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Because of the problems of low operation efficiency and poor energy management of multienergy input and output system with
complex load demand and energy supply, this paper uses the double-layer nondominated sorting genetic algorithm to optimize
the multienergy complementary microgrid system in real-time, allocating reasonably the output of each energy supply end and
reducing the energy consumption of the system on the premise of meeting the demand of cooling, thermal and power load, so as to
improve the economy of the whole system. According to the system load demand and operation mode, the first layer of this
double-layer operation strategy calculates the power required by each node of the microgrid system to reduce the system loss. &e
second layer calculates the output of each equipment by using nondominated sorting genetic algorithmwith various energy values
calculated in the first layer as constraint conditions, considering the operation characteristics of various equipment and aiming at
economy and environmental protection. In this paper, a typical model of energy input-output is established.&is model combines
with the operation control strategy suitable for multienergy complementary microgrid system, considers the operation mode and
equipment characteristics of the system, and uses a double-layer nondominated sorting genetic algorithm to optimize the
operation of each equipment in the multienergy complementary system in real time, so as to reduce the operation cost of
the system.

1. Introduction

Multienergy complementary microgrid system is a multi-
input and multi-output energy system, which generally
covers integrated power supply, gas supply, heating supply,
cold supply, and other energy systems as well as related
communication and information infrastructure. &e effi-
cient economic and environmental protection operation of
multienergy complementary system is the development
direction of the energy industry in the future. For the energy
efficiency to further be improved and the large-scale utili-
zation of various new energy source’s to be promoted, the
deep integration and close interaction of multienergy
sources, networks, and loads are the inevitable trend of
future energy system development. &erefore, the research
on multienergy complementary collaborative optimization
has prospective and huge engineering application value [1].

Due to the differences in the development of different
energy systems, the energy supply is often planned,
designed, and operated independently, and there is a lack of
coordination among them, which results in low energy
utilization rate, weak overall security, and self-healing ability
of energy supply system. &e multienergy complementary
system is a nonlinear system with the characteristics of
equipment diversity, complex operation characteristics, and
variable load; therefore, the problem of collaborative opti-
mization is more important. &e energy consumption mode
of multienergy complementary microgrid system mainly
includes three types, cooling, heating, and electricity; since
the energy consumption side of the multienergy comple-
mentary microgrid system is not controllable, only by
regulating and controlling the energy supplied by the
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equipment at the energy supply side of the system, that is, the
energy input end, can achieve the purpose of efficient and
economic operation of the system.

At present, some researches have been done on the op-
timal energy allocation of multienergy complementary
microgrid system at home and abroad, such as Jose L et al.
considered the cost of system life cycle and pollutant emission
as the objective equation to optimize the system [2]. Abbe S
et al. considered three objectives at the same time to optimize
the system; the methodology combined life cycle cost, em-
bodied energy, and loss of power supply probability [3]. Diaf
et al. studied the optimal sizing of stand-alone hybrid PV/
wind system in Corsica Island based on technical-economic
optimization [4]. Ding M. et al. established the scheduling
model, which is based on three different operation strategies,
to optimize operation scheduling through the environmental
benefits of the two objectives [5]. Aghaei et al. developed a
multiobjective self-scheduling optimization for CCHP
(combined cooling, heating, and power system) based
microgrid. &e optimization considered minimizing the
operational cost and emission [6]. Nwuluand Xia proposed
the optimal dispatch strategy for hybrid PV/wind diesel
system incorporated with the demand response program [7].
Some of these studies focus on static optimization of mul-
tienergy complementary system with cost or environment as
the goal; some real-time optimization strategies are only for
microgrid but do not optimize the control strategy of mul-
tienergy complementary system with cooling, heating, and
power.

In this paper, a real-time optimal control strategy of
multienergy complementary microgrid system based on
double-layer nondominated sorting genetic algorithm is
proposed to optimize the multienergy complementary
microgrid system in real-time and reasonable distribute the
output of each energy supply end [8, 9]. In this paper, a
typical multienergy complementary microgrid system is
studied. &e structure of the multienergy complementary
microgrid system is shown in Figure 1, which mainly in-
cludes wind turbine (WT), photovoltaic power generation
(PV), internal combustion engine (GE), absorption chiller
(AC), electric refrigerator (EC), electric boiler (EB), battery
storage (BS), and cooling/heating storage (HS) equipment
[10]. Firstly, the first layer of nondominated sorting genetic
algorithm model is established to calculate the power de-
mand of each node in the microgrid system to reduce the
system loss by considering the operation mode and load
demand of the system [11]. Secondly, the second layer uses
the nondominated sorting genetic algorithm to calculate the
output of each equipment through taking the calculation
results of the first layer as the constraint, considering the
operation characteristics of various equipment and taking
the economy and environmental protection as the goal
[12, 13]. Finally, the control strategy studied in this paper is
applied to themultienergy complementarymicrogrid system
in a certain area. &e results of the example show that the
performance, economy, reliability, and environmental
protection of the multienergy complementary microgrid
system are greatly improved by the double-layer non-
dominated sorting genetic algorithm.

2. Operation Strategy

&e load demand and external environment resources in
different time periods are different, and the priority of
cooling and heating demand is also different. &erefore, the
real-time operation control strategy of multienergy com-
plementary microgrid system can improve the economy of
the whole system.

Based on the characteristics of multienergy comple-
mentary microgrid system, this paper proposes two different
operation strategies: power load priority and cooling and
heating load priority, so as to optimize the operation mode
of each equipment in the microgrid system.

2.1. Power Load Priority. In order to reduce the pollutant
emission of the system, this strategy is that clean energy
power generation is given priority, which gives priority to
meet the power load demand of users. &e operation
principle is as follows:

(i) When the power load is lower than the total power
generation of clean energy, clean energy such as
wind power and solar energy is used to generate
electricity; the surplus electricity is used to charge
the electric energy storage, and the cooling and
heating load demand is met by electric refrigeration.

(ii) When the power load is higher than the renewable
energy generation capacity, the wind turbine and
photovoltaic power supply directly to the power
load, and the excess load is supplemented by electric
energy storage discharge. At this time, the cooling
load is met by electric refrigeration.

(iii) If the electric energy storage is at the minimum level
or the discharge is not enough to supplement the
electric load, the internal combustion engine is
started to the rated power to generate electricity.&e
excess power is used to charge the electric energy
storage. At this time, the cooling load is met by LiBr
unit. If the cooling load’s output power of lithium
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Figure 1: Multienergy complementary system structure.
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bromide unit is insufficient, the additional cooling
load can be supplemented by electric refrigeration.
If the electric energy storage has reached the
maximum state of charge, the internal combustion
engine will start power tracking.

(iv) When the power load is higher than the renewable
energy and internal combustion engine, the wind
turbine of photovoltaic internal combustion engine
directly supplies the power load, and the excess load
is supplemented by electric energy storage dis-
charge. &e cooling load is met by LiBr unit. If the
cooling load’s output power of lithium bromide unit
is insufficient, the additional cooling load can be
supplemented by electric refrigeration.

2.2. Cooling and Heating Load Priority. &is strategy gives
priority to meet the user’s cooling load demand and gives
priority to the use of internal combustion engine for CCHP.
&e operation strategy is as follows:

(i) If the cooling load demand is less than the rated
power of the absorption chiller and the renewable
power generation resources are less, the internal
combustion engine power will track the load for
power generation, and the cooling load will be
provided by the absorption refrigeration unit.

(ii) If the cooling load demand is less than the rated
power of the absorption refrigeration unit and the
renewable power generation resources are larger,
the cooling load is provided by the absorption re-
frigeration unit and the electric refrigeration.

(iii) If the cooling load demand is larger than the rated
power of absorption refrigeration unit, the internal
combustion engine runs at full power, and the in-
sufficient cooling load is provided by electric re-
frigeration. If the power generated by the internal
combustion engine is larger than the electric load,
the excess power will charge the electric energy
storage.

Under this operation strategy, the charge and the dis-
charge of energy storage are the same as those in scheme i.

3. Multiobjective Nondominated Sorting
Genetic Algorithm

3.1. Mathematical Description ofMultiobjective Optimization
Algorithm. Taking the minimization multiobjective prob-
lem with constraints as an example, the multiobjective
optimization problem can be described as follows:

minf(X) � f1(X), f2(X) . . . fn(X)􏼂 􏼃,

s.t. gi(X)≤ 0, i � 1, 2, 3 . . . ,

hj(X) � 0, j � 1, 2, 3 . . . ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where f(X) denotes a vector space with n objective
functions, gi(X) denotes the ith inequality constrained
function, hj(X) denotes the jth equality constraint, and

X � (x1, x2, . . . , xm) denotes a vector space with m deci-
sion variables [14].

3.2. Decision-Making in Multiobjective Optimization. It is a
series of discrete solutions obtained by multiobjective
nondominated sorting genetic algorithm. How to choose an
optimal scheme among these discrete points is the key to
multiobjective optimization. In this paper, a method of
selecting the optimal scheme based on geometric distance
method is proposed, the central idea is that the geometric
distance between the optimal scheme and the positive ideal
scheme is the shortest, while the geometric distance between
the optimal scheme and the reverse ideal scheme is the
longest. &e optimal scheme comes from the optimized
Pareto frontier, positive ideal solution refers to the scheme
that can optimal satisfy every objective function at the same
time, and negative ideal solution refers to the scheme that
does not optimal satisfy any objective function.

&e calculation of spatial/geometric distance (d+
i ) of any

scheme i from Pareto frontier to positive ideal solution is as
follows:

d
+
i �

���������������

􏽘

m

j�1
Sij − S

p−ideal
j􏼐 􏼑

2

􏽶
􏽴

, (2)

where m denotes the number of objective functions, j

denotes the dimension, and Sij − S
p−ideal
j denotes the straight

line distance from scheme i to the j dimension of positive
ideal solution。

&e calculation of spatial/geometric distance (d+
i ) of any

scheme i from Pareto frontier to negative ideal solution is as
follows:
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−
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����������������

􏽘

m

j�1
Sij − S

n−ideal
j􏼐 􏼑

2
,

􏽶
􏽴

(3)

where m Sij − Sn−ideal
j denotes the straight distance from

scheme i to the j dimension of negative ideal solution.
&e coefficients ωi defined below are as follows:

ωi �
d

+
i

d
+
i + d

−
i

, (4)

&rough the formulae (2)–(4), any scheme of ωi from
Pareto frontier can be calculated, then the scheme in which
minimum ωi is corresponded is the final optimal solution.

4. Mathematic Model for Multienergy System

&emultienergy complementary distributed energy system is
the expansion of traditional distributed energy application
and is the physical concept of integration [15]. It integrates
multiple energy technologies to realize the collaborative
optimization of multienergy sources. &e multienergy com-
plementary distributed energy system has a variety of energy
resources input, but it is not a simple superposition of
multiple energy sources. It uses the energy of different grades
in a systematic way comprehensively and complementarily
uses the energy of the system andmakes overall arrangements
for the coordination and conversion of various energies, so as
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to achieve the most reasonable effect and benefit of energy
utilization. &e structure of the multienergy complementary
system generally includes wind power, photovoltaic, internal
combustion engine, absorption chiller, waste heat boiler,
battery storage, heating storage, and ice storage.

4.1.WindPower. &is paper mainly considers variable speed
constant frequency wind power generation, whose output
power expression is closely related to the operation mode of
wind turbine [16]. According to the working principle of the
wind turbine, when the wind speed is less than the cut-in
wind speed, the wind turbine does not generate electricity,
when the wind speed is larger than the cut-in wind speed and
less than the rated wind speed, the wind turbine generates
electricity,\ and the output power changes with the wind
speed, when the wind speed is larger than the rated wind
speed and less than the cut-out wind speed, the wind turbine
outputs the rated power, and when the wind speed is larger
than the cut-out wind speed, the wind turbine stops working
and does not generate electricity.&e output of wind turbine
at time t Pwt(t) is as follows:

Pwt(t) �

Pwt(t) � 0, V<Vci,

Pwt(t) � aV
3

− bPr, Vci <V<Vr,

Pwt(t) � Pr, Vr <V<Vco,

Pwt(t) � 0, Vco <V,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where a � Pr/(V3
r − V3

ci), b � V3
ci/(V3

r − V3
ci) , Vci denotes

the cut-in wind velocity, Vco is the cut-out wind velocity, Vr
denotes the rated wind speed, and Pr denotes the rated
power.

4.2. Photovoltaic. &e output power of silicon solar cell
module is related to many factors, including temperature
and solar radiation intensity on the photovoltaic panel [17].
&e photovoltaic power expressions in this paper that is
expressed by the optimal operating point voltage and the
optimal operating point current are as follows:

Ppv(t) � Ipv(t)Vpv(t),

Ipv(t) � Isc 1 − C1 exp
Vpv − ΔV

C2Voc
􏼠 􏼡 − 1􏼠 􏼡􏼠 􏼡 + ΔI,

Vpv(t) � Vmp 1 + 0.0539 · log
Gt

1000
􏼒 􏼓􏼒 􏼓 + βΔT,

ΔI � α
Gt

Gref
􏼠 􏼡ΔT +

Gt

Gref
− 1􏼠 􏼡Isc,

ΔT � Ta − Tref ,

ΔV � Vpv − Vmp,

C1 � 1 −
Imp

ISC
􏼠 􏼡exp

−Vmp

C2VOC
􏼢 􏼣,

C2 �
Vmp/VOC􏼐 􏼑 − 1

ln 1 − Imp/ISC􏼐 􏼑􏼐 􏼑
,

(6)

where Ipv denotes the optimum operating current, Vpv
denotes the optimum operating voltage, Isc denotes the short
circuit current, Imp denotes the maximum power point
current, Vmp denotes the maximum power point voltage,
VOC denotes the open circuit voltage, α denotes the tem-
perature coefficient for current, β denotes the temperature
coefficient for voltage, Gt denotes the tilted solar irradiation
on PV panel,Gref � 1000W/m2 is the reference solar irra-
diation, Ta denotes the ambient temperature that changes
over time, Tref � 25°C is the reference battery temperature,
and ΔI, ΔV, and ΔT are the modified current, modified
voltage, and modified temperature, respectively.

4.3. Internal Combustion Engine. &e internal combustion
engine consumes natural gas for power generation, and the
waste heat generated can be used for refrigeration of ab-
sorption refrigeration units. &e internal combustion engine
can supply power load and meet the user’s demand for
cooling and heating load at the same time. &e heating
power output of the internal combustion engine at time
tQGE.heat(t) is as follows:

QGE.heat(t) � PGE(t)
1 − ηGE(t)

ηGE(t)
􏼠 􏼡, (7)

where PGE(t) denotes the real-time rate of work of the
internal combustion engine and ηGE(t) denotes the real-time
efficiency of internal combustion engines. &e efficiency of
internal combustion engine is related to its real-time load
[18].

&e fuel consumption of internal combustion engine at
time t is as follows:

VGE(t) � 􏽘
PGE(t)Δt

ηgasηGE(t)LHV
, (8)

where ηgas denotes the natural gas utilization rate of internal
combustion engine and LHV � 36.82MJ/m3N denotes the
low calorific value of natural gas.

4.4. Absorption Chiller. Absorption chiller unit is a kind of
refrigerator driven by heat energy. Its heat energy is the use
of exhaust heat of internal combustion engine. &en, the
cooling capacity at time t (QAC.cool(t)) is expressed as
follows:

QAC.cool(t) � QAC.heat(t)COPAC, (9)

where QAC.heat(t) denotes the heating power absorbed by
absorption chiller and COPAC denotes the energy efficiency
coefficient of absorption chiller unit and is related to the load
rate of absorption chiller unit.

4.5. Electric Refrigerating Machine. Electric refrigerator is a
kind of refrigerator driven by electric energy. Since the
refrigerating capacity of absorption refrigeration unit is
limited by the residual heat of internal combustion engine,
while the electric refrigeration unit is not constrained, it can
effectively supplement the cooling capacity required by users
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in time; the expression of cooling capacity at t time (QEC(t))

is as follows:

QEC(t)� PEC(t)COPEC, (10)

where PEC(t) denotes the real-time power consumption of
electric refrigeration and COPEC denotes the energy effi-
ciency coefficient of electric refrigeration and also related to
the unit load rate.

4.6. Electric Boiler. Electric boiler is a kind of boiler
equipment which takes electric power as energy and con-
verts it into heat energy, then outputs the steam, high
temperature water, or organic heat carrier with certain
thermal energy.&e expression of thermal output at time t is
as follows:

QEB(t) � PEB(t)COPEB, (11)

where PEB(t) denotes the real-time power consumption of
electric thermal and COPEB denotes the energy efficiency
coefficient of electric heat and also related to the unit load
rate.

4.7. Electric Energy Storage. &e output power of battery is
closely related to the operation state of the system, and there
are many kinds of batteries.&is paper assumes that the state
of lead-acid battery at time t is related to that at time t − Δt
[19]. In this paper, the energy storage capacity of the battery
is considered, and the real-time capacity (CBS(t)) is shown
as follows:

CBS(t + 1) � CBS(t)(1 − σ) − PBS.cha(t)ηcha −
PBS.discha(t)

ηdischa
􏼢 􏼣Δt,

(12)

where PBS.cha andPBS.discha are the charging and discharging
powers of equipment, respectively, ηcha and ηdischa are the
charging and discharging efficiencies of equipment, re-
spectively, and σ denotes the self-discharge rate of battery
per hour.

4.8. 9ermal Energy Storage. In the same way as electric
energy storage equipment, the real-time capacity of thermal
energy storage equipment (CHS(t)) is as follows:

CHS(t + 1) � CHS(t)(1 − τ) − QHS.cha(t)δcha −
QHS.discha(t)

δdischa
􏼢 􏼣Δt,

(13)

where QHS.chaandQHS.discha are the endothermic power and
exothermic power of equipment, respectively, δchaandδdischa
are the thermal absorption efficiency and thermal release
efficiency of thermal storage equipment, respectively, and τ
denotes the self-loss rate of thermal storage equipment.

5. Double-Layer Multiobjective
Optimization Algorithm

According to the system load demand and operation
mode, the first layer of this two-layer operation strategy
calculates the power required by each node of the
microgrid system to reduce the system loss and the second
layer calculates the output of each equipment by using
nondominated sorting genetic algorithm with various
energy values calculated in the first layer as constraint
conditions, considering the operation characteristics of
various equipment and aiming at economy and envi-
ronmental protection.

5.1. First-Layer Optimization Algorithm. In the multienergy
complementary microgrid system, the load and the opera-
tion state of each equipment change at any time. Reasonable
energy allocation can effectively improve the operation
performance of the system and improve the economic ef-
ficiency of the system.&erefore, the decision variables of the
first layer are the demand capacity value of each node
distributed generation [20].

According to the grid structure and power demand,
reasonable configuration of DG capacity of each node can
meet the energy demand of users and reduce the energy loss
of the multienergy complementary microgrid system
[21, 22]. &erefore, the objective of the first layer optimi-
zation algorithm is to minimize the power loss of microgrid
system, and its objective function is as follows:

minPloss � 􏽘

N1

k�1
Gk(i,j) U

2
i + U

2
j − 2UiUj cos δij􏼐 􏼑,

minΔU � 􏽘

Nd

i�1

Ui − U
spec
i

ΔUmax
i

􏼠 􏼡

2

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where Ploss denotes the active loss of power of multi-energy
network, ΔU denotes the offset of load node voltage in
multienergy network, N1 denotes the number of branches in
multienergy network, Nd denotes the number of nodes in
multienergy network, Gk(i,j) denotes the conductance of
branch (i, j) is the number of the nodes at both ends of
branch k, Ui andUj are the voltage amplitude of nodes i and
j, respectively, δij denotes the phase angle difference of nodes
i and j, U

spec
i denotes the expected voltage value of node i,

and ΔUmax
i denotes the maximum allowable voltage devi-

ation of node i, so ΔUmax
i � Umax

i − Umin
i .

&e energy transfer of multienergy complementary
microgrid system is limited by the energy conservation of the
network and the transmission capacity of the pipe network
[23]. &erefore, the power constraints in the system are as
follows.
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5.1.1. Power Balance Constraints

PGi(t) + PDGi(t) − PLi(t) − Ui(t) 􏽘

Nd

j�1
Uj(t) Gij cos δij + Bij sin δij􏼐 􏼑 � 0,

QGi(t) − QLi(t) − Ui(t) 􏽘

Nd

j�1
Uj(t) Gij sin δij + Bij cos δij􏼐 􏼑 � 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(15)

where PGi, PDGi, and PLi are the active power of the gen-
erator, distributed generation, and load of node i, respec-
tively, Gij andBij are the conductance and susceptance
between nodes i and j, respectively, and QGi and QLi are the
reactive power of the generator and load of node i,
respectively.

5.1.2. System Inequality Constraints

(1) Node voltage constraint:

Vimin ≤Vi(t)≤Vimax, i � 1, 2, . . . , Nd, (16)

where Vimin andVimax are the voltage upper and
lower limits of the ith node, respectively.

(2) Upper limit constraint of DG active power:

0≤PDGi(t)≤PDGmax, i � 1, 2, . . . , NDG, (17)

where PDGmax denotes the upper limit of DG active
power and NDG denotes the number of nodes which
can be installed in DG.

(3) Branch transmission power constraint:

Pk(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Pkmax, k � 1, 2, . . . , N1, (18)

where Pkmax denotes the upper limit of transmission
power of the kth branch.

5.2. Second Layer Optimization Algorithm. Based on the
results of the first layer optimization algorithm and real-time
and reasonable configuration of the cooling, heating, and
power output values of each equipment in the multienergy
complementary microgrid system can improve the system
operation economy and environmental protection [24], so
the real-time output of each equipment is the decision
variable of the optimization algorithm in this layer [25, 26].

&e objective of this layer optimization algorithm is to
optimize the economy and environmental protection, so the
objective function is as follows:

minCtotal � Cmainenance + Coperation ,

minEMplt � 􏽘
n

i�1
PGE(t) · αi · Qi( 􏼁,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(19)

where Ctotal denotes the total cost of system operation,
Cmainenance denotes the maintenance cost of system

equipment, Coperation denotes the operation cost of system
equipment, it mainly includes system electricity purchase
cost and natural gas purchase cost, EMplt denotes the en-
vironmental cost of power generation, αi denotes the ith
pollutant emission per unit power of internal combustion
engine, Qi denotes treatment fee for unit power of the ith
pollutant emission, and PGE(t) denotes the real-time electric
power output by the internal combustion engine [27].

Equipment maintenance costs are as follows:

Cmainenance � 􏽘 utype · Ptype(t) · Δt, (20)

where type � WT,PV,GE,BS,AC,EC,EB,HS, utype denotes
the maintenance factor of each equipment, and Ptype(t)

denotes the electric power of each equipment at time t.
Equipment operation costs are as follows:

Coperation � Pgrid(t) · Ctele(t) · Δt + VGE(t) · Ctgas(t) · Δt,

(21)

where Pgrid(t) denotes the power purchased from the grid
for the system, Ctele(t) denotes the real-time price of power
grid, VGE(t) denotes the volume of natural gas consumed by
the system, and Ctgas(t) denotes the real-time price of
natural gas (0.36 $/m3).

&e constraints of the optimization algorithm in this
layer mainly include system constraints, technical con-
straints, and operation constraints.

System constraints mainly limit the upper and lower
limits of each equipment capacity of the system, and this part
of the constraint is expressed as follows:

PWT_min ≤PWT(t)≤PWT_max,

PPV_min ≤PPV(t)≤PPV_max,

PGE_min ≤PGE(t)≤PGE_max,

PBS_min ≤PBS(t)≤PBS_max,

PEC_min ≤PEC(t)≤PEC_max.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

When the operation strategy is power load priority,
PGS � PGS_min. When the operation strategy is cooling load
priority, PGS_min needs to be set to meet 70% of maximum
cooling load.

Technical constraints mainly include the technical
limitation of equipment operation. When the internal
combustion engine is running under variable conditions, the
ramp rate constraint should also be met, which is as follows:
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PGE(t) − PGE(t − Δt)≤ΔPU,

PGE(t) − PGE(t − Δt)≤ΔPD,
􏼨 (23)

whereΔPU denotes the rate of rise limit andΔPD denotes the
rate of descent limit.

&e charge and discharge of electric energy storage
should meet the following constraints:

PBS.cha_min ≤PBS.cha(t)≤PBS.cha_max,

PBS.discha_min ≤PBS.discha(t)≤PBS.discha_max,

⎧⎨

⎩ (24)

PBS.cha_min andPBS.cha_max are the maximum and minimum
charging power of energy storage equipment, respectively,
and PBS.discha_min andPBS.discha_max are the maximum and

minimum discharge power of energy storage equipment,
respectively. Furthermore, the battery capacity should also
meet the following constraints: SOCmin ≤Cbs(t)≤ SOCmax.
SOCmin and SOCmax are the maximum and minimum
storage capacity of power storage equipment, respectively.

Operation constraints mainly refer to the energy ex-
change constraints and the system energy conservation
constraint between the multienergy complementary
microgrid system and the power grid system, which are
expressed as follows.

5.2.1. Energy Exchange Constraints. Energy exchange con-
straints are as follows:

PWT(t) + PPV(t) + PGE(t) + PBS(t) − PEC(t) − PEB(t) − PEL(t)≤Pongrid_max,

PEC(t) + PEB(t) + PEL(t) − PWT(t) − PPV(t) − PGE(t) − PBS(t)≤Pgrid_max,

⎧⎨

⎩ (25)

where PEL(t) denotes the real-time power of total electric
load of the system, Pongrid_max denotes the maximum value of
the energy that the system can be connected to the grid, and
Pgrid_max denotes the maximum amount of electricity the
system can purchase from the grid.

5.2.2. Energy Conservation Constraint

Power balance constraint is shown as follows:

PWT(t) + PPV(t) + PGE(t) + PBS(t) + Pgrid(t) � PEC(t)

− PEB(t) − PEL(t),

(26)

Heating power balance constraint is shown as follows:

QGE.heat(t) + QEB(t) + CHS(t) � QAC.heat(t) + QL.heat(t),

(27)

where QL.heat(t) denotes the heating load of the system
at time t.
Cooling power balance constraint is shown as follows:

QAC.cool(t) + QEC(t) � QL.cool(t), (28)

where QL.cool(t) denotes the cooling load of the system
at time t.

6. Case Study

6.1. Basic Data. &is paper takes the architecture and load
data of a regional multi-energy complementary microgrid
system as an example to verify the effectiveness of the al-
gorithm. &e grid structure of the system is shown in
Figure 2, the grid parameters (per unit value) are shown in
Table 1, and the electrical load data of each node of the

system are shown in Figures 3 and 4 (the reference capacity
is 1mW). &is multienergy complementary microgrid
system uses the optimization strategy based on double-layer
nondominated sorting genetic algorithm to control the
cooling, thermal, and power output of each equipment in the
system in real-time. &e economy and environmental
protection of the system with and without this algorithm are
compared and analyzed (assuming that the cooling, heating,
and power load of the system remains unchanged and the
meteorological parameters remain unchanged within one
hour of the evaluation period).

In this paper, the first-layer optimization algorithm
calculates the distributed generation capacity required by
each node based on the grid structure and power load de-
mand of multienergy complementary microgrid system.&e
second layer optimization algorithm calculates the output
value of each equipment in the system through combining
the results of the first layer algorithm, considering the
cooling and thermal load demand of the system and the
characteristics of each equipment. &e parameters of wind
turbine, photovoltaic and electric energy storage used in this
system are shown in Tables 2–4.

&e power ramp rate ΔPU � 500 kW/h, the power ramp
down rate ΔPD � 650 kW/h, and the minimum operating
power Pmin � 130 kWof internal combustion engine in the
system are shown in Table 5. Cop characteristic data of
absorption chiller, electric refrigerator, and electric boiler
used in the system are shown in Tables 6 and 7, respectively.
&e cooling and thermal load data, meteorological data, and
real-time electricity price of the system on a certain day are
shown in Figures 5–9. &e power interaction between the
multienergy complementary microgrid system and the
power grid should meet the following requirements:
Pongrid_max � 20 kW and Pgrid_max � 100 kW.

&e population size of the two-layer optimization al-
gorithm in this paper is 200, and the number of iterations is
100. &e result of the first layer optimization algorithm is
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that the node 8 needs 825 kW of electricity and the node 9
needs 713 kW. &e maintenance cost of each equipment in
the system is shown in Table 8, and the maintenance fee of
pollutant emission t is shown in Table 9.

In this paper, different operation modes are used to
optimize this example in real time based on double-layer
nondominated sorting genetic algorithm.&e results of power
load priority operation are shown in Figure 9, and the results

Node1 Node4

Node4

Node3

Node6 Node7

Node9

Node2

Node8

Figure 2: Topology of multienergy complementary microgrid
system.

Table 1: Line parameter.

Initial points of
line

End of
line Resistance Inductance Capacitance

1 4 0.000 0.025 0.000
4 5 0.007 0.040 0.017
5 6 0.016 0.073 0.039
3 6 0.000 0.025 0.000
6 7 0.005 0.043 0.023
9 2 0.000 0.027 0.000
8 9 0.014 0.070 0.033
9 4 0.004 0.037 0.019
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Figure 3: Active power data of load at each node.
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Figure 4: Reactive power data of load at each node.

Table 2: Wind generator parameter.

Pr (kW) Vin (m/s) Vr (m/s) Vout (m/s) Nmax
wind

500 3 12 25 8

Table 3: Photovoltaic parameter.

Pr(kW) VOC
(V)

Isc
(A)

Vmp
(V)

Imp
(A)

Series
number

Parallel
number

100 64.6 6.14 54.7 5.76 5 64

Table 4: Battery storage parameter.

(%)σ SOCmax
(kWh)

SOCmin
(kWh) ηcha ηdischar PBS.cha(C) PBS.discha(C)

98 20 2.5 90% 98% 0.3 3

Table 5: Internal combustion generation parameter.

Power 325 kW (%) 243.75 kW (%) 162.5 kW (%)
Load rate (Lr) 100 75 50
Efficiency (η) 41.6 39.7 35.7

Table 6: Absorption chiller parameter.

Cooling capacity 520 kW 390 kW 260 kW 130 kW
Load rate (Lr) 100% 75% 50% 25%
COPAC 1.42 1.638 1.692 1.372

Table 7: Centrifugal chiller parameter.

Cooling capacity 500 kW 400 kW 300 kW 200 kW 100 kW
Load rate (Lr) 100% 80% 60% 40% 20%
COPEC 5.75 6.04 6.09 5.29 3.45
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of cooling and thermal load priority operation are shown in
Figures 10 and 11. &e comparison of various indexes before
and after optimization is shown in Tables 10 and 11.

&e results show that the active power loss and voltage
deviation of the multienergy complementary microgrid
system are reduced by 51.41% and 41.89%, respectively, after

using the real-time optimal control strategy based on
double-layer nondominated sorting genetic algorithm. &e
total operation cost and pollutant emission control cost of
the multienergy complementary microgrid system are re-
duced by 9.37% and 20.81%, respectively, when the power
load priority operation mode is used; when the cooling and
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Figure 6: &ermal load data.
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Figure 7: Wind resource data.
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Figure 5: Cooling load data.
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Figure 9: Real-time price of electricity.
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Figure 8: Solar resource data.

Table 8: Equipment maintenance fee.

WT PV GE AC EC EB BS HS
Maintenance cost ($/kWh) 0.0296 0.0096 0.069 0.032 0.082 0.16 0.26 0.36

Table 9: Maintenance fee of pollutant emission.

Type NOX CO2 CO SO2

Value (g/kWh) 0.6188 184.0829 0.1702 0.000928
Maintenance ($/kg) 0.250 0.00125 0.020 0.125
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thermal load priority operation mode is used, the total
operation cost of the system is reduced by 16.79% and the
pollutant emission treatment cost is reduced by 2.90%.

&erefore, the control strategy effectively improves the
operation conditions of the system, ensures the stability and
economic benefits of the system, and improves the envi-
ronmental protection benefits.

7. Conclusion

In this paper, a real-time optimal control strategy of
multienergy complementary microgrid system based on
double-layer nondominated sorting genetic algorithm can
effectively solve the problems of low efficiency and poor
energy management of multienergy input and multienergy
output systems. &is strategy optimizes the multienergy
complementary microgrid system in real time and dis-
tributes the output of each energy supply terminal rea-
sonably. According to the load demand and operation
mode of the system, the first layer of the double-layer
operation strategy calculates the power required by each
node of the microgrid system to reduce the system loss and
the second layer calculates the output of each equipment by
using nondominated sorting genetic algorithm with vari-
ous energy values calculated in the first layer as constraint
conditions, considering the operation characteristics of
various equipment and aiming at economy and environ-
mental protection.

&is paper firstly introduces two different operation
modes of multienergy complementary microgrid system,
nondominated sorting genetic algorithm, power load pri-
ority, and cooling and thermal load priority. Secondly, the
model of typical equipment in the system is established, and
then the specific expression form of double-layer optimi-
zation algorithm in the multienergy complementary
microgrid system is studied. Finally, the control strategy for
multienergy complementary microgrid system is applied
into a certain area; the results show that the control strategy
can effectively reduce the network loss, improve the system
voltage, reduce the total cost of system operation, and in-
crease the environmental benefits of the system.
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