 􏼑

N
+ lnN − ln􏽘

N

i�1
E ωi,k􏼐 􏼑,

􏽢bl+1,k � N ·
􏽢al+1,k

􏽐
N
i�1 E ωi,k􏼐 􏼑

,

􏽢cl+1,k �
􏽐

N
i�1 E ωi,kμi,k􏼐 􏼑

􏽐
N
i�1 E ωi,k􏼐 􏼑

,

􏽢dl+1,k �
􏽐

N
i�1 E ωi,kμ

2
i,k􏼐 􏼑 − 2􏽢cl+1,kE ωi,kμi,k􏼐 􏼑 + 􏽢c

2
l+1,kE ωi,k􏼐 􏼑􏼐 􏼑

N
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

If the error between 􏽢ar−1, 􏽢br−1, 􏽢cr−1, and 􏽢dr−1 and 􏽢a r , 􏽢b r ,
􏽢c r , and 􏽢d r reaches the set condition after r iterations, then
the a priori estimate of the hyperparameter is obtained.

4.3. Real-Time Remaining Life Distribution of Equipment.
If joint posterior distribution of the parameters μ and ω are
obtained, the marginal probability distributions can be
obtained, respectively. Because the joint posterior distri-
bution of μ and ω obeys Gaussian-gamma distribution, the
posterior distribution of μ obeys μ∼ t(2a′d′) and the pos-
terior distribution of ω obeys 1/ω′∼ IG(a′, 1/b′). IG (·) is the
Inverse Gamma distribution, so the posterior distribution of
μ and ω can be expressed as

μk � E μk|tΔnXk( 􏼁 � dk
′,

ωk � E ωk|tΔnXk( 􏼁 �
ak
′

bk
′
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(26)

Moreover, the real-time remaining life density distri-
bution of the equipment can be further expressed as

fLτ
Lτ( 􏼁 � fLτ

Lτ|t􏽢μ1n, q􏽢ω1h, 􏽢μ2x, 7􏽢ω2C, ; . . . , 􏽢μk, 􏽢ωk( 􏼁. (27)

4.4. Prediction Steps for Remaining Life of Single Equipment.
When the real-time performance degradation data of a
single equipment is obtained, the remaining life of a single
aero engine can be predicted in real time, and the specific
steps are as follows:

Step 1 : we estimate the unknown hyperparameters in
the prior distribution of the parameters μ and ω
of the degradation model at each stage, getting
estimated values 􏽢a, 􏽢b, 􏽢c, and 􏽢dby the EM

algorithm by historical degradation data X and
failure time data ξ.

Step 2 : when the real-time performance degradation
data ΔX of the equipment is obtained, the model
parameters in each performance degradation
stage are updated in real time using equation (18)
according to the Bayesian method. Moreover, we
get the estimated hyperparameter values 􏽢a′, 􏽢b′,
􏽢c′, and 􏽢d′ in posterior distribution in our model.

Step 3 : according to equation (26) the posterior esti-
mated values 􏽢μ and 􏽢ω of our model in each
performance degradation stage are calculated,
respectively, and substituting them into equation
(27), the remaining life density distribution of
equipment after Bayesian updating can be ob-
tained. Finally, we can estimate the expectancy
value of equipment remaining life though cal-
culating equation (12).

5. A Practical Case Study

Metalized film capacitor, as one of an important component
in Inertial Confinement Fusion (ICF) laser equipment, is the
key of life prediction to maintain the laser equipment and to
develop a spare parts strategy [30]. However, some problems
are unavoidable such as impurity or defect areas in organic
film of a metallized film capacitor when it is in the pro-
duction process. It is prone to form a discharge channel
broken down by the external voltage during multiple charge
and discharge processes, and because of weak electrical
resistance in areas, capacitor result in “self-healing” phe-
nomenon. A single self-healing causes a very small loss of
capacitance; however, as the cycle of charge and discharge
process increases, the capacitance value of the capacitor
decreases continuously. When the loss of capacitance ex-
ceeds a certain threshold, the degradation rate of capacitance
increases. Usually, we define 5% of the capacity loss as the
end-of-life index [31]. .e variation of the capacitance
degradation under normal working conditions of the eight
capacitors is shown in Figure 1, and t is the number of charge
and discharge.

It can be observed from Figure 1 that the capacitance of
most capacitors shows a decreasing trend at the increase of
the number of charge and discharge. .e degradation rate of
metallized film capacitors is relatively slow in the initial
stage. When the capacitance loss reaches about 0.23 μF, the
capacitance degradation speed accelerates. We assume that
the performance degradation threshold D1 � 0.23. Degra-
dation of another capacitor during working of charge and
discharge is shown in Table 1, and we record this capacitor as
No. 9 capacitor. Degradation failure occurs when the ca-
pacitance change ΔC of the capacitor exceeds 5% of the
initial capacitance value C0. We record the failure threshold
Dn � 5% C0.

Take degradation data in first five of the 8 capacitors as
historical monitoring data for priori parameter estimation,
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and take the degradation data in last three of them as real-
time data for posterior parameter updating accordingly. We
assume that the initial values of the hyperparameter is (1, 1,
1, 1), and when the error between the adjacent estimated
values after iteration is not greater than 10−6 to end EM
iteration process, the priori estimated hyperparameter
values 􏽢a, 􏽢b, 􏽢c, and 􏽢d obtained. Moreover, the iterative
convergence process of hyperparameter estimation is shown
in Figure 2, and the a priori estimated values of hyper-
parameters at each stage are shown in Table 2.

After determining the prior distribution of the model
parameters in each performance degradation stage, the real-
time performance degradation data of a single capacitor is
obtained. Moreover, according to the Bayesian method, the
model parameters in each performance degradation stage
can be updated in real time. Take No. 9 capacitor as an
example for life prediction, and we rely on real-time per-
formance degradation data of last three of capacitors to
estimate the hyperparameters of the posterior distribution in
the first stage and second stage. Tables 3 and 4 show the
estimated values after Bayesian updating in different stages.
Finally, we substitute the estimated values of Bayesian
updating in the first stage and second stage into equation
(27), and the probability density distribution of the
remaining life can be obtained. Figures 3 and 4 show the
real-time remaining life probability density distribution
diagrams of No. 9 capacitor in the first and second stages,
respectively.

.e EM algorithm has certain advantage in estimation of
hyperparameter. Comparing the EM algorithm with the
Two-stage Maximum Likelihood Estimation (TSMLE) [26]
for the error of the hyperparameter estimation results, we
utilize the sum of relative errors Err of 4 hyperparameter
estimations to show the precision of the estimation results,
and Err is expressed as

Err �
|􏽢a − ta|

a
+

|􏽢b − tb|

b
+

|􏽢c − tc|

c
+

|􏽢d − td|

d
. (28)

.e estimation error between the two methods is shown
in Table 5. .e result of Err in the EM algorithm and the
TSMLE method can be seen. Obviously, the EM algorithm
has certain accuracy advantage in the estimation of
hyperparameters.

Table 6 shows the Relative Error (RE) of RUL prediction
for No.9 Capacitor in our model, model of single-stage
degradation [31] and the model of Brownian motion with
drift [32]. It can be seen that the relative error of considering
the multistage degradation process is smaller than the other
models, which proves that the proposed model can provide
better accuracy for predicting the remaining life of metal-
lized film capacitors. In addition, due to environmental
influence, defects, or impurities of organic film in the same
type capacitors, individual capacitor has different degra-
dation. .erefore, the Wiener process distribution param-
eter estimation based on Bayesian estimation of prior
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Figure 1: Capacitance degradation curves.

Table 1: Capacitance of No. 9 capacitor.

t/shots 0 1000 2000 3000
C(t)/μF 56.71 56.68 56.64 56.56
t/shots 4000 5000 6000 7000
C(t)/μF 56.38 56.10 56.06 55.82
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Figure 2: Iterative convergence process of hyperparameter estimation.

Table 2: Estimation of hyperparameter in prior distribution.

Stage
Estimation value of posterior

a b (10−5) c (10−5) d (10−4)
1 1.7710 1.1365 3.1618 0.7612
2 0.9153 2.0641 5.7205 1.6162

Table 3: Updated hyperparameters based on the Bayesian method (1st stage).

Estimation value of posterior
t/shots

1000 2000 3000 4000
a′1 (10–5) 1.7710 2.2710 2.7710 0.9071
b′1 (10–5) 1.3020 1.0007 0.9785 2.0572
c′1 (10–5) 3.1618 3.1128 3.0862 5.6825
d′1 (10–4) 0.7612 0.7274 0.6606 1.6197
RL (104/shot) 2.832 2.724 2.603 2.470
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degradation information is more in line with engineering
reality.

6. Conclusion Remarks

In this paper, we propose a degradation model based on the
Wiener process combined with the EM algorithm and
Bayesian method to estimate the RUL of equipment. A RUL
estimation method is constructed with due considering the
multistage degradation and individual differences in
equipment. By assuming that parameters of the Wiener
process are random variables which obey a certain distri-
bution, we utilize EM algorithm to estimate prior parameter
of the model based on historical degradation monitoring
data and updating posterior parameters based on CM data
by Bayesian. Finally, we can obtain different CDF of RUL
and expectation value of RUL.

By comparing the proposed model with existing models,
we utilize RE to measure prediction accuracy, and the result
shows that the accuracy of proposed model is better than
existing models. .e Wiener process that considers indi-
vidual differences can better describe the degradation pro-
cess of the equipment, and multistage degradation is more
suitable in engineering practical. In addition, we can see that
the estimation accuracy of EM is better than the TSMLE
method in hyperparameter estimation.
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“Reliability estimation for products subjected to two-stage
degradation tests based on a gamma convolution,” Quality
and Reliability Engineering International, vol. 32, no. 8,
pp. 2901–2908, 2016.

[17] Z. Huang, Z. Xu, X. Ke et al., “Remaining useful life prediction
for an adaptive skew-wiener process model,” Mechanical
Systems and Signal Processing, vol. 87, no. A, pp. 294–306,
2017.

[18] Z. X Zhang, “Degradation data analysis and remaining useful
life estimation: a review on wiener-process-based methods,”
European Journal of Operational Research, vol. 271, no. 3,
pp. 775–796, 2018.

[19] W. Peng, “Inverse Gaussian process models for degradation
analysis: a bayesian perspective,” Reliability Engineering &
System Safety, Reliability Engineering and System Safety,
vol. 130, pp. 175–189, 2014.

[20] W. ZuoLi, Y.-J. Li, S.-P. Zhu, and H.-Z. Huang, “Bivariate
analysis of incomplete degradation observations based on
inverse gaussian processes and copulas,” IEEE Transactions on
Reliability, vol. 65, no. 2, pp. 624–639, 2016.

[21] Q. Zhai and Z. S. Ye, “RUL prediction of deteriorating
products using an adaptive wiener process model,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 6,
pp. 2911–2921, 2017.

[22] N. Li, Y. Lei, L. Guo et al., “Remaining useful life prediction
based on a general expression of stochastic process models,”
IEEE Transactions on Industrial Electronics, vol. 64, no. 7,
pp. 5709–5718, 2017.

[23] H. Sun, J. Pan, J. Zhang, and D. Cao, “Non-linear wiener
process-based cutting tool remaining useful life prediction
considering measurement variability,” @e International
Journal of Advanced Manufacturing Technology, vol. 107,
no. 11-12, pp. 4493–4502, 2020.

[24] H. Liang, J. Q. Liu, Y. J. Gong et al., “Multi-phase residual life
prediction of engines based on Wiener process,” Journal of
Beijing University of Aeronautics and Astronautics, vol. 44,
no. 5, pp. 1081–1087, 2018, in Chinese.

[25] X. Wang, P. Jiang, B. Guo et al., “Real-time reliability eval-
uation for an individual product based on change-point
gamma and wiener process,” Quality and Reliability Engi-
neering, vol. 30, no. 4, pp. 513–525, 2014.

[26] Z. Wang, Y. Wei, Q. Wu et al., “A two-stage degradation
model considering the stage-varying of dispersity regulation,”
Quality & Reliability Engineering International, vol. 35, no. 7,
pp. 2115–2129, 2019.

[27] Z. X. Zhang, C. H. Hu, Y. B. Gao et al., “A residual useful life
prediction approach for equipments with multi-state sto-
chastic degradation,” Journal of Systems Engineering, vol. 32,
no. 1, pp. 1–7, 2017.

[28] W. A. Yan, B. Song, Z. Mao et al., “Empirical Bayesian es-
timation of wiener process with integrated degradation data
and life data,” in Proceedings of International Conference on
Quality, pp. 183–188, IEEE, Chengdu, China, July 2013.

[29] Z. Huang, Z. Xu,W.Wang, and Y. Sun, “Remaining useful life
prediction for a nonlinear heterogeneous wiener process
model with an adaptive drift,” IEEE Transactions on Reli-
ability, vol. 64, no. 2, pp. 687–700, 2015.

[30] J. B. Ennis, F.W.Macdougall, R. A. Cooper et al., “Self-healing
pulse capacitors for the national ignition facility (NIF),” in
Proceedings of IEEE International Pulsed Power Conference,
pp. 118–121, IEEE, Monterey, CA, USA, June 1999.

[31] B. H. Peng, J. L. Zhou, J. Feng et al., “Resudual lifetime
prediction of metallized film pulse capacitors,” Acta Elec-
tronica Sinica, vol. 39, no. 11, pp. 2674–2679, 2011, in Chinese.

[32] W. Wang, M. Carr, W. Xu, and K. Kobbacy, “A model for
residual life prediction based on brownian motion with an
adaptive drift,” Microelectronics Reliability, vol. 51, no. 2,
pp. 285–293, 2011.

10 Complexity


