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Construction schedules play an important role in construction project management. However, during construction activities,
risks may arise due to unexpected schedule changes, resulting in the ineffective delivery of projects. *is study aims to reveal the
law of schedule change risk propagation and to analyze the effects on the risk propagation through numerical simulations. First,
construction projects are represented by activity-on-node (AON) networks. A model of risk propagation is then built based on a
susceptible-infected (SI) model considering the effects of the nodal characteristics on the propagation process. Next, the model is
tested on a real-world project to examine cascading failures with varying parameters. *e experimental results demonstrate that
the model is effective in identifying the activities most capable of affecting a project schedule and evaluating the impact of schedule
change risk propagation. *is study will provide a basis for enhancing the robustness of AON networks and controlling the
propagation of schedule change risks.

1. Introduction

A construction project is an organized process of con-
structing a building or structure under time, cost, and
quality constraints [1]. Considering the complexity and the
uniqueness of each project, planning and scheduling have
become vital procedures in construction project manage-
ment [2]. However, schedules are frequently changed in
construction projects. *ese changes may be caused by
owners, contractors, consultants, designers, or the envi-
ronment [3, 4]. A schedule change often leads to a decline in
worker’s productivity and an increase in the probability of
cost overruns and completion delays [5, 6].

Project managers use a schedule to help plan, execute,
and control project activities [7]. Currently, most scheduling
tools use the activity-on-node (AON) representation and the
critical path method (CPM) [8]. AON denotes activities and
the dependencies between activities as nodes and arrows,
respectively. Based on an AON network, the CPM explores
the critical activities and provides activity float times, which
allows continuous monitoring of the schedule and provides
alerts of the possibility of project delays. Unfortunately,

construction projects are affected by risks, almost all of
which are directly or indirectly related to the schedule of
activities [2, 9]. As a result, the start times and durations of
activities in an AON network are no longer deterministic,
and identification of the critical path may be imprecise.
Furthermore, due to complex logical dependencies between
activities in an AON network, a schedule change of one
activity may affect its succeeding activities [10]. *is can
cause issues such as disorganized planned resources [11],
increased communication costs, and misunderstandings
[12], which initiates change risk propagation throughout an
AON network [8, 13]. *erefore, it is essential to explore the
mechanism of risk propagation of schedule changes.

In recent years, several studies have examined the
modeling of construction schedule risks. Previous studies
mainly focused on identification and evaluation of schedule
risks [2–4, 9, 14], simulation of schedule risks in con-
struction projects [10, 13, 15], and analysis of schedule risks
with activity sensitivity information [16–18], but less at-
tention has been paid to the topologies of AON networks
and predicting the behavior of risk propagation from an
overall perspective [8]. Managing risk propagation is a
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challenging task across numerous fields, ranging from fi-
nance [19], infrastructure management [20], and project
management [8, 21–23]. Despite the contextual differences
of these domains, complex networks have been successfully
applied to modeling the process of sequential risk propa-
gation throughout the network and analyzing the impact of
the parameters and characteristics on the merits of risk
propagation. In particular, simulation methods based on
spreading theories and complex networks have enabled
researchers to design more realistic models that take into
account nodal characteristics [24]. However, in the previous
studies, little work was done to explore the capacities of
AON networks to sustain systemic risks caused by schedule
changes. To address this research gap, a model based on
AON networks must be designed to simulate the risk
propagation of schedule changes. *e novelty of this study is
that schedule change management was investigated from the
perspective of systemic risk.

In the context of risk propagation and schedule changes
in construction projects, this paper attempts to resolve two
issues: (1) how to generate the risk propagation model of
schedule changes on the AON network while taking into
consideration activity characteristics and the structure of the
AON network; and (2) how to assess the capacity of each
activity to trigger a catastrophe of schedule changes around
the AON network and increase the resilience of the AON
network.

To resolve these issues, first, an AON network was ab-
stracted as a directed graph, and the nodal characteristics
related to schedule change risks were analyzed. Second, in
reference to the susceptible-infected (SI) model, a new risk
propagation model for schedule changes was built, which is
applicable to directed graphs where a threshold value rep-
resenting the risk resistance capacity is assigned to each
node. Finally, the developed model was tested on an em-
pirical dataset using a numerical simulation to assess the
influencing factors and identify the critical activities that
have a significant impact. *e aim of this paper is to explore
the law of schedule change risk propagation and help
construction project managers to control risk propagation.
Overall, this paper provides a framework for simulating risk
propagation and is a valuable addition to project risk
management studies.

*ere are two contributions of this work. First, the
classical SI model is adapted for the risk propagation of
schedule changes by considering more realistic assump-
tions, such as directed graphs and the capacity to resist
risk. Second, this work allows us to better understand
systemic risk in the case of schedule change risk propa-
gation and predict the systemic risks using numerical
simulations.

*e rest of the paper is organized as follows: Section 2
reviews the related work. In Section 3, a directed graph is
defined with key characteristics, after which the improved
model and its ability to simulate the process of change risk
propagation are discussed. Section 4 presents the initial
configuration of the simulation and the subsequent results of
the analysis. *e conclusions and directions for future re-
search are given in Section 5.

2. Literature Review

2.1. Schedule Change and Risk. In a construction project, a
change refers to “any event that results in a modification of
the original scope, execution time, cost, and/or quality of
work” [25]. Many researchers have studied construction
change management, including schedule changes. Love et al.
[26] proposed a framework of a system dynamics (SD)
model to explore the relationship and consequences of a
change. Park and Peña-Mora [27] considered unintended
and managerial changes, both of which were represented as
iteration loops in the SD model of the project process.
Furthermore, the impact of change on project performance
was analyzed based on the discovery status and time. Based
on Park’s work, Ansari [28] compared alternative change
management policies, including funding, outsourcing ac-
tivities, schedule adjustments, and labor control by taking
into account the time, cost, quality, resources, and financial
indicators. An extensive review on schedule changes using
the SD model can be found in a previous publication [29].
However, in the SD model, upstream changes are imme-
diately accommodated by changing downstream tasks
through feedback loops, without considering a chain reac-
tion of changes. Moreover, because tasks are assumed to be
uniform in size and fungible within phases, and the de-
pendencies are simplified to functional forms [30], it is
difficult to recognize and control changed tasks. Motawa
et al. [31] identified the possibility of changes due to project
characteristics and cause-and-effect relationships between
change causes and corresponding impacts. Zhao et al. [32]
represented the information flow between change factors
and changes using an activity-based dependency structure
matrix and introduced Monte Carlo simulations to analyze
the change probabilities of activities. Heravi and Char-
khakan [33] subdivided the change implementation phase
into change implementation paths and developed a risk
index using event tree analysis. However, correlations be-
tween the tasks and dynamics of change risk were neglected
in these studies. Recent studies of change risk have mainly
concentrated on modeling change risk propagation based on
complex network models [23], whereas little work has been
done in construction change management.

Construction schedules are affected by uncertainties, and
schedule risks are inevitable. Recent studies have mainly
focused on estimating the project’s overall duration, taking
risk factors into consideration. Nasir et al. [14] established a
belief network that consisted of activity nodes representing
activity duration values and risk nodes describing project
conditions, and the network’s output was incorporated into
Monte Carlo simulations to evaluate schedule risks. Oliveros
and Fayek [34] proposed a fuzzy logic approach to combine
the frequency of occurrence and adverse consequences for
the attributes of schedule risks and then assessed the rela-
tionship between consequences and delay durations. Ökmen
and Özta [2] considered the correlation effect between risk
factors and activities and captured the correlation by con-
verting qualitative estimates to quantitative values. Luu et al.
[3] identified 16 factors of schedule risks and obtained 18
cause-and-effect relationships between these factors through
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expert interviews to develop a belief network model. Tok-
demir et al. [13] assumed that risks originated from
vagueness/uncertainty, task complexity, and vulnerability
and defined the labor hour coefficients and the learning rate,
both of which determined the activity duration, based on
these factors. Cho et al. [35] built a schedule delay estimation
model with three fully connected layers: a project attributes
layer, a risk factors layer, and a work variation layer. Al-
though the reliability of the duration prediction is crucial for
the time performance, previous research ignored the idea
that accumulated schedule changes in a complex AON
network accounting for unforeseen events being considered
as sources of risk. Besides, the impact of the characteristics of
AON networks on schedule delays, such as the activity
duration, slack time, and node degree, is not considered in
these methods. Furthermore, as a result of a chain reaction of
changes, a change in one activity’s schedule may require
changes to successor activities, and a shift to the critical path
may be triggered, leading to increased schedule risk [36].
*erefore, in this work, a risk propagation model will be
used to extend the concept of schedule risks to include the
change risks and the dynamic character of an activity,
resulting in a model that is then capable of illustrating the
triggering of a catastrophe of schedule changes.

2.2. Risk Propagation Model. Previous studies analyzed the
dynamic characteristics of risk propagation across complex
systems and proposed three common mathematical models:
a load-capacity model [37], an epidemic disease model [38],
and a threshold model [39]. In the load-capacity model, a
node fails if its load becomes larger than its capacity, and the
load is represented as the total number of shortest paths
passing through the node. *e epidemic model is used to
describe the dynamic process of the spread of disease. One of
the basic epidemic models is the SI model, which is com-
posed of three components: susceptible nodes, infected
nodes, and the infection rate. Together, these components
represent the probability of transmitting disease between a
susceptible node and an infected node. In addition, the
threshold model explains the propagation according to a
simple threshold rule. Due to the difficulties in describing
the risk of schedule changes as shortest paths, we chose the
SI model for our work and modified it by adding a threshold
in the propagation process. In fact, the lack of a threshold
maymake the propagation persist in networks of infinite size
[40].

Risk propagation models have widely been applied in
various fields, and the core parts of the models are risk
metrics and the threshold. Ellinas et al. [8] examined the
likelihood of a large-scale catastrophe triggered by a single
task failure in an AONnetwork, and the propagation process
was measured by the topological, temporal, and quality
aspects of the AONnetwork. Furthermore, the Ellinas model
was extended to include the role of indirect exposure [21]
and the impact of contractor activity [36]. However, for a
node in the Ellinas model, its failure risk at a given time step
is perceived as the maximum risk, rather than the combined
risk, due to its predecessors. Guo et al. [22] proposed a flow

redistribution model to analyze cascade failures in AON
networks. In this model, an initial risk load was defined as a
function of the node degree determined by the activity
duration, and a risk threshold was assumed to be correlated
with the initial risk. Chen et al. [41] improved the epidemic
model to study risk propagation in an emergency logistics
network and evaluated the risk infection and the risk
threshold using eigenvector centrality and a material res-
ervation index, respectively. Li et al. [23] studied the risk
propagation of design changes in a multilayer network with
interacting products and organization layers and determined
the risk threshold using the out-degree of the node. Rey [24]
built an epidemic-based model to predict the spread of
advanced malware with the infection probability based on
the number of infectious neighbors. However, these models
cannot describe the characteristics of the change risk
propagation in AON networks. To the best of our knowl-
edge, there are few risk propagation models used to analyze
schedule change risks. In particular, risk metrics and the
threshold in the risk propagation model of schedule changes
need to be tailored to AON networks and schedule change
scenarios.

3. Materials and Methods

To study the risk propagation of schedule changes, an AON
network was first introduced, in which nodes represent ac-
tivities and links represent logical dependencies. Although
indicators for network topology are often analyzed, they are not
suitable for directly describing the dynamic process of risk
propagation in networks. *erefore, a risk propagation model
for schedule change risk was then developed based on an
epidemic model and a threshold model. Moreover, the impact
of activity characteristics and the structure of theAONnetwork
are considered in the proposed model, making it more suitable
for the study of schedule change risk propagation.

3.1. AON Network of Construction Projects. An AON net-
work is a graphical representation of a project schedule, in
which nodes indicate activities and arc arrows (links) show
the dependency between two activities. *ere are four types
of dependencies: finish to start (FS), finish to finish (FF),
start to start (SS), and start to finish (SF). Dependencies can
be affected by time constraints, lags, and leads. According to
the Project Management Body of Knowledge (PMBOK)
[42], lag is defined as “the amount of time whereby a suc-
cessor activity will be delayed with respect to a predecessor
activity,” while a lead is “the amount of time whereby a
successor activity can be advanced with respect to a pre-
decessor activity.” Once the network has been developed,
each activity node also has a start date and a finish date. To
better understand an AON network, an example with six
activities is considered, as shown in Figure 1. Using i, j, and k
in the network as an example, the immediate predecessor of
activities j and k is activity i. “FS + 2” between i and j means
that before j can start, it must wait at least two days after the
completion of i. “SS” between i and k means that k cannot
start unless i has been initiated.
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Based on the AON network, the project schedule is
represented by a directed graph G � (V, E), where
V � v1, v2, . . . , vn  is the node set and E⊆V × V is the edge
set. *e adjacency matrix A � (aij)n×n is defined, where aij �

1 if (vi, vj) ∈ E and aij � 0 if (vi, vj) ∉ E. A node vi is a
predecessor of a node vj if aij � 1, and, equivalently, vj is a
successor of vi. *e set of predecessors of vi is referred to as
N−

i , and the set of successors of vi is referred to as N+
i . *e

start and end dates of node vi are denoted as Tstart
i and Tend

i ,
respectively. *e dependency and the time constraint of edge
eij are denoted as dij ∈ FS,FF, SS, SF{ } and tij ∈ R, respec-
tively. tij ≥ 0 if there is lag between vi and vj, and tij < 0 if there
is lead time between vi and vj. It is worth noting that an AON
network captures both global information (i.e., topological
features) and local information (i.e., activity duration, time
between consecutive activities and time constraints) [8].*ese
pieces of information play an important role when the
schedule changes. *erefore, we consider a mechanism based
on all of this useful information.

3.2. Risk Propagation Model for Schedule Change.
Schedule change risk refers to the possibility of loss caused
by the inability to execute the original schedule. *e de-
pendency relationships between activities in the AON
network, such as causal relationships and resource con-
straints, are considered as a way to diffuse the change risk.
When the change risks of nodes surpass their capacities,
these nodes will trigger the potential change risk of suc-
cessors. Specifically, the risk propagation of a schedule
change in this paper describes the occurrence of a schedule
change of one activity and the propagation of the change risk
through the AON network until the number of infected
activities is no longer significantly increased.

3.2.1. Assumptions. Considering the properties of the
schedule change risk, the following assumptions are pro-
posed to build the model:

(1) Nodes in the network can only be directly infected by
their predecessors because the dependency between
two activities is directed

(2) Nodes have four possible states: susceptible (S), start
date infected (S-I), end date infected (E-I), and si-
multaneous S-I and E-I ((S-I, E-I))

A susceptible node is transformed to an infected state
when its change risk exceeds its capacity. Once a
node is infected, its state will never change again. To
focus on predicting the behavior of the change risk
propagation and evaluating the factors affecting risk
propagation, the recovered state and transformation
from infected to susceptible are not considered in
this paper. Moreover, the schedule change of a node
can be divided into two types: start date change and
end date change, which correspond to S-I and E-I,
respectively.

(3) *e AON network is static in the model, which
indicates that the structure does not change.
In fact, the AON network is constantly adjusted.
Nodes are deleted, added, and delayed as a result of
events, such as a change order from the owners, a
changing environment, and ineffective communi-
cation. To reduce the complexity of the model and
highlight the impact of risk propagation, we assume
that the network structure does not change.

(4) *e model is discrete, but the nodes are not infected
in the project time order.
*ere are two types of times in the model: project
time and simulation time. *e start and end dates of
each node are the project time. *e simulation time
represents the steps of propagation, and a node can
be affected by its predecessors at each step. Some-
times, these two types of times are contradictory. For
example, in Figure 2, all the nodes are assumed to be
infected. i is the initial node infected at simulation
time t0. m and l are both infected at simulation time
t2, while m starts after l ends in the project time.
Rather than precisely simulating the execution of a
schedule under a change risk, this paper focuses on
measuring the AON performance when faced with
disruptions. As a result, the simulation time is used
during the process of risk propagation.

(5) Before the schedule changes occur (t< 0), all the
nodes are S nodes. A schedule change then occurs on
one node at t � 0.

3.2.2. Model Dynamics. *e propagation of a schedule
change in an AON network is related to the type of schedule
change and the dependencies of subsequent nodes. *e
schedule change is divided into an end date change and a
start date change based on the impact of schedule changes on
activities. Figure 3 shows the successive infection process of a
schedule change risk. It is assumed that the risk of an end
date change on node i’s predecessor i− has occurred, and
four kinds of dependencies between i− and i are considered.
(1) In Figure 3(a), if the dependency is FS, then the end date
change of i− may trigger the risk of a start date change and an
end date change on i at the same time. (2) If the dependency
is SS, then the possibility of affecting i’s schedule is very low.
(3) If the dependency is FF, then an end date change of i−
may trigger the risk of end date changes on i. (4) If the
dependency is SF, then the possibility of affecting i’s
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Figure 1: AON network abstraction.
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schedule is very low. Considering a start date change, similar
cases can be concluded and are shown in Figure 3(b).

3.2.3. Risk *reshold and Infection Rate for Risk of End Date
Change. *e node’s risk threshold reflects the ability of the
activity to resist the schedule change risk, and the threshold
is limited due to the cost. As shown in Figure 3, node i’s end
date change risk may be triggered in four situations: end date
change of i− +FS, end date change of i− +FF, start date
change of i− + SS, and start date change of i− + SF.

(1) Situation a: End Date Change of i− + FS. In this case, two
indicators of the risk threshold are considered. First, if the
activity duration is long, the activity’s capacity to resist
changes of the end date will be high. *at is because change
disruptions are more likely to be absorbed by a longer
duration. Let Di be the duration of node i, and
fD: R+⟶ [0, 1] be a normalization function that nor-
malizes the duration between 0 and 1.*e duration aspect of
the end date threshold of node i, CD

i , can be set as follows:

C
D
i � f

D
T
end
i − T

start
i  � f

D
Di( . (1)

Second, as nodes with greater out-degrees have higher
impacts on their successors [23], more resources are allocated

to these nodes to prevent change risks, which indicates a
higher risk threshold. Based on the analysis above, the end
date threshold of node i, CEND− TH

i , is expressed as follows:

C
END− TH
i � α f

O
Ki(out)  

βK
C

D
i 

βD
, (2)

where α> 0, βK > 0, and βD > 0 are adjustable parameters. α
is correlated with the cost invested into activities and is
defined as the capacity level. Ki(out) represents the out-de-
gree of node i. fO is the normalization function of the out-
degrees. βK and βD reflect the influence of the out-degree
and the duration on the risk capacity, respectively.

With respect to the infection rate, the network structure
and slack time between subsequent nodes affect the way in
which the propagation process unravels. Eigenvector cen-
trality measures a node’s influence on a network based on
the concept that a node pointing to well-connected nodes
has high eigenvector centrality. As eigenvector centrality is a
good measure of the spreading power [43], it is used to
evaluate the infection rate. *e structural aspect of infection
rate from node i− to i is expressed as follows:

I
S
i−⟶i � f

E
C

E
i− , (3)

where CE
i− is the eigenvector centrality of node i− and fE is

the normalization function of the eigenvector centralities.

i

j

k l

m

i j m

i k l m

t0 t1 t2 t3 Simulation time

Figure 2: Project time and simulation time.

i– i–i i

i– i–i i

(1) FS (2) SS

(3) FF (4) SF

(a)

i– i–i i

i– i–i i

(1) FS (2) SS

(3) FF (4) SF

(b)

Figure 3: Infection of schedule change risk. ★ represents an end date change risk, and▲ represents a start date change risk. Node i− is the
predecessor of node i. Risk propagation caused by (a) the end date change and (b) start date change.
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*e slack time between node i and its predecessor i− is the
amount remaining after the time constraint is deducted from
the time difference ||Tstart

i − Tend
i− | − tii− |. *e infection rate

decreases as the slack time increases, as there is more time to
react before i starts [8]. *erefore, the infection rate from i−
to i is equal to

I
END− R
i−⟶ i � c I

S
i−⟶ i 

βE
f

S
T
start
i − T

end
i−



 − tii−



  
− βS

,

(4)

where c> 0 is an adjustable parameter, defined as the in-
fection intensity, andfS is the normalization function of slack
time. βE > 0 and βS > 0 reflect influence of the eigenvector
centrality and slack time on the infection rate, respectively.

(2) Situation b. End date change of i− + FF. In this situation,
the end date of i is directly dependent on the end date of i− .
Consequently, the duration of i cannot mitigate changes of
i− . Except for this, a similar expression to equation (2) for
CEND− TH

i can be obtained:

C
END− TH
i � α f

O
Ki(out)  

βK
f

D
(1) 

βD
, (5)

where CEND− TH
i in equation (2) is replaced by its minimum

value fD(1). A similar approach for calculating the infection
rate to that in Situation a is used, in which the slack time is
replaced as follows:

I
END− R
i− ⟶ i � c I

S
i− ⟶ i 

βE
f

S
T
end
i − T

end
i−



 − tii− − Di






  
− βS

.

(6)

(3) Situation c. Start date change of i− + SS. CEND− TH
i is

calculated using equation (2). IE− R
i− ⟶ i is similar to equation

(4), except that the slack time is replaced as follows:

I
END− R
i− ⟶ i � c I

S
i− ⟶ i 

βE
f

S
T
start
i − T

start
i−


 − tii− − Di−





  

− βS
.

(7)

(4) Situation d. Start date change of i− + SF. CEND− TH
i is

calculated using equation (5). IEND− R
i− ⟶ i is similar to equation

(6) except that the slack time is replaced:

I
END− R
i−⟶ i � c I

S
i−⟶i 

βE
f

S
T
end
i − T

start
i−



 − tii− − Di


 − Di−






  
− βS

.

(8)

3.2.4. Risk*reshold and Infection Rate for Risk of Start Date
Change. *e threshold and infection rate for the start date
change risk are calculated using indicators similar to those
used for end date changes. As shown in Figure 3, node i’s
start date change risk may be triggered in two situations: end
date change of i− + FS and start date change of i− + SS.

(5) Situation e. End date change of i− + FS. CST− TH
i is the start

date threshold of node i, and it is determined using equation
(5). IST− R

i−⟶ i is the infection rate from i− to i, and it is calculated
using equation (4).

(6) Situation f. Start date change of i− + SS. CST− TH
i has the

same value as the one in Situation e, and IST− R
i−⟶ i is identical to

equation (7).
*e risk threshold and infection rate in six different

situations are summarized in Table 1.

3.2.5. Transition Rules. When the number of node i’s pre-
decessors is greater than 1, two risks may be infected on i
independently by different risks on different predecessors,
and the infection of the risk is conceived as the combined
infection from the predecessors. *e state of node i at time
step t can be expressed as Sm

i (t), where m ∈ END, ST{ }

denotes the risk type. Sm
i (t) � 0 means that i is in S under

riskm, and Sm
i (t) � 1 means that i is in I under riskm. When

m � END, transition rules for i about end date change risk
can be specified as follows:

S
END
i (t) �

1, C
END− TH
i [0]< 1 − 

i− ∈Na−
i
∪Nc−

i

I
END− R
i−⟶ i orC

END− TH
i [1]< 1 − 

i− ∈Nb−
i
∪Nd−

i

I
END− R
i−⟶ i ,

S
END
i (t − 1), else,

⎧⎪⎪⎨

⎪⎪⎩
(9)

where CEND− TH
i [0] � α(fO(Ki(out)))

βCD
i and CEND− TH

i [1] �

α(fO(Ki(out)))
βfD(1) represent two possible values of

CEND− TH
i . Nx−

i (x ∈ a, b, c, d, e, f ) is node i’s predecessor
node set, and for each i− ∈ Nx−

i , i− and i are in Situation x.

Meanwhile, IEND− R
i−⟶ i takes the corresponding value listed in

Table 1. However, when m � ST, transition rules for i about
the start date change risk can be specified as follows:

S
ST
i (t) �

1, C
ST− TH
i [0]< 1 − 

i− ∈Ne−
i
∪N

f−

i

I
ST− R
i−⟶ i ,

S
ST
i (t − 1), else,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)
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where Si(t) ∈ 0, 1, 2, 3{ } indicates the state of node I at time
step t, where 0, 1, 2, and 3 represent S, E-I, S-I, and (E-I, S-I),
respectively. Based on equations (9) and (10), Si(t) is de-
termined as follows:

Si(t) �

0, S
END
i � 0 and S

ST
i � 0,

1, S
END
i � 1 and S

ST
i � 0,

2, S
END
i � 0 and S

ST
i � 1,

3, S
END
i � 1 and S

ST
i � 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(11)

Two metrics are used to measure the impact of the
change risk. One is the infection node density Z(t), which is
the ratio of the number of infected nodes to the number of
whole network nodes at time step t:

Z(t) �


N
i�1 Si(t)≠ 0( 

N
, (12)

where the value is 1 if Si(t) is not equal to 0 and the value is 0
if Si(t) is equal to 0. N is the number of whole network
nodes. Since the propagation process will come to an end,
Z(t) will converge to a stable value Z∗. Z∗ is also used as an
indicator related to Z(t).

*e other metric is the normalized avalanche size CFN

[22]:

CFN �


N
i�1 CFi

N(N − 1)
, (13)

where CFi denotes the number of the infected nodes after the
risk occurs on node i at t � 0. According to the type of
schedule risk, CFN can be extended to CFENDN and CFSTN .

4. Results and Discussion

Simulation experiments were conducted to examine the risk
propagation for schedule changes in a construction project.
*e aim of the project was to deliver a high-rise complex in
800 days. *e AON network is shown in Figure 4, with 803
nodes and 1388 directed edges. In Figure 4, the node size is
dependent on the node degree that is the number of edges
adjacent to the node.

*e normalization functions used for durations (fD),
out-degrees (fO), eigenvector centralities (fE), and slack
time (fS) were related to the distributions of the data, as
shown in Figure 5. As these distributions were heavy tailed,
and maximum cutoff values were specified so that any value
greater than that would be set to the specified maximum

value. As shown in Figure 5, the cutoff values were set as 20,
5, 0.05, and 10 for fD,fO, fE, and fS, respectively. Min-max
normalization was then used to scale the data.

*e effectiveness of the propagation model was analyzed
for different values of the parameters.*e initial values of the
parameters chosen from reasonable ranges are listed in
Table 2, and the ranges can be achieved from the following
experiments. During simulations, the value of every fixed
parameter was set to the initial value correspondingly. *e
simulation was performed using Python and NetworkX.

*e relationship between CFN and c is presented in
Figure 6, where c was changed from 0.2 to 3 at a step size of
0.2 and α was set to 0.5, 1, 1.5, 2, 2.5, and 3. Figure 6 shows
that with an increase in the adjustable parameter c, the
infection rate increased, and CFN increased gradually. When
c increased to a certain value, CFN remained at a stable and
high value, indicating a limit to the growth of the propa-
gation.*is behavior demonstrated the existence of the basic
resilience of the resisting schedule change risk and the
limited size of the AON network. *e convergence rate and
the stable value of CFN are highly correlated with α. For
example, CFN increased more steeply when α � 0.5 than
when α � 3, and the stable value of the former was roughly
four times than that of the latter. Hence, robustness of the
AON network increased with the increase in α. However, the
robustness of the AON network did not improve signifi-
cantly when α≥ 2, indicating a limit of the marginal capacity
of the resistance to risk. In this study, the robustness of an
AON network refers to the ability of the AON network to
withstand the change risk propagation triggered by a small
number of changed activities. *e ability can be indicated by
CFN and rate of convergence to the stable state.

*e effects of parameters βE, βK, βS, and βD were in-
vestigated, and the results are shown in Figure 7. *ese
parameters were changed from 0.1 to 5, and the step length
was 0.1.*e initial infected node at t � 0 was the node with a
maximum eigenvector centrality. Figure 7(a) shows that the
higher the value of βE was, the lower the value of Z∗ became.
Because the eigenvector centrality was normalized between 0
and 1, the infection rate had a negative relationship with βE.
In addition, Z∗ decreased rapidly when βE was around 1.
Figure 7(b) shows that Z∗ increased with βK. Due to the
negative relationship between the node capacity and βK, the
increase in βK led to a decrease in the node capacity and an
increase in Z∗. Figure 7(c) shows increasing βS led to a
higher Z∗, resulting from the positive relationship between
the infection rate and βS. Figure 7(d) shows that increasing
βD led to a higher Z∗, resulting from the positive

Table 1: Risk threshold and infection rate in six situations.

Risk threshold Infection rate
a CEND− TH

i � α(fO(Ki(out)))
βK (CD

i )βD IEND− R
i−⟶ i � c(IS

i−⟶ i)
βE (fS(||Tstart

i − Tend
i− | − tii− |))− βS

b CEND− TH
i � α(fO(Ki(out)))

βK (fD(1))βD IEND− R
i−⟶ i � c(IS

i−⟶ i)
βE (fS(||Tend

i − Tend
i− | − tii− − |Di||))

− βS

c CEND− TH
i � α(fO(Ki(out)))

βK (CD
i )βD IEND− R

i−⟶ i � c(IS
i−⟶ i)

βE (fS(||Tstart
i − Tstart

i− | − tii− − |Di− ||))− βS

d CEND− TH
i � α(fO(Ki(out)))

βK (fD(1))βD IEND− R
i−⟶ i � c(IS

i−⟶ i)
βE (fS(||Tend

i − Tstart
i− | − tii− − |Di| − |Di− ||))− βS

e CEND− TH
i � α(fO(Ki(out)))

βK (fD(1))βD IEND− R
i−⟶ i � c(IS

i−⟶ i)
βE (fS(||Tstart

i − Tend
i− | − tii− |))− βS

f CEND− TH
i � α(fO(Ki(out)))

βK (fD(1))βD IEND− R
i−⟶ i � c(IS

i−⟶ i)
βE (fS(||Tstart

i − Tstart
i− | − tii− − |Di− ||))− βS
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relationship between the node capacity and βD. Further-
more, the figures show the occurrence of several outliers,
such as βK � 7, 14, 27, 28 in Figure 7(b), βS � 3, 8 in

Figure 7(c), and βD � 2, 5, 7 in Figure 7(d). Using βK as an
example, different nodes have different out-degrees, which
allows βK to have different impacts on each node. When

Figure 4: An AON network of a construction project with NetworkX random layout. *e node size corresponds to the node degree.
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Figure 5: Data distribution: histogram of (a) duration, (b) out-degree, (c) eigenvectgor centrality, and (d) slack time.

8 Complexity



nodes whose out-degree changed slightly with βK were in the
pathways developed by risk propagation, the possibility of
infection decreased.

Figure 8 shows that increasing parameter βD led to
values of CFSTN being higher than CFENDN , demonstrating the
effect that the activity duration had on resisting the end date

Table 2: Initial values of parameters.

Parameter Description Initial value
α Capacity level 0.2
c Infection intensity 0.5
βK Influence of out-degree on risk resistance 1
βD Influence of duration on risk resistance 1
βE Influence of eigenvector centrality on infection rate 1
βS Influence of slack time on infection rate 1
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Figure 6: Relationship between CFN and c for different α.
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Figure 7: Effects of βE, βK, βS, and βD (α � 0.2, c � 0.5). Relation between (a) Z∗ and βE, (b) Z∗ and βK, (c) Z∗ and βS, and (d) Z∗ and βD.
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change risk. When βD < 0.4, the values of CFSTN and CFENDN

were close and low. When βD > 0.8, the difference between
CFSTN and CFENDN reached a stable value.

Considering an environment defined by the parameters
given in Table 2, each node i in the AON was purposely
infected, and the size of each risk propagation was collected.
*e histogram of the propagation size with a fitted expo-
nential distribution is shown in Figure 9. *e size of the
maximum propagation was 553.*ere were fewer large sizes
and more small sizes.

Based on the above analysis, some important insights can
be drawn for project managers. First, a single activity change
can be sufficient to cause cascading changes in many
downstream activities. Meanwhile, a larger number of ac-
tivities have limited capacities to trigger a change propa-
gation (Figure 9). Hence, it is vital for managers to identify
critical activities and allocate resources to these activities to
resist the change risk. *e simulation model can help
managers predict risk propagation and evaluate the im-
portance of each activity. Second, with an increase in the risk
threshold, the ability to resist the change risk can be im-
proved. Managers can improve the capacity level of each
node and allocate more resources to nodes with higher out-
degrees using methods such as accelerating monitoring and
feedback and preparing redundant resources for activities.
However, the risk threshold is limited by the cost as well as
the decrease in the marginal capacity (Figure 6). *ird,
managers can reduce the propagation by controlling the
infection rate. *e simulation results indicated that the slack
time between activities and the eigenvector centrality is

correlated to the infection rate. Although adjusting the ei-
genvector centralities of nodes is difficult, managers can
strengthen the monitoring of these nodes to prevent the
infection. Furthermore, when making the project schedule,
managers can consider allocating extra time to critical ac-
tivities in case of schedule changes.

5. Conclusions

In this paper, a risk propagation model of schedule changes
on an AON network was constructed based on the sus-
ceptible-infected (SI) model and the threshold model. A set
of factors are considered to represent the risk threshold and
infection rate, including the capacity level, node duration,
node out-degree, eigenvector centrality of the node, infec-
tion intensity, and slack time. Transition rules are designed
to determine the dynamics of the model. By simulating the
risk propagation model, three conclusions are made: (1) *e
capacity level and infection intensity both influence the risk
propagation, but both have limitations. At the same time, the
convergence rate of the propagation is highly correlated to
the capacity level. (2)*e out-degree, slack time, and activity
duration have negative impacts on the number of infected
nodes, while the eigenvector centrality has a positive impact.
(3) *e number of start date change risks is greater than the
number of end date change risks due to the impact of the
activity duration on resisting the latter. Furthermore, the
distribution of the number of infected nodes is similar to an
exponential distribution, making it vital for the identifica-
tion of critical nodes.

*is paper introduces the framework of a risk propa-
gation model to the field of project management. *e
framework could also be applied to research in other areas of
risk management, such as safety or quality risk. First, net-
works are constructed with nodes representing resources
and edges representing the impact between nodes. Second,
risks are identified, and the dynamics of the risk propagation
are designed. *ird, simulations are conducted to evaluate
the impacts of factors.

To overcome the limitations in this work, the following
aspects should be further explored in future work:

(1) *e impact of the extent of a schedule change is not
considered in this paper, and the extent may play an

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1
0.11

CF
N ST

CF
N EN

D

0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11

βD

Figure 8: Effects of activity duration on end date change risk.
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important role in risk propagation due to its influ-
ence on the infection rate. *erefore, the model can
be refined to consider more characteristics of
schedule changes.

(2) *is model only considers the susceptible (S) state,
infected (I) state, and transition from S to I, and it
ignores the effects of mitigation strategies and the
transition from I to S. To make the model more
realistic, simulations of the schedule risk propaga-
tion must be conducted in real time, and more states
and mitigation strategies can be added to the
simulation.

(3) Construction projects are very complex, involving
many different external risk factors. How to integrate
these factors into the model and construct a com-
prehensive risk index system will also be considered
in future work.
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