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*is paper presents a problem of observer-based adaptive fuzzy predefined performance control of a class of nonlinear pure-
feedback systems with input delay and unknown control direction. Compared with the existing research, a novel predefined
performance controller is proposed, which relaxes the assumption that the initial error is known. In addition, it is difficult to
design the controllers due to input delay and nonaffine properties of the pure-feedback systems, which can be simplified by Pade
approximation. Moreover, dynamic surface control and Nussbaum functions are applied to overcome the calculation explosion
caused by repeated differentiations and unknown control direction, respectively. Based on the above methods, an adaptive fuzzy
predefined performance controller is proposed, and it is proved that all the signals of a closed-loop system are semiglobally
uniformly ultimately bounded (SGUUB). *e tracking errors converge within a predefined range, while the observer estimation
errors converge within a small zero region. Finally, the simulation results demonstrate the effectiveness of the proposed
control system.

1. Introduction

In the past years, the adaptive nonlinear systems based on the
backstepping method has matured increasingly and received
widespread attention in [1, 2]. At an earlier time, there was an
unmodeled nonlinear problem in the above system, which
greatly limited the application of this technology. To solve the
above problems, fuzzy logic systems (FLSs) and neural net-
works (NNs) were applied extensively to approximate un-
known nonlinear function in [3–7]. However, the
characteristic of the backstepping method is a class of re-
cursive design procedures coupled with Lyapunov function
candidates; hence, the repeated differentiation of virtual
controller leads to the complexity explosion problem. Af-
terwards, the dynamic surface control (DSC) technology was
integrated into the backsteppingmethod to solve this problem
in [8–10]. In addition, since the unmeasurable state in the
application has a great restriction, the state observer was

employed to estimate the unmeasured state in [11–15].
Among them, an equivalent output injection sliding mode
observer was proposed in [12], which could estimate the status
of each follower and its neighbor. And high gain observer was
used to estimate the position, course, and speed of the vessel
in [13]. In recent years, observer-based adaptive fuzzy control
with the DSC technology was investigated in [16–18].

It is well known that different from strict-feedback
systems, pure-feedback systems have nonaffine structure of
the variables, which presents more challenges to the con-
troller design. Fortunately, the mean value theorem was
proposed to solve the variables coupling problem of non-
affine structures in [19, 20]. Moreover, pure-feedback sys-
tems usually have the problem of unknown input control
direction, which could be solved by Nussbaum functions in
[21–24]. In addition, the input and output of the control
systems have many restrictions, such as input saturation,
dead zone, and input delay in [25–33]. It is worth
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mentioning that an adaptive predictor incorporated with a
high-order neural network observer was proposed to obtain
the predictions of the future system states in pure-feedback
systems in [28], which were applied in the control design to
avoid the input delay and nonlinearities. Subsequently, the
input delay was solved by Pade approximation technique
and intermediate variables in the strict-feedback systems in
[29–31], which simplified the controller design. However, to
the best of the author’s knowledge, the combination of input
delay and pure-feedback systems was rarely considered.
*erefore, the controller design of pure-feedback systems
with input delay is complicated, which needs to be further
developed.

On the other side, the predefined control performance is
better able to achieve the desired performance, such as
overshoot, convergence rate, and convergence accuracy.
*erefore, the prescribed performance control was pro-
posed, which can satisfy preset transient and steady-state
tracking performance in [34–36]. In particular, an adjustable
finite-time prescribed performance function with fast con-
vergence speed was adopted in [37, 38], which ensures real-
time adjustment of controller parameters cased by the
tracking error. Although the research of the prescribed
performance control method is approaching maturity, there
was still limitation of unknown initial values. Fortunately, a
predefined performance function with time-varying design
parameters was proposed to reduce the impact of unknown
initial tracking error in [39]. However, it is not applied to the
unknown nonlinear pure-feedback systems. In summary,
the existing predefined performance control methods are
insufficient to deal with a class of nonlinear pure-feedback
systems with input delay.*erefore, the controller design for
the above conditions needs to be developed.

Based on the above discussion, this article presents a
method for observer-based adaptive fuzzy predefined per-
formance control of a class of nonlinear pure-feedback
systems with unknown control direction and input delay.
State observer and FLSs are proposed to solve the problem of
approximate unmeasurable state and unknown nonlinear
functions, respectively. Compared with the existing litera-
ture, the main contributions of this paper are as follows:

(1) In the existing literatures [34, 37], the initial values in
predefined performance control are assumed to be
known. In order to relax that assumption, a novel
predefined performance control method is proposed,
which is a variable-parameter scheme independent
of the initial error. *erefore, the restriction of the
unknown initial error in the predefined performance
control is solved.

(2) Compared with [36], the input delay is introduced
into the pure-feedback systems. It is difficult to
design the controllers due to input delay and non-
affine properties of the pure-feedback systems, which
can be simplified by Pade approximation and mean
value theorem, respectively.

(3) By combining DSC technology and backstepping
method, the issue of complexity explosion caused by

repeated differentiations of some intermediate var-
iables is eliminated. And the Nussbaum functions are
proposed to solve unknown control direction.

*e framework of this article is as follows. In Section 2,
preliminaries and problem formulation are presented. In
Section 3, an observer-based adaptive fuzzy predefined
performance controller is designed of a class of nonlinear
pure-feedback systems with unknown control direction and
input delay, and the stability analysis is given. In Section 4,
an example simulation is given to verify the feasibility of the
proposed method. Finally, the Section 5 is the conclusions
and the prospect of the future work.

Notations:R denotes the set of real numbers, Ri de-
notes the i-dimensional vector space, and R+ is the set of all
nonnegative real numbers. ‖ · ‖ indicates the Euclidean norm
of vectors or matrix. For a matrix X, XT indicates its
transpose and X− 1 indicates its inverse. For a matrix Q,
λmin(Q) stands for the smallest eigenvalue of Q and λmax(Q)

stands for the largest eigenvalue of Q.

2. Preliminaries and Problem Formulation

2.1. System Descriptions and Assumptions. A class of non-
linear pure-feedback systems with input delay is considered
as

_xi � fi xi, xi+1( 􏼁 + di(t), 1≤ i≤ n − 1,

_xn � fn xn, u(t − δ)( 􏼁 + dn(t),

y � x1,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where xi � [x1, . . . , xi]
T ∈ Ri are the state vector, y ∈ R is

the output, fi(xi, xi+1), fn(xn, u(t − δ)) are unknown
smooth functions, di(t) means unknown and bounded
external disturbance inputs, and δ denotes the input delay,
which is an small unknown positive constant caused by
network delay. Moreover, the output y is measurable.

Because of the coupling between states xi+1 and u(t − δ)

in smooth functions fi(xi, xi+1) and fn(xn, u(t − δ)), which
makes the desired control objectives difficult to design, the
mean value theorem is used as

fi xi, xi+1( 􏼁 � fi xi, 0( 􏼁 + gi xi, xi+1( 􏼁xi+1,

fn xn, u(t − δ)( 􏼁 � fn xn, 0( 􏼁 + gn xn, u(t − δ)( 􏼁u(t − δ),

(2)

where gi(xi, xi+1) � zfi(xi, xi+1)/zxi+1|x0
i+1

and gn(xn,

u(t − δ)) � zfn(xn, u(t − δ))/zu(t − δ)|u0
(t− δ)

, x0
i+1 is certain

point between zero and xi+1, and u0
(t− δ) is certain point

between zero and u(t − δ). Let fi(xi, 0) � fi(xi),
fn(xn, 0) � fn(xn), gi(xi, xi+1) � gi, and gn(xn, u

(t − δ)) � gn.
Substituting (2) into system (1), one can obtain as

_xi � fi xi( 􏼁 + gixi+1 + di(t),

_xn � fn xn( 􏼁 + gnu(t − δ) + dn(t),

y � x1.

⎧⎪⎪⎨

⎪⎪⎩
(3)
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To get the actual control input u by removing the effect of
input delay δ, the Pade approximation method and the delay
theorem of Laplace transform can be used, which solve the
analysis complexity problem caused by time delay, and it
follows that

ℓ u(t − δ){ } � e
− δsℓ(u(t)) ≈

1 − δs/2
1 + δs/2

ℓ u(t){ }, (4)

where s represents the Laplace variable and ℓ u(t){ } is the
Laplace transform of u(t).

Define the intermediate variable xn+1 as

1 − δs/2
1 + δs/2

ℓ u(t){ } � ℓ xn+1􏼈 􏼉 − ℓ u(t){ }. (5)

By transforming formula (5), one can be given as

2ℓ u(t){ } � ℓ xn+1(t)􏼈 􏼉 +
δs

2
ℓ u(t){ }. (6)

By taking the inverse Laplace transform,

_xn+1 � 2βu − βxn+1, (7)

where β � 2/δ is a variable.

Remark 1. Pade approximation has been used in [31]. In this
article, since the Pade approximation is applied to solve a
class of small time delay problems, e− δs is approximately
equal to 1 − δs/2/(1 + δs/2) when the time delay is very
small. And the intermediate variable xn+1 is not a real
variable of system (1), which can be viewed as an error
variable. And this has been verified in the simulation in [31].

By using the above methods, (3) can be further written as

_xi � fi xi( 􏼁 + gixi+1 + di(t),

_xn � fn xn( 􏼁 + gnxn+1 − gnu + dn(t),

_xn+1 � − βxn+1 + 2βu,

y � x1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

Assumption 1 (see [9]). *e expected signal yd and its
derivatives _yd and €yd are all known and bounded, which is
Υ � yd, _yd, €yd: y2

d + _y2
d + €y2

d ≤Y􏼈 􏼉, where Y is a positive
constant.

Assumption 2 (see [20]). *e sign of gi is unknown, but gi

has the same sign and its public super bound is known,
which is 0< |gi|<g∗.

Assumption 3. *e disturbance di is bounded to a positive
constant d∗i , that is, |di|≤d∗i .

Assumption 4 (see [27]). *ere is a known constant si that
satisfies fi(xi) − fi(

􏽢xi)≤ si‖xi − 􏽢xi‖, where 􏽢xi � [􏽢x1, 􏽢x2, . . . ,

􏽢xi]
T is the estimate of xi � [x1, x2, . . . , xi]

T, and ‖X‖ rep-
resents the 2 norm of the vector X.

2.2. Fuzzy Logic Systems. Because the nonlinear function is
unknown, FLSs is proposed. Build FLSs with the if-then
rules.

Rq: if x1 is F
q
1 and x2 is F

q
2 and . . . and xn is F

q
n. *en, y is

Bq, q � 1, 2, . . . , a. Here, x � [x1, . . . , xn]T and y are the FLS
input and output, respectively. Fuzzy sets F

q
i and Bq, as-

sociated with the fuzzy functions μF
q

i
(xi) and μBq (y), re-

spectively. a is the rules number.*us, FLS can be calculated
by formula

y(x(t)) �
􏽐

a
q�1 􏽥yq 􏽑

n
i�1 μF

q

i
xi( 􏼁

􏽐
a
q�1 􏽑

n
i�1 μF

q

i
xi( 􏼁􏼒 􏼓

, (9)

where 􏽥yq � maxy∈RμBq (y).
Let φq � 􏽑

n
i�1 μF

q

i
(xi)/􏽐

a
q�1(􏽑

n
i�1 μF

q

i
(xi)) and denote

θ � [􏽥y1, 􏽥y2, . . . , 􏽥ya]T � [θ1, θ2, . . . , θa]T and φT(x) �

[φ1(x), . . . ,φa(x)]; then, FLS can be rewritten as
y(x) � θTφ(x).

Lemma 1 (see [40]). Let f(x) be a continuous function
defined on a compact set Ω. *en, for any constant ε> 0,
there exists an FLS such as

sup
x∈Ω

f(x) − θTφ(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε. (10)

Define the idealized parameter vector θ∗i as

(i) θ∗1 � argminθ1∈Ω1[supx1∈U1
|􏽢f1(x1|tθ1) − f1(x1)|]

(ii) θ∗i � argminθi∈Ωi
[supx̂i∈Ui

|􏽢fi(x̂i|tθi) − fi(x̂i)|], (i �

2, . . . , n)

Here, Ω1,Ωi, U1, andUi are compact for θ1, θi, x1, and x̂i,
respectively.

By Lemma 1, the nonlinear functions can be approxi-
mated by the following FLSs:

􏽢f1 x1 | θ1( 􏼁 � θT
1φ1 x1( 􏼁,

􏽢fi x̂i | 􏽢θi􏼐 􏼑 � 􏽢θ
T

i φi
􏽢xi), i � 2, . . . , n.􏼐

(11)

The fuzzy minimum approximation errors can be
defined as ε1(x1) � f1(x1) − 􏽢f1(x1|θ

∗
1 ) and εi(􏽢xi) � fi

(􏽢xi) − 􏽢fi(
􏽢xi | θ∗i ), where 􏽢xi are the estimation of the state xi.

Assumption 5. *e approximation error εi is bounded, and
there is a constant ε∗i that satisfies |εi|≤ ε∗i .

From (11), system (8) can be expressed as

_xi � gixi+1 + θ ∗T
i φi x̂i􏼐 􏼑 + εi x̂i􏼐 􏼑 + di + Δfi,

_xn � gnxn+1 − gnu + θ ∗T
n φn x̂n􏼐 􏼑 + εn

􏽢xn( 􏼁 + dn + Δfn,

_xn+1 � − βxn+1 + 2βu,

y � x1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(12)

where Δfi � fi(xi) − fi(􏽢x i), i � 2, . . . , n.
Rewriting (12) in the following formula,
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_x � Ax + F
∗

+ ε + d + Δf + Enu,

y � E
T
0 x,

⎧⎨

⎩ (13)

where x � [x1, x2, . . . , xn, xn+1]
T, A �

0 g1 0 . . . 0 0
0 0 g2 . . . 0 0
⋮
0 0 0 . . . gn− 1 0
0 0 0 . . . 0 gn

0 0 0 . . . 0 − β

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ε � [ε1(x1), ε2(􏽢x2), . . . , εn(􏽢xn),

0]T, F
∗

� [θ ∗T
1 φ1(x1), θ

∗T
2 φ2(

􏽢x2), . . . , θ∗T
n φn(􏽢xn), 0]T,

d � [d1, d2, . . . , dn, 0]T, Δf � [0,Δf2, . . . ,Δfn, 0]T, ET
0 �

[1, 0, . . . , 0], and ET
n � [0, . . . , 0, − gn, 2β].

2.3. Nussbaum-Type Function. A continuous function N(μ)

is called the Nussbaum function if it has the following
properties:

lim
m⟶∞

sup
1
m

􏽚
m

0
N(μ)dμ �∞,

lim
m⟶∞

inf
1
m

􏽚
m

0
N(μ)dμ � − ∞,

(14)

where m is the integral upper boundary. For instance, the
frequently used continuous Nussbaum-type functions
contain μ2 cos(μ), μ2 sin(μ), eμ

2 cos(μ), and so on. In this
work, the continuous Nussbaum-type function
N(μ) � μ2 cos(μ) is utilized.

Lemma 2 (see [41, 42]). Smooth functions V(·) and μ(·) are
defined on [0, tf), where V(t)≥ 0 (∀∈ [0, tf)) and N(μ) is a
Nussbaum-type function. If the following inequality holds

V(t)≤ c ± 􏽚
t

0
􏽘

n

l�1
gN μl( 􏼁 + 1( 􏼁 _μldτ, (15)

where g is a nonzero constant and c represents appropriate
constant, then V(t), μ(t), and 􏽒

t

0 􏽐
n
l�1(gN(μl) + 1) _μldτ must

be bounded on [0, tf).

Remark 2. *e parameters gi and gn are time-varying pa-
rameters and their signs are unknown. If the control di-
rection changes rapidly, it is difficult to effectively guarantee
the stability of the closed-loop system under the self-
adaptive condition. *erefore, compared with the control
direction which is assumed to be known, Assumption2 is
more flexible in the application. In addition, similar to [20],
this paper uses the Nussbaum functions to solve the control
direction problem, which relaxes the prior knowledge.

2.4. Fuzzy State Observer Design. To estimate the unmea-
surable states of the system, the corresponding fuzzy ob-
server is designed as

_􏽢xi � gi􏽢xi+1 + θT
i φi 􏽢x i( 􏼁 + ki y − 􏽢x1( 􏼁,

_􏽢xn � gn􏽢xn+1 − gnu + θT
nφn 􏽢x n( 􏼁 + kn y − 􏽢x1( 􏼁,

_􏽢xn+1 � − β􏽢xn+1 + 2βu,

􏽢y � 􏽢x1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

Rewriting (16) in the following formula,

_􏽢x � A0􏽢x + Ky + F + Enu,

􏽢y � E
T
0 􏽢x,

⎧⎨

⎩ (17)

where 􏽢x � [􏽢x1, 􏽢x2, . . . , 􏽢xn, 􏽢xn+1]
T, A0 �

− k1 g1 0 . . . 0 0 0
− k2 0 g2 . . . 0 0 0
⋮

− kn− 1 0 0 . . . 0 g(n− 1) 0
− kn 0 0 . . . 0 0 gn

0 0 0 . . . 0 0 − β

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, K � [k1, . . . , kn, 0]T, and

F � [θT
1φ1(x1), θ

T
2φ2(

􏽢x2), . . . , θT
nφn(􏽢xn), 0]T.

*e observer gain matrix K is given such that A0 is a
Hurwitz matrix. *erefore, for any chosen positive definite
matrix Q � QT > 0, there is a positive definite matrix P �

PT > 0 that satisfies

A
T
0 P + PA0 � − Q. (18)

*e observer errors can be obtained as

e � x − 􏽢x � e1, . . . , en􏼂 􏼃
T

. (19)

From (12), (16), and (17), the observer error is

_e � A0e + d + ε + Δf + 􏽥Θ, (20)

where 􏽥θi � θ∗i − θi and 􏽥Θ � [ 􏽥θ1
T
φ1(x1), . . . , 􏽥θn

T
φn(􏽢xn)]T.

Consider the Lyapunov function candidate as

V0 � e
T

Pe. (21)

*e time derivative of V0 with (20) is

_V0 � _e
T
Pe + e

T
P _e,

� e
T
A

T
0 + d

T
+ εT

+ ΔfT
+ 􏽥ΘT

􏼒 􏼓Pe

+ e
T
P A0e + d + ε + Δf + 􏽥Θ􏽨 􏽩,

� e
T

A
T
0 P + PA0􏽨 􏽩e + 2e

T
P[d + ε + Δf + 􏽥Θ],

� − e
T
Qe + 2e

T
P[d + ε + Δf + 􏽥Θ].

(22)

By using Young’s inequality and Assumptions 3–5, the
inequalities can be obtained as

2e
T
Pε + 2e

T
P d≤ 2‖e‖

2
+‖P‖

2 ε∗
����

����
2

+‖P‖
2

d
∗����
����
2
, (23)

2e
T
P 􏽥Θ≤ ‖e‖

2
+‖P‖

2
􏽘

n

l�1

􏽥θl

T 􏽥θl, (24)
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2e
T
PΔf≤ ‖e‖

2
+‖P‖

2
‖Δf‖

2 ≤ ‖e‖
2

+‖P‖
2

􏽘

n

j�2
L
2
j‖e‖

2⎛⎝ ⎞⎠ � r0‖e‖
2
,

(25)

where r0 � 1 + ‖P‖2 􏽐
n
j�2 L2

j .
Substituting (23)–(25) into (22) yields

_V0 ≤ − e
T
Qe + r0 + 3( 􏼁‖e‖

2
+‖P‖

2 ε∗
����

����
2

+‖P‖
2

d
∗����
����
2

+‖P‖
2

􏽘

n

l�1

􏽥θl

T 􏽥θl.
(26)

2.5. Tracking Error Transformation. A new variable pa-
rameter independent of the initial error is proposed, which
satisfies the expected variable-parameter scheme tracking
performance constraints. *en, the tracking error is defined
as E1 � y − yd. Predefined performance control constraint
will be obtained as inequality holds for all t≥ 0:

− ιd(t)ρ(t)<E1(t)< ιu(t)ρ(t), (27)

where smooth function ιd(t) and ιu(t) satisfies the follow
properties. (1) ιd(t)> 0, ιu(t)> 0 and strictly decreasing.
(2)lim t⟶0 ιd(t) � +∞; limt⟶∞ιd(t) � C1, C1 ∈ R+;
limt⟶0ιu (t) � +∞; and limt⟶∞ιu(t) � C2, C2 ∈ R+.

In this article, ιd(t) and ιu(t) can be chosen as

_ιd(t) � − λdιd(t) + hd,

_ιu(t) � − λuιu(t) + hu,
􏼨 (28)

where λd, λu, hd, and hu are positive constants.
And ρ(t) is an appropriate performance boundary

function and is defined as ρ(t) � (ρ(0) − ρ∞)e− λt + ρ∞,
which satisfies the following. (1) ρ(t) is positive and strictly
decreasing. (2) limt⟶∞ρ(t) � ρ∞ > 0.

Integrating equality (28) over [0, t), we have

ιd(t) � ιd(0) −
hd

λd

􏼢 􏼣e
− λdt

+
hd

λd

. (29)

In the same way,

ιu(t) � ιu(0) −
hu

λu

􏼢 􏼣e
− λut

+
hu

λu

. (30)

By the above analysis, ιd(t) and ιu(t) converge expo-
nentially to constants hd/λd and hu/λu, and the convergence
rate can be improved by adding λd and λu. When ιd(t) and
ιu(t) converge to constant values, inequality constraint (27)
is degenerated as follows:

−
hd

λd

ρ(t)<E1(t)<
hu

λu

ρ(t). (31)

According to (31), when the system is stable, the upper
bound of the steady-state error is max (hd/λd),􏼈

(hu/hu)}ρ(∞), and the error convergence speed and the
maximum overpass can be adjusted by the coefficient λd, λu,
hd, hu, and ρ(t).

*e inequality constraint is transformed into equality
constant, and the error transformation function ϕ(z, ιd, ιu) is
defined as

E1(t) � ρ(t)ϕ z, ιd, ιu( 􏼁 , (32)

where z is transform error, and the continuous function
ϕ(z, ιdown, ιup) satisfies the following properties. (1) ϕ(z, ιd,

ιu) is smooth and strictly increasing; (2) − ιd(t)<
ϕ(z, ιd, ιu)< ιu(t); (3) limz⟶− ∞ ϕ(z, ιd, ιu) � − ιd(t);
lim z⟶+∞ϕ(z, ιd, ιu) � ιu(t).

By the properties of function ϕ(z, ιd, ιu), the inverse
transformation is

z1 � ϕ− 1 E1(t)

ρ(t)
, ιd, ιu􏼢 􏼣. (33)

*e error transformation function is defined as

ϕ z, ιd, ιu􏼂 􏼃 �
ιue

z
− ιde

− z

e
z

+ e
− z . (34)

*erefore, by (32), the boundless of the error trans-
formation function z1 results in the prescribed performance
of the tracking error E1.

Differentiating (33), it yields

z1
.

(t) �
zϕ− 1

z E1/ρ( 􏼁

z E1/ρ( 􏼁

zt
�

zϕ− 1

z E1/ρ( 􏼁
E1

.

−
E1 _ρ
ρ

􏼠 􏼡. (35)

Combining (35) and (12), one can obtain as

z1
.

� ϖ g1(t)x2 + θ∗T
1 φ1 x1( 􏼁 + ε1 x1( 􏼁 + d1􏼐 􏼑 + D, (36)

where ϖ � (zϕ− 1)/(z(E1/ρ))1/ρ> 0 and D � (− zϕ− 1)/(z

(E1/ρ))1/ρ(yd

.
+ E1 _ρ/ρ).

By derivation,

z1
.

�
1
2
log

E1

ρ
+ ιu􏼠 􏼡–

1
2
log ιd–

E1

ρ
􏼠 􏼡,

ϖ �
1
2ρ

1
E1/ρ + ιd

−
1

E1/ρ − ιu
􏼢 􏼣.

(37)

Remark 3. Note that the functions ιd and ιu are set to solve
the problem of unknown initial error E(0). In the predefined
performance control of [34], the initial error is assumed to
be known, but in the actual control, the exact value of the
initial error is often not obtained, which limits the use of the
predefined performance control. *e reason why the initial
values of ιd(t) and ιu(t) are set to infinity is mainly to
guarantee E(0) ∈ (− ιd, ιu); however, ιd(0) and ιu(0) just
need to be set to a sufficiently large constant in the actual
design. *e facts justify this treatment.

3. Control Design and Stability Analysis

In this section, by utilizing adaptive backstepping technique
and Lyapunov stability theorem, an observer-based adaptive
fuzzy predefined performance decentralized control ap-
proach is developed.
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*e coordinate changes are as follows:

E1 � y − yd,

Ei � 􏽢xi − αi(i � 2, . . . , n − 1),

En � 􏽢xn − αn + 􏽢xn+1
gn

β
,

ξi � αi − αi− 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

where αi is the virtual control law and αi and ξi are the filter
signal and filter error of the first-order filter, respectively.
Define a first-order filter as

ζ i
_αi + αi � αi− 1,

αi(0) � αi− 1(0), i � 2, . . . , n,
(39)

where ζ i is the design constant.

Step 1. By substituting (38) into (36), one can obtain as

_z1 � ϖ g1 E2 + ξ2 + α1 + e2( 􏼁 + θ∗1φ1 x1( 􏼁 + ε1 x1( 􏼁 + d1( 􏼁 + D.

(40)

Consider the Lyapunov function candidate as

V1 � V0 +
1
2
z
2
1 +

1
2υ1

􏽥θ1
T 􏽥θ1, (41)

where υ1 > 0 is a design constant. *e time derivative of V1
and substitute (40) and (26) into (41) as

_V1 � _V0 + z1 _z1 +
1
υ1

􏽥θ1
T􏽥θ

.

1 ≤ − e
T
Qe + r0 + 3( 􏼁‖e‖

2

+‖P‖
2 ε∗
����

����
2

+‖P‖
2

d
∗����
����
2

+‖P‖
2

􏽘

n

l�1

􏽥θl

T 􏽥θl + θ∗1φ1 x1( 􏼁

+ z1 ϖ g1 E2 + ξ2 + α1 + e2( 􏼁 + ε1 x1( 􏼁 + d1( 􏼁 + D􏼂 􏼃

+
1
υ1

􏽥θ1
T􏽥θ

.

1.

(42)

By using Young’s inequality,

z1ϖg1 E2 + ξ2( 􏼁≤ϖ2z2
1 +

1
2
g
∗ 2
1 E

2
2 + ξ22􏼐 􏼑, (43)

z1ϖg1e2 ≤
1
2
ϖ2z2

1 +
1
2
g
∗ 2
1 ‖e‖

2
, (44)

z1ϖε1 ≤
1
2
ϖ2z2

1 +
1
2
ε21, (45)

z1ϖd1 ≤
1
2
ϖ2z2

1 +
1
2
d
2
1. (46)

From (43)–(46), one can obtain as

_V1 ≤ − λmin(Q) − r0 − 3 −
1
2
g
∗ 2
1􏼒 􏼓‖e‖

2
+‖P‖

2 ε∗
����

����
2

+‖P‖
2

d
∗����
����
2

+‖P‖
2

􏽘

n

l�1

􏽥θl

T 􏽥θl

+ z1 ϖ
5
2
ϖz1 + g1α1 + θT

1φ1 x1( 􏼁􏼒 􏼓 + D􏼔 􏼕

+
1
2
ε∗ 21 +

1
2
d
∗ 2
1 +

1
2
g
∗ 2
1 E

2
2 + ξ22􏼐 􏼑

+
1
υ1

􏽥θ1
T

υ1φ1 x1( 􏼁z1ϖ − θ
.

1􏼒 􏼓.

(47)

Select the virtual control function α1 and the adaptive
laws θ1 as

α1 � N μ1( 􏼁 ω1z1 +
5
2
ϖz1 + θT

1φ1 x1( 􏼁 +
D

ϖ
􏼔 􏼕, (48)

_μ1 � z1ϖ ω1z1 +
5
2
ϖz1 + θT

1φ1 x1( 􏼁 +
D

ϖ
􏼔 􏼕, (49)

θ
.

1 � υ1φ1 x1( 􏼁z1ϖ − σθ1, (50)

where ω1 > 0 and σ > 0 are design constants.
Substituting (48)–(50) into (47) yields

_V1 ≤ − r1‖e‖
2

+‖P‖
2 ε∗
����

����
2

+‖P‖
2

d
∗����
����
2

+‖P‖
2

􏽘

n

l�1

􏽥θl

T 􏽥θl

− ω1ϖz
2
1 +

σ
υ1

􏽥θ1
T
θ1 +

1
2
g
∗ 2
1 E

2
2 + ξ22􏼐 􏼑

+ gN μ1( 􏼁 + 1( 􏼁 _μ1 +
1
2
ε∗ 21 +

1
2
d
∗ 2
1 ,

(51)

where r1 � λmin(Q) − r0 − 3 − (1/2)g∗ 21 .
By using Young’s inequality,
σ
υ1

􏽥θ
T

1 θ1 �
σ
υ1

􏽥θ
T

1 − 􏽥θ1 + θ∗1􏼐 􏼑≤ −
σ
2υ1

􏽥θ
T

1
􏽥θ1 +

σ
2υ1

θ∗T
1 θ∗1 . (52)

Substitute (52) into (51) as follows:

_V1 ≤ − r1‖e‖
2

+‖P‖
2

􏽘

n

l�1

􏽥θl

T 􏽥θl − ω1ϖz
2
1 −

σ
2υ1

􏽥θ
T

1
􏽥θ1

+
1
2
g
∗ 2
1 E

2
2 + ξ22􏼐 􏼑 + gN μ1( 􏼁 + 1( 􏼁 _μ1 + M1,

(53)

where M1 � ‖P‖2‖ε∗‖2 + ‖P‖2‖d∗‖2 + (1/2)ε∗ 21 + (1/2)

d∗ 21 + (σ/2υ1)θ
∗T
1 θ∗1 .

Step 2 (i (i � 2, . . . , n − 1)). *e time derivative of Ei is
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_Ei � _􏽢xi − αi

.

� gi􏽢xi+1 + θ∗T
i φi

􏽢xi( 􏼁 + εi + kie1 − _αi

� gi Ei+1 + ξi+1 + αi( 􏼁 + θ∗T
i φi

􏽢xi) + εi + kie1 − _αi.􏼐

(54)

Consider the Lyapunov function candidate as

Vi � Vi− 1 +
1
2
E
2
i +

1
2υi

􏽥θ
T

i
􏽥θi +

1
2
ξ2i , (55)

where υi > 0 is a design constant. *e derivative of Vi with
time is

_Vi � _Vi− 1 + Ei
_Ei +

1
υi

􏽥θ
T

i
􏽥θ
.

i + ξi
_ξi ≤ − r1‖e‖

2
+‖P‖

2
􏽘

n

l�1

􏽥θ
T

l
􏽥θl

− ω1ϖz
2
1 − 􏽘

i− 1

l�1

σ
2υl

􏽥θ
T

l
􏽥θl +

1
2

􏽘

i− 1

l�1
g
∗ 2
l E

2
l+1 + ξ2l+1􏼐 􏼑

+ Mi− 1 − 􏽘
i− 1

l�2
ωlE

2
l + Ei gi Ei+1 + ξi+1 + αi( 􏼁􏼂

+ θ∗T
i φi

􏽢xi( 􏼁 + εi + kie1 − _αi􏽩 +
1
υi

􏽥θ
T

i
􏽥θ
.

i + ξi
_ξi

+ 􏽘
i− 1

l�1
gN μl( 􏼁 + 1( 􏼁 _μl,

(56)

where Mi− 1 � Mi− 2 + (1/2)ε∗2i− 1 + (σ/2υi− 1)θ
∗T
i− 1θ
∗
i− 1.

By using Young’s inequality,

Eigi Ei+1 + ξi+1( 􏼁≤E
2
i +

1
2
g
∗ 2
i E

2
i+1 + ξ2i+1􏼐 􏼑, (57)

Eiεi ≤
1
2
E
2
i +

1
2
ε∗ 2i . (58)

From (57) and (58), one can obtain as

Vi

.

≤ − r1‖e‖
2

+‖P‖
2

􏽘

n

l�1

􏽥θ
T

l
􏽥θl − ω1ϖz

2
1 − 􏽘

i− 1

l�1

σ
2υl

􏽥θ
T

l
􏽥θl

+
1
2

􏽘

i− 1

l�1
g
∗ 2
l E

2
l+1 + ξ2l+1􏼐 􏼑 + Mi− 1 − 􏽘

i− 1

l�2
ωlE

2
l

+ Ei giαi + θT
i φi

􏽢xi( 􏼁 +
3
2
Ei + kie1 − _αi􏼔 􏼕

+
1
2
g
∗ 2
i E

2
i+1 + ξ2i+1􏼐 􏼑 +

1
2
ε∗ 2i +

1
υi

􏽥θ
T

i υiEiφi
􏽢xi( 􏼁 − θ

.

i􏼒 􏼓

+ ξi
_ξi + 􏽘

i− 1

l�1
gN μl( 􏼁 + 1( 􏼁 _μl.

(59)

Select the virtual control function αi and the adaptive
laws θi as

αi � N μi( 􏼁 ωiEi +
3
2
Ei + θT

i φi
􏽢xi) + kie1 − _αi],􏼐􏼔 (60)

_μi � Ei ωiEi +
3
2
Ei + θT

i φi
􏽢xi) + kie1 − _αi],􏼐􏼔 (61)

θ
.

i � υiEiφi
􏽢xi) − σθi.􏼐 (62)

Substituting (60)–(62) into (59) yields

_Vi ≤ − r1‖e‖
2

+‖P‖
2

􏽘

n

l�1

􏽥θl

T 􏽥θl − ω1ϖz
2
1 − 􏽘

i− 1

l�1

σ
2υl

􏽥θ
T

l
􏽥θl

+
1
2

􏽘

i

l�1
g
∗ 2
l E

2
l+1 + ξ2l+1􏼐 􏼑 + Mi + 􏽘

i

l�1
ξl

_ξl − 􏽘
i

l�2
ωlE

2
l

+ 􏽘
i

l�1
gN μl( 􏼁 + 1( 􏼁 _μl + Mi− 1 +

1
2
ε∗ 2i +

σ
υi

􏽥θi

T
θi.

(63)

According to the definition of α1, α2, and αi, one can
get _αi � ηi(E1, . . . , Ei, Ei+1, θ1, . . . , θi, yd, _yd, €yd, ξ2, . . . , ξi),
where ηi is a continuous function. Given that any ψ, Ci �

(E1, . . . , Ei, Ei+1, θ1, . . . , θi, yd, _yd, €yd, ξ2, . . . , ξi)
T: ϑ<ψ􏽮 􏽯

is a prefixed compact set, where the compact set Ci can be
made larger as needed. *erefore, the maximum value of
the continuous function ηi is Bi+1 on Ci ∗Δ0 based on
Assumption 1 of the compact set Υ and the compact set
Ci. It is obvious that

_ξi � −
ξi

χi

+ ηi− 1 E1, . . . , Ei, θ1, . . . , θi− 1, yd, _yd, €yd, ξ2, . . . , ξi− 1( 􏼁

≤ −
ξi

χi

+ Bi.

(64)

Utilising Young’s inequality,
σ
υi

􏽥θ
T

i θi �
σ
υi

􏽥θ
T

i − 􏽥θi + θ∗i􏼐 􏼑≤ −
σ
2υi

􏽥θ
T

i
􏽥θi +

σ
2υi

θ ∗T
i θ∗i , (65)

ξi
_ξi ≤ ξi −

ξi

χi

+ Bi􏼢 􏼣≤ −
ξ2i
χi

+ ξiBi ≤ −
1
χi

−
B
2
i

2πi

􏼢 􏼣ξ2i +
πi

2
,

(66)

where πi is the design constant.
Substitute (65) and (66) into (63) as follows:

_Vi ≤ − r1‖e‖
2

+‖P‖
2

􏽘

n

l�1

􏽥θl

T 􏽥θl − ω1ϖz
2
1 − 􏽘

i

l�1

σ
2υl

􏽥θ
T

l
􏽥θl

+
1
2

􏽘

i

l�1
g
∗ 2
l E

2
l+1 + ξ2l+1􏼐 􏼑 − 􏽘

i

l�1

1
χi

−
B
2
i

2πi

􏼢 􏼣ξ2i

− 􏽘
i

l�2
ωlE

2
l + 􏽘

i

l�1
gN μl( 􏼁 + 1( 􏼁 _μl + Mi,

(67)
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where Mi � Mi− 1 + (1/2)ε∗ 2i + (σ/2υi)θ
∗T
i θ∗i + (πi/2).

Step 3 n. *e time derivative of En is

_En � _􏽢xn − _αn + _􏽢xn+1
gn

β
� gn 􏽢xn+1 − u( 􏼁 + θ ∗T

n φn
􏽢xn( 􏼁

+ εn + kne1 − _αn +
gn

β
− β􏽢xn+1 + 2βu( 􏼁

� gnu + θ∗T
n φn

􏽢xn) + εn + kne1 − _αn.􏼐

(68)

Consider the Lyapunov function candidate as

Vn � Vn− 1 +
1
2
E
2
n +

1
2υn

􏽥θ
T

n
􏽥θn +

1
2
ξ2n, (69)

where υn > 0 is a design constant. *e derivative of Vn with
time along with (68) is

_Vn � _Vn− 1 + En
_En +

1
υn

􏽥θ
T

n
􏽥θ
.

n + ξn
_ξn

� _Vn− 1 + En gnu + θ ∗T
n φn

􏽢xn( 􏼁 + εn + kne1 − _αn􏽨 􏽩

+
1
υn

􏽥θ
T

n
􏽥θ
.

n + ξn
_ξn.

(70)

By using Young’s inequality,

Enεn ≤
1
2
E
2
n +

1
2
ε∗ 2n . (71)

From (71), one can obtain

_Vn ≤ _Vn− 1 + En gnu + θT
nφn

􏽢xn( 􏼁 +
1
2
En + kne1 − _αn􏼔 􏼕

+
1
2
ε∗ 2n +

1
υn

􏽥θ
T

n υnEnφn
􏽢xn) − θ

.

n) + ξn
_ξn.􏼒􏼒

(72)

Select the actual control input u and the adaptive laws θn

as

u � N μn( 􏼁 ωnEn +
1
2
En + θT

nφn
􏽢xn) + kne1 − _αn],􏼐􏼔 (73)

_μn � En ωnEn +
1
2
En + θT

nφn
􏽢xn) + kne1 − _αn],􏼐􏼔 (74)

θ
.

n � υnEnφn
􏽢xn) − σθn.􏼐 (75)

Substituting (73)–(75) into (72) yields

_Vn ≤ − r1‖e‖
2

+‖P‖
2

􏽘

n

l�1

􏽥θ
T

l
􏽥θl − ω1ϖz

2
1 − 􏽘

n− 1

l�1

σ
2υl

􏽥θ
T

l
􏽥θl

+
1
2

􏽘

n− 1

l�1
g
∗2
l E

2
l+1 + ξ2l+1􏼐 􏼑 + 􏽘

n

l�1
ξl

_ξl − 􏽘
n

l�2
ωlE

2
l

+ 􏽘
n

l�1
gN μl( 􏼁 + 1( 􏼁 _μl + Mn− 1 +

1
2
ε∗ 2n +

σ
υn

􏽥θ
T

n θn.

(76)

Combining Young’s inequality and inequality (64), one
can obtain

σ
υn

􏽥θ
T

n θn �
σ
υn

􏽥θ
T

n − 􏽥θn + θ∗n􏼐 􏼑≤ −
σ
2υn

􏽥θ
T

n
􏽥θn +

σ
2υn

θ∗T
n θ∗n , (77)

ξn
_ξn ≤ −

ξ2n
χn

+ ξnBn ≤ −
1
χn

−
B
2
n

2πn

􏼢 􏼣ξ2n +
πn

2
. (78)

Substitute (77) and (78) into (76) as follows

_Vn ≤ − r1‖e‖
2

+‖P‖
2

􏽘

n

l�1

􏽥θ
T

l
􏽥θl − ω1ϖz

2
1 − 􏽘

n

l�1

σ
2υl

􏽥θ
T

l
􏽥θl

+
1
2

􏽘

n− 1

l�1
g
∗2
l E

2
l+1 + ξ2l+1􏼐 􏼑 + Mn − 􏽘

n

l�1

1
χn

−
B
2
n

2πn

􏼢 􏼣ξ2n

− 􏽘

n

l�2
ωlE

2
l + 􏽘

n

l�1
gN μl( 􏼁 + 1( 􏼁 _μl,

(79)

where Mn � Mn− 1 + (1/2)ε∗ 2n + (πn/2) + (σ/2υl)θ
∗T
l θ∗l .*e

following theorem is summarized by the above controller
design and stability analysis.

Theorem 1. Consider a class of nonlinear pure-feedback
systems (1), with uncertain functions, unmeasurable states,
and input delay, and the state observer is designed as (16).
Under Assumptions1–5, the adaptive laws are designed as
(48), (60), and (73). Oe virtual control functions are chosen
as (50) and (62). And the actual control input function (75)
can guarantee all the signals in the closed-loop system are
SGUUB. Meanwhile, the tracking error does not deviate from
the prescribed performance bound (31), and the observer
errors converge within a small zero region.

Proof. Let

c � min
2r1

λmin(P)
, 2υl

σ
2υl

− ‖P‖
2

􏼠 􏼡, 2ϖω1, 2ωk, 2
1
χn

−
B
2
n

2πn

􏼢 􏼣􏼨 􏼩,

k � 2, . . . , n; l � 1, 2, . . . , n,

(80)

where c will be positive by choosing appropriate
parameters. □

*en, (79) can be finally expressed as

_Vn ≤ − cVn + 􏽘
n

l�1
gN μl( 􏼁 + 1( 􏼁 _μl +

1
2

􏽘

n− 1

l�1
g
∗ 2
l E

2
l+1 + ξ2l+1􏼐 􏼑 + Mn,

(81)

where Mn � ‖P‖2‖ε∗‖2 + ‖P‖2‖d∗‖2 + 􏽐
n
l�1(1/2)ε∗ 2l + 􏽐

n
l�i

(πl/2) + 􏽐
n
l�1(σ/2υl)θ

∗T
l θ∗l is bounded.

Multiplying both sides of (81) by e− ct generates
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d Vne
− ct

􏼐 􏼑

dt
≤ 􏽘

n

l�1
gN μl( 􏼁 + 1( 􏼁 _μle

− ct
+ Mne

− ct

+
1
2

􏽘

n− 1

l�1
g
∗ 2
l E

2
l+1 + ξ2l+1􏼐 􏼑e

− ct
.

(82)

Integrating the above inequality over [0, tf) and then
multiplying both sides by e− ct yields

Vn ≤V(0)e
− ct

+
Mn+1

c
1 − e

− ct
􏼐 􏼑

+ e
− ct

􏽚
t

0
􏽘

n

l�1
gN μl( 􏼁 + 1( 􏼁 _μle

− cτdτ

+ e
− ct

􏽚
t

0

1
2

􏽘

n− 1

l�1
g
∗ 2
l E

2
l+1 + ξ2l+1􏼐 􏼑e

− cτdτ.

(83)

Based on Lemma 2, Vn and μ can be proved to be
bounded. In addition, since El+1 and ξl+1 are semiglobal
and ultimately uniformly bounded, e− ct 􏽒

t

0 1/2􏽐
n− 1
l�1 g∗ 2l

(E2
l+1 + ξ2l+1)e

− cτdτ is bounded. *erefore, the stability of
the whole closed-loop system is demonstrated.
Furthermore, since z1 can be proved to be uniformly
bounded, the prescribed performance tracking control is
achieved.

4. Simulation Example

Consider a class of nonlinear pure-feedback systems with
unavailable states, unknown control direction, and input
delay:

_x1 � f1 x1, x2( 􏼁 + d1(t),

_x2 � f2 x2, u(t − δ)( 􏼁 + d2(t),

y � x1,

⎧⎪⎪⎨

⎪⎪⎩
(84)

where x1 and x2 are the system states and u and y are the
system input and output, respectively. *e smooth functions
are used as f1(x1, x2) � x1 + x1x2 and f(x2, u(t − δ)) �

(2 + sin(x1x2))(1 + u(t − δ)), and the external disturbances
in this simulation are given as d1(t) � 0.02 cos(t) and
d2(t) � 0.03 sin(t). *e input delay is chosen as δ � 0.01,
and the reference signal is given as yd � sin(t).

*e parameters in control functions and adaptive laws
are given as ω1 � 0.1, ω2 � 40, υ1 � υ2 � 5, and σ1 � σ2 � 20.
Parameter in a first-order filter is ζ2 � 0.05. As for the state
observer, the observer gains are selected as
K � [k1, k2]

T � [10, 100]T. In predefined performance
controls, ιu(0) � ιd(0) � 30, λd � λu � 0.8, λ � 2,
hu � hd � 0.4, and ρ∞ � 0.4. *e initial value of the system
states are x1(0) � 0.3 and x2(0) � 0.5, and the initial values
for the other parameters are zero.

*e simulation results are shown in Figures 1–7, where
the red and blue lines represent the approach proposed in

this article, and the black line represents the removal of the
variable-parameter predefined performance. Figure 1 shows
the output trajectories of y and the expected output signal
yd. *e output tracking error and the prescribed perfor-
mance boundaries are shown in Figures 2, and Figures 3 and
5 illustrate the trajectories of system states x1 and x2 and
their estimates 􏽢x1 and 􏽢x2, respectively.*e Tracking errors e1
and e2 of state x1 and x2 are shown in Figures 4, and
Figures 6 and 7 show the trajectories of the actual control
input u. It can be seen from the figure, compared to re-
moving variable-parameter predefined performance, the
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Figure 1: Trajectories of y and yd.

–10

–8

–6

–4

–2

0

2

4

6

8

10

E1

E1
ιuρ

−ιdρ
E1 without predefined
performance

20 25 30
–0.2

0
0.2

t (sec)
0 5 10 15 20 25 30

Figure 2: Tracking error E1 with prescribed performance ιuρ and
− ιdρ.

Complexity 9



controller in this paper is obviously better in both the initial
oscillation frequency and the tracking effect.

Remark 4. Compared with the existing literature, an
adaptive fuzzy predefined performance controller is pro-
posed in this paper, which makes the tracking error con-
vergence in the preset range better. It can be seen from
Figure 2 that different from the literatures [34, 37], the novel

predefined performance control is a variable-parameter
scheme, which relaxes the limitations of known initial error
in predefined performance. In addition, from the simulation
data, it can be seen that the simultaneous consideration of
input delay and pure-feedback system brings great difficulty
to controller design. *e control method proposed in this
paper has excellent control performance, which is shown in
Figure 1.
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5. Conclusion

In this paper, an observer-based adaptive fuzzy predefined
performance controller has been introduced of a class of
nonlinear pure-feedback systems with unknown control
direction and input delay. A novel predefined performance
with variable-parameter scheme has been investigated,
which solved the problem of unknown initial error. In
order to overcome system complexity caused by input delay
and pure-feedback systems, the Pade approximation and
mean value theorem has been employed, respectively. In
addition, Nussbaum functions have been used to deal with
the unknown control direction and a first-order filter has
applied to approximate repeated differentiations problem
of the virtual controllers. State observer and FLSs have been
proposed to estimate the unmeasured states and approx-
imate the unknown nonlinear functions, respectively.
*erefore, it has been proved that stability of the entire
closed-loop system is SGUUB in limitation of the pre-
defined performance control. *e tracking errors have
converged within a predefined range, while the observer
estimation errors have converged within a small zero re-
gion. Finally, the simulation results have verified the ef-
fectiveness of the proposed control method. In the future
research, an observer-based adaptive fuzzy predefined
performance controller will be considered in multiagent
systems.
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