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Insufficient stiffness of industrial robots is a significant factor which affects its positioning accuracy. To improve the positioning
accuracy, a novel positioning error compensation method based on the stiffness modelling is proposed in this paper. First, the
positioning errors considering the end load and gravity of industrial robots due to stiffness are analyzed. Based on the results of
analysis, it is found that the positioning errors can be described by two kinds of deformation errors at joints: the axial deformation
error and the radial deformation error. )en, the axial deformation error is modelled by the differential relationship of kinematics
equations.)emodel of radial deformation error is deduced through the recurrence method and rotation transformation between
joints. Finally, these two models are transformed into a Cartesian coordinate system, and a positioning error compensation
method based on these two models is presented. Simulations based on the finite element analysis are implemented to verify the
positioning error compensation method. )e results show that the suggested method can efficiently predict the positioning error
according to the gravity and loads, so that the positioning accuracy of industrial robots can be improved with the
proposed method.

1. Introduction

With the rapid development of intelligent manufacturing,
industrial robots (noted as robots) have been widely applied
in automobile manufacturing, logistics systems, mechanical
processing, food packaging industries, etc. [1]. According to
the report of the International Federation of Robotics (IFR),
more than 72% of industrial robots are used in the low-
precision occasions, e.g., sorting, palletizing, handling, spot
welding, painting, and assembly of simple parts [2] for the
positioning, and the trajectory accuracy of industrial robots
is still relatively low [3]. Kinematic calibration is the general
way to improve the absolute positioning and trajectory
accuracy of industrial robots [4]. However, kinematic cali-
bration can only compensate the static kinematic parameter
errors of industrial robots, while the dynamic factors, e.g.,
loads of the end effector (noted as EE), speed, acceleration,
gravity, and poses, also influence the positioning accuracy
greatly. One of the most notable characteristics of industrial
robots is the open-chain structure that provides high

flexibility and large working space for industrial robots
[5, 6]. However, the open-chain structure also results in a
low stiffness and an error accumulation amplification which
are the main reasons for the low accuracy of industrial
robots. )erefore, improvement of the stiffness error has
always been an important research field for industrial robots.
At present, there are mainly three methods to improve the
stiffness, i.e., structural strengthening method, stiffness
control method, and working space compensation method.

)e structural strengthening is an approach to improve
the absolute accuracy of robots, which enhances the integral
stiffness of robots by changing the material properties of the
robot’s mechanical parts and transmission parts. )is ap-
proach requires the designers to consider the low posi-
tioning accuracy caused by insufficient stiffness in the
design. Hence, the designers need to estimate the robot’s
stiffness in advance according to its application fields.
Tyapin et al. [7] proposed a method to model the physical
stiffness of the driver, reducer, and transmission parts of the
robots, respectively. With the corresponding weight
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coefficients obtained from the model, the robot’s stiffness
can be further integrated and estimated. However, the
stiffness model is not precise enough according to its ex-
perimental results. Liu et al. [8] presented a method of
modelling the rotating joint of the robots based on the
analysis of the contact relationships of the robot’s joints.
Although one can calculate the stiffness of each joint of the
robots accurately with this method, its calculation process is
complicated and the consumption cost of calculation is
considerable. By using structural strengthening, the stiffness
of the robots can be improved in the stage of manufacture.
However, after manufacture the stiffness of robots deter-
mined by the material properties and structure will not be
changed.

)e stiffness control method aims to control the robots at
some certain poses in which the stiffness of robots is rela-
tively high [9, 10]. Abele et al. [11, 12] presented an adaptive
machining method after measuring workpiece shape to
overcome the problem of low positioning accuracy caused
by the weak stiffness when machining. )e results show that
the machining accuracy of robots can be improved by
changing the robot’s poses to adjust the torque at the joint,
which can enhance the robot’s stiffness indirectly. By taking
the stiffness ellipsoid as the index to assess stiffness, Guo
et al. [13] improved the robot’s stiffness by optimizing its
working poses with the maximum joint angle as the con-
straints. Combining with the redundancy, Zanchettin et al.
[14] presented a method of optimizing the robot’s poses to
enhance the stiffness when the robots perform drilling tasks.
From the above methods, it can be found that the main idea
of the stiffness control method is to strengthen the EE
operation stiffness of the robots by changing or optimizing
the robot’s working poses [15]. Nevertheless, the precon-
dition of optimizing the pose to improve the positioning
accuracy is that there is a contact force at the EE of robots.
)erefore, when there are no contact forces, e.g., painting,
prealignment, and measurement, the stiffness control
method does not work.

Based on the kinematic and dynamic relationship of
robots, the working space compensation methods can es-
tablish a mathematical model that can describe the rela-
tionship between the positioning error and end loads along
with the gravity of the robot. And it can be used to predict
the positioning error in the working space to improve the
positioning accuracy. Salisbury proposed the traditional
stiffness model of robots based on the kinematic and static
theories [16]. )e stiffness modelling for robots in the
Cartesian coordinates was studied by connecting the stiff-
ness of each joint [17–19]. Abele et al. [11] provided a
stiffness model without calculating the inverse of Jacobian
matrix, which can simplify the calculation of error com-
pensation. In [20], the stiffness matrix of joints was identified
by measuring the EE displacement and rotation of robots.
)en, the stiffness matrix in the Cartesian coordinates was
derived by the stiffness mapping model from the joint to EE.
Sun et al. [21] proposed a method to calculate the EE
translation stiffness for serial robots. However, according to
the experimental results, this method is not accurate in terms
of prediction of the positioning error. Overall, working space

compensation methods are simpler and more universal than
structural strengthening methods and stiffness control
methods in practice, while the low accuracy limits its ap-
plication. )e main reason is that the current methods only
consider the rotary deformation around the axis of joints,
which does not contain the rotary deformation around the
radial direction of joints.

To improve the positioning accuracy, a novel posi-
tioning error compensation model based on the stiffness
for industrial robots is proposed in this paper, which
describes the relationship between the positioning error
and the EE load and gravity of robots. First, according to
the Newton–Euler method, the driving torque for each
joint is calculated. )rough the deformation assumption of
joints, the torque is connected with the rotation defor-
mation at joints. Moreover, the torque is also decomposed
along the axial and radial directions of joints, which is
consistent with the axial deformation and radial defor-
mation. Positioning error models including the axial and
radial deformation are established by means of kinematics
differential and recurrence methods, respectively. In ac-
cordance with the small deformation assumption, two
kinds of positioning error models are linearized. Finally, a
complete error compensation model is derived according
to the error models of axial and radial deformation, which
can effectively predict and compensate the positioning
error and improve the positioning accuracy for industrial
robots.

)e major contributions of this paper include the
following:

(1) A novel positioning error model is proposed for n-
degree-of-freedom (DOF) industrial robots based on
the relationship between its kinematics and dy-
namics parameters, which can be applied to arbitrary
multi-DOF serial robots

(2) )e Newton–Euler method is introduced to calculate
the balance torque of joints, which makes it con-
venient to calculate the positioning error caused by
the EE loads and gravity of the robot

(3) )e radial deformation error at joints is modelled
and included into the stiffness error model, which
improves the accuracy of prediction and compen-
sation for positioning error compared to the tradi-
tional methods

(4) )e positioning error model is linearized by intro-
ducing proper assumptions, which reduces the
complexity of the proposed method and makes it
convenient to applications

)e rest of the paper is organized as follows: in Section 2,
the displacement and deformation at joints of robots are
analyzed with the gravity and EE load. In Section 3, six basic
assumptions are provided, and the positioning error of
robots is derived. In Section 4, the finite element analysis and
three-dimensional model of a general six-DOF industrial
robot are used to validate the effectiveness and correctness of
the proposed method. Finally, conclusions for this paper are
given in Section 5.
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Notations. )roughout the paper, R denotes the set of real
numbers. Rn is the Euclidean space of n-dimensional real
vectors. Rm×n is the space of m × n real matrix. In×n denotes
the identity matrix inRn×n. {0} stands for the base coordinate
system of the robot. {i} is the coordinate system of link i of
the robot. iTj ∈ R4×4 is the homogeneous transform from {i}
to {j}. iRj ∈ R3×3 is the rotation transform from {i} to {j}.
iPj ∈ R3 represents the description of coordinate origin of
{j} in {i}. iPCj ∈ R3 denotes the centroid position of link j of
robots in {i}. fi ∈ R3 stands for forces of link i-1 acting on
link i. ni ∈ R3 stands for torque of link i-1 acting on link i.
Analogously ifj ∈ R3 and inj ∈ R3 are descriptions of fj

and nj in {i}, respectively. _θi ∈ R, €θi ∈ R are the angular
speed and angular acceleration of link i relative to {i}.
i Zj ∈ R3 is a vector of z-axis of {j} in {i}. iωj ∈ R3 and
i _ωj ∈ R3 represent the angular speed and angular acceler-
ation of link j relating to {0} in {i}. i _vj ∈ R3 is defined as the
acceleration of {j} in {i}. i _vCj ∈ R3 denotes the acceleration of
centroid of link j in {i}. ‖ · ‖ means the vector norm of a
vector in Rn. mi+1 means the mass of link i+1 of industrial
robots. To simplify expressions, cos(θ), sin(θ), and
1 − sin(θ) are replaced by cθ, sθ, and vθ , respectively.
(z(·)/z(x)) means the gradient operator to variable x.
S(·) ∈ R3×3 is defined as

S(·) �

0 −Vz Vy

Vz 0 −Vx

−Vy Vx 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

where Vx ∈ R, Vy ∈ R, and Vz ∈ R represent the three
components of a vector. Further, S(·) ∈ R4×4 can be defined
as

S(·) �
S(·)3×3 0

0 0
 

4×4
. (2)

)e sign function is defined as sign(·).

2. Analysis of Deformation at Joints

A general industrial robot is shown in Figure 1. When forces
are applied to the robot and the link’s gravity is considered,
balance forces and torques are generated at each joint and
link. According to the theories of material mechanics, if the
object is subjected to forces and torques, its shape will be
changed, e.g., tension, compression, shear, torsion, and
bending [22]. )e effect of applied forces at joints and links
of the robot is more complex than the results of theoretical
analysis because the joint of robots consists of many ele-
ments in reality, e.g., motors, drive shafts, gears, and re-
ducers. Hence, the deformation of robots in reality is a
combination of the above five deformations. However, since
the deformation at joints is significantly larger than the
deformation at links, the deformation at joints is mainly
studied in this paper.

In Figure 1, two types of deformation are shown, which
include the rotary deformation around the axis of joints and
the linear deformation along the certain direction. )e joint
of the robot deflects angle Δφ around its axis and its linear

deformation is Δl under effects of gravity G and the end
load F.

According to the Newton–Euler method [23], the re-
lationship between the motion and the driving force (or
driving torque) of industrial robots can be described through
the following dynamic equations:
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i+1
i R
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i R
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i
i+1R
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(5)

where iFi ∈ R3 and iNi ∈ R3 are the inertia force and torque
of link i in {i}, respectively. Ci+1Ii+1 ∈ R3×3 denotes the inertial
tensor matrix of link i+1 in Ci+1  that is the coordinate
system of centroid of link i+1. When the robot stops at a
position, some variables in equations (4) and (5) are con-
stant, e.g., _θi+1 � 0, €θi+1 � 0, i+1ωi+1 � (0, 0, 0)T, and
i+1 _ωi+1 � (0, 0, 0)T(i+1). )us, the above dynamic equations
are further simplified as

i+1
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i+1
i R

i
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�
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i+1
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,

(6)

i
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i
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i
Fi, (7)

i
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i
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i+1
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i
PCi

i
ni ×

i
Fi +

i
Pi+1 ×

i
i+1R

i+1
fi+1. (8)

It should be noted that although the robot is at stationary
state, the value of i _vi is not zero. According to the weak
principle of equivalence, the gravity applied to the robot is
equivalent to a case that the robot has an initial acceleration,
which is opposite to the gravity direction. In this paper, the
gravity of the robot is considered, and 0 _v0 is a three-di-
mensional vector that is opposite to the gravity.

From equations (7) and (8), conclusions can be obtained
that even if the robot is at stationary state, the balance force
and torque exist at the joints of the robot. To display the
force and torque clearly, the joint is taken out from the robot
as a separate body in Figure 2, in which F and M represent
the resistant force and torque, respectively. Fd andMd denote
the driving force and torque, respectively. Ma and Mr stand
for axial and radial components of torqueM.)us, under the
influence of force F and torqueM, there will be two kinds of
deformation at the joint, i.e., the rotary deformation around
the torque’s axis and the linear deformation along the force
direction.
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From the above analysis, there are two types of defor-
mation at the joint under influence of the gravity and end
load. Although the deformation at the joint may be very
small in practice, the joint, as vital but weak parts of the
robot, will greatly affect the positioning accuracy of the
robots. It can be observed from (a) and (b) in Figure 1 that
the rotary deformation and linear deformation (these two
deformations are usually appearing together) lead to the
positioning error of the robots. Hence, it is essential to
describe the positioning error caused by joint deformation
with a mathematical model and to more accurately predict
the positioning error. Hence, to resolve these problems, a
generalized mathematical model for industrial robots is
proposed to predict the positioning error in this paper.

3. Positioning Error Modelling for
Industrial Robots

Some assumptions should be introduced before establishing
the positioning error model because they are the basis of the
proposed method.

Assumptions are as follows:

(i) )e industrial robots only contain rotating joints
but not moving joints.

(ii) )e elastic deformation of the robot’s link is neg-
ligible compared to its deformation at joints.

(iii) )e effect caused by the rotary deformation at joints
on the positioning error of the robots is much larger

than the effect caused by the linear deformation of
the joint on the end positioning error.

(iv) )e rotary angle Δφ ∈ R caused by the rotary de-
formation at the joint is small enough so that the
following equations can be regarded as meaningful
within the allowable range of accuracy:

sin(Δφ) � Δφ, cos(Δφ) � 1. (9)

(v) )ere is a linear relationship between the rotary
deformation Δφ at the joint and the torque n ∈ R3

applied to the joint, as shown below:
Δφ � C‖n‖, (10)

where C ∈ R is the flexibility coefficient of the joint.
)erefore, the stiffness coefficient can be defined as
K � (1/C).

(vi) )ere are two types of rotary deformation at each joint,
i.e., the rotary deformation Δθ ∈ R around joint’s axis
and the rotary deformation Δc ∈ R around the radial
direction of the joint. According to assumption (iv),
the following equations can be obtained:

Δθ � Ca na

����
����,

Δc � Cr nr

����
����,

(11)

where Ca ∈ R denotes the axial stiffness coefficient of the
joint and Cr ∈ R denotes the radial stiffness coefficient of the

Md

Fd

M

x F

z

y

(a)

x

zMa

Mr

M

y

(b)

Figure 2: )e force and torque at the joint. (a) )e torque and force at the joint. (b) )e decomposition of torque M.

Δφ

G

F

(a)

G

Δl

F

(b)

Figure 1: Two types of deformation at the joint. (a) )e rotary deformation at the joint. (b) )e linear deformation at the joint.
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joint. With assumption (v), we can define Ka � (1/Ca) and
Kr � (1/Cr). na ∈ R3 and nr ∈ R3 stand for axial torque and
radial torque at the joint.

Remark 1. In practice, general robots consist of six revolute
joints [24, 25]. )us, assumption (i) is appropriate for
general-purpose robots. It is also shown that the deforma-
tion of the joint due to the insufficient stiffness of driving and
transmission system accounts for 70% of the total defor-
mations which are caused by the external load or gravity
[26]. Accordingly, assumption (ii) is true in this paper. As
shown in Figure 1, although the rotary deformation and
linear deformation at the joint may be tiny, the effects caused
by the rotary deformation on the positioning error are
significant because of the magnifying effect of the link. For
this reason, assumption (iii) is reasonable. In accordance
with [27, 28], the joint stiffness of industrial robot is 1N/μm.
In other words, a force of 1000N is required to generate
deformation of 1mm. However, the maximum end load of
most industrial robots is less than 1000N. When the de-
formation at the joint is less than 1mm, it can be reckoned
that assumption (iv) is meaningful. In the light of Hooke’s
law of the material, assumption (v) is feasible. In the pre-
vious discussions, there is a resistant torque M at the joint.
)e vector of torque M can be further decomposed along
two directions, i.e., the axial and radial direction of joint, as
shown in (b) of Figure 2. Hence, it can be considered that the
rotary deformation consists of rotary deformation around
joint’s axis and the radial direction of the joint. Since these
two kinds of deformation are different in essence, Ca and Cr

are required to describe the relationship between the rotary
deformation and torque applied to the joint. )us, as-
sumption (vi) can also be valid.

Now, it is considered that the force Fe ∈ R3 is applied to
the EE of the robot and the gravity of the robot is also
included.When the robot is stationary, the driving torque ini

of joint i can be obtained by equations (6) to (8). )is torque
can be decomposed as

i
ni �

i
nai +

i
nri, (12)

)us, the rotary deformations around axial and radial
direction at joint i are

Δθi � Cai
i
nai

����
����,

Δci � Cri
i
nri

����
����.

(13)

According to the two types of rotary deformations at the
joint in equation (13), the positioning error model of axial
and the radial deformation will be established, respectively,
in the next sections, and the total positioning error model
will be derived finally.

3.1. Positioning Error Model of Axial Deformation around the
Joint. When the EE of the robot is at a point Pe0 in Cartesian
coordinate system and its coordinates are
0Pe0 � (0px, 0py, 0pz)T in {0}. )e joint angle corresponding
to 0Pe0 isΘ � (θ1, θ2, θ3, . . . , θN)T. Since 0Pe0 is a function of
joint angle Θ, the differential operation of 0Pe0 to Θ is as
follows:

d(0px)

d(0py)

d(0pz)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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, (14)

where N is the number of joints. According to assumption
(iv), equation (14) can be written as

0Δxa

0Δya

0Δza
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

where 0Δxa, 0Δya, and 0Δza represent the three components
of positioning error of the EE due to the rotary deformation
around joint’s axis in {0}. Combined with equation (13),
equation (15) can be further written as

0ΔPa �

z0px

zθ1

z0px

zθ2
· · ·

z0px

zθN

z0py

zθ1

z0py

zθ2
· · ·

z0py

zθN

z0pz

zθ1

z0pz

zθ2
· · ·

z0pz

zθN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

‖1na1‖ 0 · · · 0

0 ‖2na2‖ · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · ‖NnaN‖

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ca1

Ca1

⋮

CaN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)
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Equation (16) preliminarily indicates the relationship
between the torque applied to the joint and the positioning
error. However, equation (16) still cannot describe this re-
lationship sufficiently. )e main reason is that the direction
of Δθi (positive or negative) is not associated with the
subjected torque in Δθi � Cai‖

inai‖. )erefore,
Δθi � Cai‖

inai‖ can be rewritten as (17) by introducing a sign
function as

Δθi � Cai‖
i
nai‖sign(−

i
ni(z)), (17)

where ini(z) ∈ R stands for the component z of ini. In
equation (17), a negative sign is added before ini(z) because
the driving torque of joint and the subjected torque are a pair
of balance torques. Hence, on the basis of equations (15) and
(17), a complete positioning error model of axial defor-
mation around the joint is given as follows:

0ΔPa �

z0px

zθ1

z0px

zθ2
· · ·

z0px

zθN

z0py

zθ1

z0py

zθ2
· · ·

z0py

zθN

z0pz

zθ1

z0pz

zθ2
· · ·

z0pz

zθN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

‖1n1‖sign(−1n1(z)) 0 · · · 0

0 ‖2na2‖sign(−2n2(z)) · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · ‖NnaN‖sign(−NnN(z))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ca1

Ca1

⋮

CaN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

In particular, equation (18) indicates that the positioning
error 0ΔPa of the robots due to the rotary deformation
around the joint is a function of the variables EE position
0Pe0 (or joint angle Θ � (θ1, θ2, θ3, . . . , θN)T), end load F(or
1na1

2na2,. . .. . .NnaN), and the gravity of the robot. Moreover,
even though the end load F does not change, the positioning
error 0ΔPa is also different when the robot is at various
configurations.

3.2. Positioning Error Modelling of Radial Deformation
around the Joint

3.2.1. Rotation Transformation around Arbitrary Axis.
For the integrity of the modelling process, the concept of
rotation transformation around the arbitrary axis will be
introduced in this section. It is assumed that the vector AK �

(kx, ky, kz)T is an identity vector in {A}. According to the
right-hand rule, the rotation transformation matrix of ro-
tating θ around axis of AK is as follows:

RK(θ) �

kxkxvθ + cθ kxkyvθ − kzsθ kxkzvθ + kysθ

kxkyvθ + kzsθ kykyvθ + cθ kykzvθ − kxsθ

kxkzvθ − kysθ kykzvθ + kxsθ kzkzvθ + cθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� cθ · I3×3 + vθ ·
A

K
A

KT + sθ ·
A

K.

(19)

Equation (19) is also called Rodigues’s formula, but it is
not linearized form concerning θ. In the light of assumption
(iv), when the rotary angle Δθ is small enough, equation (19)
can be further simplified as

RK(Δθ) �

1 0 0

0 1 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +

0 −kz ky

kz 0 −kx

−ky kx 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Δθ � I3×3 + S(

A
K )Δθ.

(20)

Equation (20) indicates that the rotation transforma-
tion matrix can be handled via a linearized function with
respect to the variable Δθ after using assumption (iv),
which is beneficial to the linearization of the positioning
error model.

3.2.2. Modelling of Radial Deformation. As mentioned
above, it is assumed that the end point of the robot is still at
point Pe0. With the influence of end loads and gravity, each
joint will have a slight rotary deformation Δci around the
radial direction of ini. )us, the coordinate of EE position
can be described by (21) with the rotary deformation of each
joint:

1
Pe1 � R1n1

Δc1( 
1
Pe0,

2
Pe2 � R2n2

Δc2( 
2
Pe1,

3
Pe3 � R3n3

Δc3( 
3
Pe2,

⋮

i
Pei � Rini

Δci( 
i
Pei−1,

⋮

N
PeN � RNnN

ΔcN( 
N

PeN−1,

(21)

where N is the number of joint. iPei stands for the EE po-
sition with the rotary deformation Δci at joint i in {i}. It
should be noted that in (21), the coordinates of all points are
described by homogeneous coordinates and the rotation
transformation is also the homogeneous form in order to be
convenient for the following coordinate transformation.
)en, the variation of each joint before and after rotary
deformation can be obtained based on equation (21) as
follows:
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1ΔPr1 �
1
Pe1 −

1
Pe0,

2ΔPr2 �
2
Pe2 −

2
Pe1,

3ΔPr3 �
3
Pe3 −

3
Pe2,

⋮
iΔPri �

i
Pei −

i
Pei−1,

⋮
NΔPrN �

N
PeN −

N
PeN−1,

(22)

where iΔPri denotes the variation for the EE position at joint
i before and after rotary deformation in {i}. Next, the analysis
about iΔPri will be performed. First, 0ΔPri is obtained by
transforming iΔPri into {0}:

0ΔPri �
0
i T

iΔPri. (23)

Combining with equations (20), (21), (22), and (23), the
following equation can be derived:

0ΔPri �
0
i TS(−

i
nri)

i
Pei−1 · Δci, (24)

where inri represents an identity vector corresponding to inri.
It can be found by observing equation (21) that iPei−1 is
deduced from the term of iPe0 in equation (24). )us, iPei−1

can also be expanded to iPe0. According to (21) and (22), the
following equations are obtained:

i
Pei−1 �

i
i−1T

i−1
Pei−1,

i−1
Pei−1 �

i−1ΔPri−1 +
i−1

Pei−2

,

i−1ΔPri−1�
S −

i−1
n̂ri−1

i−1
Pei−2 · Δci−1.

(25)

Next, the following equation is obtained according to
equation (25):

i
Pei−1 �

i
i−1T

S(−
i−1

nri−1)
i−1

Pei−2 · Δci−1 +
i−1

Pei−2 . (26)

Equation (26) gives a recursive relationship between EE
position iPei−1 before the rotary deformation at joint i and
the EE position i−1Pei−2 before the rotary deformation at
joint i-1. Based on (26), equation of iPei−1 including iPe0−1 is
written as follows:

i
Pei−1 � 

i−1

k�1

i
kTS(−

k
nrk)

k
Pek−1 · Δck  +

i
1T

1
Pe0. (27)

Although iPei−1 has been expanded to iPe0, the above
equation still contains 2Pe1, 3Pe2,..., i−1Pei−2. Substituting
equation (27) into equations (24) and (28), we have

0ΔPri �
0
i TS(−

i
nri) 

i−1

k�1

i
kTS(−

k
nnk)

k
Pek−1 · ΔckΔci  +

i
1T

1
Pe0 · Δci

⎧⎨

⎩

⎫⎬

⎭. (28)

In (28), since Δc satisfies assumption (iv) and ΔckΔci is
high-order terms of Δc, then ΔckΔci can be removed. When
ΔckΔci � 0, equation (28) will be further simplified as

0ΔPri �
0
i TS(−

i
nri)

i
Pe0 · Δci, (29)

where the last component of 0ΔPri is zero since the ho-
mogeneous coordinates are employed, i.e.,
0ΔPri � (0Δxr,

0Δyr,
0Δzr, 0)T. Accordingly, a transforma-

tion for equation (29) should be performed to eliminate the
last component of 0ΔPri that is zero. )e specific trans-
forming process is as follows:

0ΔPri �
0
i TS −

i
nri 

i
Pe0 · Δci,

0Δxr
0Δyr
0Δzr

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

0
i R

0
Piorg

0 1
 

S −
i
nri  0
0 0

 
i
Pe0(3×1) 1  · Δci

� 0
i R S −

i
nri 

i
Pe0(3×1)0  · Δci,

0Δxr
0Δyr
0Δzr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

0
i RS −

i
nri 

i
Pe0 3×1 · Δci,

0
Pri(3×1) �

0
i RS −

i
nri 

i
Pe0 3×1 · Δci,

(30)

which shows that the EE position of robots iPe0 and the
torque of the joint can be calculated by the rotary defor-
mation Δci, and the positioning error 0Pri caused by the
rotary deformation the around radial direction of the joint
can also be calculated. )en, the total positioning error due
to the rotary deformation Δci is determined as

0
Pr(3×1) � 

N

i�1

0
Pr(3×1). (31)

From equations (13), (30), and (31), the positioning error
model after the rotary deformation Δci is derived as follows:

0
Pr(3×1) � 

N

i�1
[
0
i RS(−

i
nri)

i
Pe0]3×1 · Cri‖

i
nri‖, (32)

when Yi � ‖inri‖[0i RS(inri)
iPe0]3×1, equation (32) will be

written as

0
Pr(3×1) � Y1 Y2 · · · YN 

Cr1

Cr2

⋮

CrN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

Similar to equation (18), equation (33) illustrates that
when the force Fe is applied to the EE of the robot and its
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gravity is considered, the radial torque at the joint will lead to
the positioning error 0ΔPr(3×1).

3.3. ErrorModelling including Axial and Radial Deformation.
According to the analysis in Sections 3.1 and 3.2, two po-
sitioning error models that correspond to the axial and radial
deformation at the joint, respectively, have been acquired.
Since the positioning errors 0ΔPa and 0ΔPr are in {0}, they
can be composited to obtain a complete positioning error
model which includes both the influence of axial and radial
deformation, as shown in the following equation:

0ΔP �
0ΔPa +

0ΔPr. (34)

Combining with equations (18) and (33), the complete
positioning error model is derived as follows:

0ΔP � 0JPaΛa
0JPrΛr 3×2N

Ca

Cr

 
2N×1

, (35)

where

0
JPa �

z0px

zθ1

z0px

zθ2
· · ·

z0px

zθN

z0py

zθ1

z0py

zθ2
· · ·

z0py

zθN

z0pz

zθ1

z0pz

zθ2
· · ·

z0pz

zθN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

0JPr � col1 col2 · · · coli · · · colN , (36)

with arbitrary column

coli � [
0
i RS(−

i
nri)

i
Pe0]3×1 ,

Ca � Ca1, Ca2, Ca3, . . . , CaN( 
T
,

Cr � Cr1, Cr2, Cr3, . . . , CrN( 
T
,

Λa �

‖1na1‖sign(−1n1(z)) 0 · · · 0

0 ‖2na2‖sign(−2n2(z)) · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · ‖NnaN‖sign(−NnN(z))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Λr �

‖1nr1‖ 0 · · · 0

0 ‖2nr1‖ · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · ‖NnrN‖

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(37)

Equation (35) describes the effect of the end load and the
gravity on the positioning error at an arbitrary position in
the working space of the robot, and it can be rewritten in a
simplified form as follows:

0ΔP � Φ(F,Θ)C, (38)

where Φ(F,Θ) is a simplified expression of
0JPaΛa

0JPrΛr 3×2N
, and C means (Ca, Cr)

T.

Remark 2. Two conclusions can be obtained according to
(35). (i) )e mapping relationship between the positioning
error of the robot and its loads including the end load and
gravity is linear. (ii) )e positioning error is affected by the
load as well as the poses of robots. It should be noted that Ca

and Cr stand for the overall stiffness of all components that
make up the joint in (35). Hence, they cannot be used to
measure the stiffness of a specific part of joints. Moreover, Ca

and Cr describe the torsional stiffness and bending stiffness

of joints, respectively. )is is consistent with the practical
situation in which the torsional stiffness is different from the
bending stiffness. Finally, since Ca and Cr are the integrated
stiffness, they cannot be obtained directly by measurement.
However, many mathematical methods can be used to
identify Ca and Cr, e.g., least square method [29, 30], genetic
algorithm [31], particle swarm optimization algorithm [32],
Kalman filtering algorithm [33], etc.

4. Simulations

)e proposed positioning error model will be verified by
simulations. )e procedure of the verification consists of six
steps as shown in Figure 3. It is noted that if dynamic pa-
rameters of the robot are known, step S3 can be omitted. In
this paper, dynamic parameters are obtained by Computer-
Aided Design (CAD) method, so step S3 is represented by a
dotted box here.
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4.1. Kinematics Modelling. A 6-DOF general-purpose robot
is used to verify the effectiveness and generality of the
proposed method. First, the coordinate systems of the robot
are established according to the D-H method, as shown in
Figure 4. To describe the EE position of the robot, the origin
of {6} is set at its EE. )en, kinematics parameters of the
robot are obtained, as shown in Table 1 based on the co-
ordinate systems in Figure 4.

According to the kinematics parameters in Table 1, the
kinematic model of the robot is established by equation (39).
Moreover, the homogeneous transformation matrix i

jT and
the rotation transformation matrix i

jR can be obtained,
which will be used in the positioning error model:

i−1
i T �

cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di

sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

0
i T � 

i

k�1

k−1
k T,

i
jT �

i
0T

0
jT.

(39)

4.2. Dynamics Parameters. To acquire the driving torque, ini

and dynamics parameters of the robot are established on the
basis of Newton–Euler method, as shown in equations (3),
(4), and (5). Generally, the dynamics parameters are ob-
tained by identification [34] or calculation from the design
parameters. )e dynamics parameters of the robot can be
acquired by Computer-Aided Design (CAD) method based
on the kinematics model, as shown in Table 2.

4.3. Simulation and Analysis. Combining with the above
kinematics model and dynamics parameters, a simulation
environment is constructed by using finite element method.
)e data set from finite element simulation is defined as
practical values, which are used to identify the unknown
parameters Ca and Cr. )en, the identified parameters are
put into the positioning error model. Finally, the predicted

S1: Establish kinematic model
of the robots with the D-H method

S2: Establish dynamic model
of the robots with

the Newton–Eular method

S3: Perform dynamic
parameters identification

S6: Evaluate the proposed
model

S5: Acquire data used to
variation by finite element

simulation

S4: Build end positioning
error model with the proposed

method in this paper

i
jT i

jR iPj

iPCimi

Figure 3: )e flowchart of verification for the proposed model.

Table 1: Kinematics parameters of the robot.

i αi−1 (rad) ai−1 (m) Di−1 (m) θi−1 (rad)
1 0 0 0.504 θ1
2 π/2 0.170 0.101 θ2 + π/2
3 0 0.70 −0.120 θ3
4 π/2 0.140 0.760 θ4
5 −π/2 0 0 θ5 + π
6 −π/2 0 0.170 θ6

Z6

X6Z5X5

X4 Z4

Z3

X3

X2X1

Z1

Z2

Z0
X0

Figure 4: Coordinate systems of the robot.

Table 2: )e mass and centroid position of each link.

i (mi/kg) irxi (m) iryi (m) irzi (m)

1 31.138 0.126 −0.076 −0.185
2 52.132 0.390 0 −0.025
3 48.813 0.124 −0.076 0.005
4 35.088 0 0 −0.190
5 6.675 0 0.183 0
6 1.893 0 0 −0.014
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values according to the proposed method are compared with
the results of finite element simulation.

To estimate unknown parameters Ca and Cr, a group of
joint angles are chosen arbitrarily in the working space of the
robot, i.e., Θ � (44∘, −45∘, 20∘, 45∘, −30∘, 80∘)T. It should be
noted that Θ needs to be converted into a radian system
when calculating. A group of end loads F are used as shown
in Table 3. In the light of Θ and F, the regression matrix
Φ(F,Θ) is calculated. )e positioning error 0ΔP can be
acquired from the finite element model as shown in Figure 5.
)ere are 10 groups of data in Table 3.

Since (35) is linear with respect to parameters Ca and Cr,
the least square method is used to estimate the unknown
parameters Ca and Cr. )e results of parameter estimation are
as shown in Table 4. It can be found that the values of Ca1, Ca6,
and Cr6 are zero. Nevertheless, this does not mean that the real
stiffness coefficient at joints 1 and 6 is zero but means that their
changes have no effects on the positioning error. In Table 4,
except the case where estimated parameter C is zero, it can be
also found that some identified values are negative. According
to Δφ � C‖n‖ in assumption (v), when flexibility coefficient C
is positive, it indicates that the direction of rotary deformation
Δφ and joint torque n are the same. And when C is negative, it

indicates that the direction of Δφ is opposite to the direction of
n. Meanwhile, it also shows that the stiffness parametersCa and
Cr do not possess practical physical significance but merely
mathematical meaning in the proposed model.

Tomeasure the accuracy of the identified parameters, the
index of relative error is introduced. A linear model can be
expressed as Ax � b and the relative error about the esti-
mated value x can be defined as follows:

er �
b − Ax

b
  × 100%. (40)

According to (40), it can be found that limx⟶x
er � 0. In

other words, the value of |er| describes a degree of closeness

Node:
x, y, z:
Value:

3893
1.08e + 03, 1.15e + 03, 745mm
3.74854356e – 02mm

UX (mm)
1.42688081e – 01

1.30360141e – 01

1.18032187e – 01

1.05704241e – 01

9.33762938e – 02

8.10483471e – 02

6.87204003e – 02

5.63924611e – 02

4.40645143e – 02

3.17365676e – 02

1.94086209e – 02

7.08067603e – 03

–5.24726976e – 03

Figure 5: )e finite element model.

Table 3: Settings of the end load for parameters identification.

F/N 0Δx (mm) 0Δy (mm) 0Δz (mm)
(0, 0, −500)T 5.6939×10−2 5.0193×10−2 −3.7822×10−1

(0, 0, −450)T 5.5263×10−2 4.8607×10−2 −3.6290×10−1

(0, 0, −330)T 5.1240×10−2 4.4801× 10−2 −3.2616×10−1

(0, 0, −271)T 4.9264×10−2 4.2929×10−2 −3.0810×10−1

(0, 0, −161)T 4.5578×10−2 3.9440×10−2 −2.7442×10−1

(0, 0, −88)T 4.3131× 10−2 3.7124×10−2 −2.5206×10−1

(0, 0, −65)T 4.2362×10−2 3.6395×10−2 −2.4503×10−1

(0, 0, −30)T 4.1187×10−2 3.5285×10−2 −2.3431× 10−1

(0, 0, −10)T 4.0519×10−2 3.4650×10−2 −2.2818×10−1

(0, 0, 0)T 4.0184×10−2 3.4333×10−2 −2.2512×10−1

Table 4: )e results of parameters identification.

Parameters Value (rad/N•m) Parameters Value (rad/N•m)
Ca1 0 Cr1 9.9312×10−5

Ca2 3.9922×10−5 Cr2 −6.7172×10−5

Ca3 −5.0087×10−5 Cr3 −2.4600×10−4

Ca4 2.5951× 10−5 Cr4 1.3356×10−3

Ca5 3.9436×10−4 Cr5 1.0381× 10−4

Ca6 0 Cr6 0
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between the estimated value x and the true value x. In
addition, the value of |er| can also be used to measure the
degree of closeness between the predicted value Ax and the
true value b. According to (40), the relative error with respect
to the identified parameters Ca and Cr is obtained as shown
in Figure 6.

It can be seen from Figure 6 that the relative error
between the theoretical values Φ(F,Θ)C and the measured
values 0ΔP is very small in the three directions, and it is
between −0.0025% and 0.0025%.

20 groups of different end loads are selected randomly to
verify the effectiveness of the presented method, as shown in

0 50 100 150 200 250 300 350 400 450 500
End load (N)

–2.5

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

3
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la

tiv
e e

rr
or

 (%
)

×10–3 �e relative error for identified parameters

x-direction
y-direction
z-direction

Figure 6: )e accuracy of identified parameters.

2 4 6 8 10 12 14 16 18 20
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3 ×10–3 �e relative error between the predicted value and the measured value
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tiv
e e

rr
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Figure 7: )e accuracy for predicted value 0ΔP.
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the first column of Table 5. )en, the three components of
the positioning error corresponding to each load can be
acquired with finite element simulations as shown in the last
three columns of Table 5. )e predicted values Φ(F,Θ)C of
the positioning error can be calculated based on these end
loads and identified parameters Ca and Cr. )e relative error
between the predicted values Φ(F,Θ)C and the measured
values 0ΔP is calculated by (40). )e results are as shown in
Figure 7.

From Figure 7, it can be found that the relative errors
between the predicted values Φ(F,Θ)C and the measured
values 0ΔP are very small in all the three directions. )ey are
all in the range of [−0.004%, 0.003%]. Compared with the
relative error shown in Figure 6, the relative error in Figure 7
is larger. )e main reason is that the former group of data is
involved in the parameter identification, but the latter is only
used to predict the positioning error of the robot. With a
predicted accuracy of 99.996%, the accuracy of the model is
quite high in predicting and compensating positioning error
0ΔP. In practice, the predicted accuracy may reduce when the
real data used to identify the parameters contains the noise.

5. Conclusion

)e main factors that affect the positioning accuracy of
robots were analyzed considering the end loads and gravity.
Based on the results of the analysis, it is found that the
positioning error can be described by two parameters, i.e.,
the axial deformation and the radial deformation at the joint.
A prediction and compensation model of positioning error
was proposed based on the two kinds of deformations. )e
positioning error can be calculated according to the loads
and gravity though the model for n-DOF industrial robots.
Finite element simulation was used to verify the proposed
model. )e results of simulation showed that the proposed

positioning error model can predict positioning errors.
Future work will focus on the verification of the presented
model by means of experiments and applying it to predict
the positioning error under different loads to improve the
positioning accuracy of industrial robots.
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