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We investigate the effects of self-protection awareness on the spread of disease from the aspect of resource allocation behavior in
populations. To this end, a resource-based epidemiological model and a self-awareness-based resource allocation model in
complex networks are proposed, respectively. First of all, we study the coupled disease-awareness dynamics in complex networks
with fixed degree heterogeneity. )rough extensive Monte Carlo simulations, we find that overall the self-awareness inhibits the
spread of disease. More importantly, the influence of the self-awareness on the spreading dynamics can be divided into three
phases. In phase I, the self-awareness is relatively small and the outbreak of the epidemic can not be suppressed effectively. While,
in phase II, the epidemic size is significantly reduced. Finally, in phase III, there is a sufficiently large value of self-awareness, the
disease cannot outbreak anymore. Further, we study the impact of degree heterogeneity on the coupled disease-awareness
dynamics and find that the network heterogeneity plays the role of “double-edged sword” in that it can either suppress or promote
the epidemic spreading. Specifically, when the basic infection rate is relatively small, it promotes the spread of disease under the
condition that there is a relatively small self-awareness. While, when the basic infection rate is relatively large, it inhibits the
outbreak of epidemic at a relatively small self-awareness; in turn, it promotes the outbreak of epidemic at a relatively large self-
awareness.

1. Introduction

From the Spanish Flu in Europe in the 1920s [1] to the SARS
(Severe Acute Respiratory Syndrome) in 2003 [2] and the
H1N1 flu outbreak in 2009 in the United States [3], the onset
of each pandemic in the history always brought a tragic di-
saster to human beings. As of September 5, 2020, the ongoing
COVID-19 outbreak has infected nearly 270 million people
worldwide, and regrettably, more than 870,000 have lost their
lives [4]. As a result, the mitigation and control of the spread
of epidemics has always been a challenging subject for
humans. During a pandemic, especially in the early stage of
the epidemic, the individuals’ self-protection awareness plays

a vital role in the prevention and control of it [5]. )e in-
dividuals can be well informed by the information about the
status of the epidemic through social networking platforms
and news media [6], which invokes the awareness of self-
protection. Subsequently, the individuals will take protective
measures, such as wearing masks, reducing public gathering,
and washing hands, to avoid being infected.

In recent decades, a large body of literatures have
highlighted the critical role that human responses playing in
influencing the spread of disease [7–10]. Driven by the
awareness of self-protection, the individuals will take a series
of precautionary measures to avoid infection [11, 12], and it
will, in turn, affect the course of the epidemic by reducing the
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transmission of the disease. For example, due to the rapid
response and the intensive control measures of both gov-
ernment and people in the early stages of the outbreak, the
epidemic has been effectively controlled in China [13].
Consequently, the study of coupled dynamics of awareness
and disease has been one of the most fruitful realms in
various disciplines [5, 14, 15]. Typical representatives in-
clude the game theory in studying the vaccination behavior
that the individuals decide whether to vaccinate or not based
on an assessment of risks and benefits [16–18]. In addition to
the application of game theory, the interplay between the
awareness and epidemics in complex networks has attracted
much attention in theoretical and empirical research
[19–22]. )e seminal work was the study of the spread of
awareness in well-mixed populations and lattices and, in
turn, its influence on the spread of disease by Funk et al. [7].
In addition to the well-mixed assumption, Wu et al. [23]
explored, respectively, the impact of local, global, and
contact awareness on epidemic spreading in networks with
heterogeneous connections in populations. Moreover, based
on the framework of multiplex networks, Granell et al. [24]
investigated the coupled dynamics of the epidemic and
awareness. Using a microscopic Markov chain approach and
Monte Carlo simulations, they showed that the onset of the
epidemics can be changed by the coupled dynamical process.
Recently, Zhan et al. [25] studied the coupled dynamics of
two different diseases and the corresponding information
based on empirical analysis and theoretical modeling.

In addition to wearing masks, staying at home, etc., the
behavior of resource donation in the individuals plays a vital
role in disease control as the severe shortage of resources
induced by the outbreak. For example, during the COVID-
19 pandemic, both personal protective and medical equip-
ment such as respirators, gloves, and face shields are in
severe shortage all over the world [26]. Consequently, the
research of optimal allocation of both public and individual
resources in controlling the spread of the disease has been
one of the hottest topics in the past years [27–30]. For
example, Preciado et al. [31] investigated the optimal allo-
cation of vaccination resources during an outbreak of the
disease in complex networks and found the cost-optimal
strategy of resource allocation. Nowzari et al. [27] developed
an optimization framework to solve the problems of finding
minimum resource cost required to eradicate the disease and
the optimal strategy of resource allocation based on the
analysis of the proposed epidemiological model. In terms of
individual resources, Böttcher et al. [32] investigated the
impact of the shortage of individual resources induced by the
outbreak of epidemics. )ey showed that the epidemics can
spiral out of control if the recovery cost is higher than a
critical value. Inspired by the work of Ref. [32], the coupled
dynamics of resource allocation and disease spreading on
both single and multiplex networks has been widely
researched in recent years [33–37]. In spite of a large body of
literatures about the interplay between awareness (resource)
and epidemics, there is a lack of research on the co-evo-
lutionary mechanism among the three dynamical processes.

To investigate the effects of the awareness-driven re-
source support of individuals on the epidemic dynamics, we

propose a novel resource-based susceptible-exposed-in-
fected-recovered (r-SEIR) epidemiological model and a self-
awareness-based resource allocation model, respectively, in
this paper. In the models, the self-protection awareness of a
susceptible node (abbreviated to self-awareness) is supposed
to be composed of both local and global awareness measured
by the number of infected neighbors and global infected
nodes, and the resource allocation probability of each node is
determined by its awareness. First of all, we study the
coupled disease-awareness dynamics by incorporating the
individual resource allocation in complex networks with
fixed degree heterogeneity. )rough extensive Monte Carlo
simulations, we find that the self-awareness of the indi-
viduals can inhibit the spread of disease. Specifically, we find
two critical values of the instinctive self-awareness that
separate the parameter space into three phases. In phase I,
when there is a relatively small self-awareness, the outbreak
size of the epidemic increases abruptly with the basic in-
fection rate, which implies that the epidemic can not be
suppressed effectively.While, in phase II, the final fraction of
infected nodes increases slowly with the basic infection rate,
which indicates that the disease can be controlled to a certain
extent. Finally, in phase III, when there is a sufficiently large
value of the self-awareness, the disease is well controlled.
Next, we continue studying the effects of degree heteroge-
neity on the coupled dynamics. )rough Monte Carlo
simulations, we find that there is “double-edged sword”
effect of network heterogeneity on the coupled dynamics.
Specifically, when the basic infection rate is relatively small,
the network heterogeneity promotes the spread of disease
under the condition that there is a relatively small value of
self-awareness. While, when the basic infection rate is rel-
atively large, it inhibits the outbreak of epidemic at a rel-
atively small self-awareness; in turn, it promotes the
outbreak of epidemic at a relatively large self-awareness. Our
findings can be applied directly to guide people to maintain
the right level of self-protection awareness and take rational
behaviors during a pandemic. Moreover, the results in this
paper will also provide a constructive viewpoint for poli-
cymakers of public health.

2. Model Description

2.1. EpidemicModel. To investigate the impact of awareness-
driven individual resource allocation on the spread of the
epidemic, we propose a resource-based susceptible-exposed-
infected-recovered (r-SEIR) epidemiological model [38] in
complex networks. )e r-SEIR model is composed of the
following four epidemiological compartments: susceptible
(S), exposed (E), infected (I), and recovered (R). To facilitate
the study of the dynamical processes, the individuals are
represented by nodes in the network and an adjacency
matrix A is introduced to store the information of network
structure. If an edge between i and j exists, the matrix el-
ement aij � 1; otherwise, aij � 0. At each time step, the
pathogen transmits from an I-state node to an S-state node
at a basic infection rate β, if there is a contact between these
two nodes and the S-state node does not take any protective
measure. )ose S-state nodes which get the pathogen will
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turn to E-state immediately. In the real scenario, any in-
dividual who gets the information about the disease will have
awareness for self-protection. We consider that, initially, all
nodes in the network have the same level of instinctive self-
awareness, which is denoted as α in the context. With the
development of the epidemic, they can get the information
about the status of the epidemic from local communities or
global mass media [23], which will alter the awareness of
each individual. Based on the description above, it is as-
sumed that the self-awareness of a node i, which is denoted
as αi, is determined by both the number of I-state neighbors,
denoted as mi(t), and the global confirmed cases, denoted as
I(t), in the complex network. Since the neighbor’s infection
of a node has a more intuitive effect on its self-awareness, a
coefficient η ∈ [0, 1] is introduced as the weight of I(t).
Based on the above scheme, the self-awareness of node i at
time t can be expressed as

αi(t) � 1 − (1 − α)
mi+ηI(t)+1

. (1)

A S-state node with self-awareness αi(t) at time t will
take protective measures, such as wearing masks and
washing hands, which will affect the transmission proba-
bility of the disease. )us, the actual infection rate of i is

βi � 1 − αi( β. (2)

A larger value of αi means a smaller probability of being
infected.

In addition, an exposed node becomes infected at rate δ
at each time step. At the same time, each I-state node i will
recover with a recovery rate μi, which is assumed to be
dependent on the resources received from outside [34, 39].
)erefore, the recovery rate of node i is assumed to be
proportional to its resource quantity ωi(t) in this paper, and
is defined as

μi(t) � 1 − (1 − μ)
εωi(t)+1

, (3)

where the parameters μ and ε ∈ [0, 1] represent the basic
recovery rate and the resource utilization rate, [40] re-
spectively, since in real life, the phenomenon of resource
waste is inevitable in medical and other service systems [41].
Besides, the fraction of susceptible, exposed, infected, and
recovered nodes at time t is denoted by s(t), e(t), i(t), and
r(t), respectively. Note that we also denoted the final in-
fected density in the dynamical system as ρ, which satisfies
ρ ≡ r(∞).

2.2. Self-Awareness-Based Resource Allocation Model.
People aware of the disease would change the attitude and
behavior of resource donation in suppressing the disease
spreading and thus influences the epidemic dynamics. To
investigate the impact of awareness-driven individual re-
source allocation, a resource allocation model is proposed.
We assume that each healthy node can generate one unit
resource at a time step. Subsequently, the healthy node will
donate its resource to help the recovery of the I-state
neighbors with probability qi(t), which is determined by the
self-awareness αi(t). Intuitively, for self-protection, the

higher the level of self-awareness, the lower the probability
of resource donation. Consequently, the resource donation
probability qi(t) can be expressed as

qi(t) � q0 1 − αi(t)( , (4)

where q0 is the basic donation probability. Besides, it is
assumed that the resources contributed by the healthy nodes
will be allocated equally to their infected neighbors at each
time step. Combining the donation probability qi and the
resource allocation scheme, the amount of resources that
each healthy node i allocates to one of its I-state node j at
time t is

ωi⟶j(t) � qi(t)
1

mi(t)
. (5)

Based on equation (5), the resource quantity of each
I-state node j can be expressed as

ωj(t) � 
i

aijhiωi⟶j(t)

� 
i

aijhi

qi(t)

mi(t)
,

(6)

where hi is introduced to represent the state of node i. When
node i is in susceptible state, hi � 1; otherwise, hi � 0.

3. Simulation Results

In this section, we study systematically the effects of self-
awareness on the spreading dynamics by incorporating the
allocation of individual resources. First of all, we investigate
the coupled awareness-disease dynamics on scale-free net-
works with fixed degree exponential, as many real-world
networks have skewed degree distributions [42–44]. )en,
we study the impact of network heterogeneity on the cou-
pled dynamics through extensive Monte Carlo simulations.

In the simulations, we adopt the synchronous updating
method [45] to mimic the processes of disease transmission
and resource allocation on the complex networks. Specifi-
cally, the processes update as follows [45]: during a time
interval [t, t + Δt], each susceptible node is infected by one
of its infected neighbors with probability βiΔ(t) and sub-
sequently, it changes to the exposed state. )e actual in-
fection rate βi is expressed as [46]

βi(t) � lim
Δt⟶0

P H
i
t+Δt � I infected by j|H

i
t � S, H

j
t � I 

Δt
,

(7)

where Hi
t is denoted as the state of node i at time t and

(Hi
t+Δt � I infected by j) denotes that node i is infected by an

I-state neighbor j [47]. At the same time, the E-state nodes
becomes I-state ones with probability δΔt, and the I-state
nodes change to R-state nodes with probability μi(t)Δt,
which is defined as

μi(t) � lim
Δt⟶0

P H
i
t+Δt � R|H

i
t � I 

Δt
. (8)
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)e infection rate βi(t) and recovery rate μi(t) are de-
termined by the number of infected neighbors mi(t), the
global confirmed nodes I(t), and the resource quantity ωi(t)

simultaneously.
)e process of resource allocation evolves simulta-

neously with the spread of disease. In synchronous updating,
the Δt is finite, and the infection and recovery probability of
node i is βi � βiΔt, and μi � μiΔt. According to equations (7)
and (8), the transition probability can be expressed as

βiΔt � P H
i
t+Δt � I infected by j|H

i
t � S, H

j
t � I , (9)

and the recovery probability can be written as

μiΔt � P H
i
t+Δt � R|H

i
t � I . (10)

At the end of each time step, the state of all nodes in the
network update synchronously. )e processes terminate
when there are no I-state and E-state nodes in the network.

3.1. Effects of Awareness-Driven Resource Allocation on the
Spreading Dynamics. To study the coupled dynamics in
complex networks, we use the uncorrelated configuration
model (UCM) [48] to generate networks with power-law
degree distributions P(k) � ζk− c, where the coefficient is
ζ � 1/

kmax
kmin

k− c, as many real-world networks have skewed
degree distributions [43, 49]. )e size of the network is set to
N � 10000, and the average degree is 〈k〉 � 8. To ensure that
there is no degree correlation of the network, the maximum
and minimum degrees are set to kmax �

��
N

√
and kmin � 3,

respectively [50]. We focus on the case of c � 2.4 in this
section. To initiate a spreading process, a fraction i(0) �

0.001 of nodes is selected randomly as seeds and the
remaining nodes are in susceptible state.

To numerically determine the size-dependent epidemic
threshold βc, we employ the variability measure [51], which
has been demonstrated to be effective in identifying the
epidemic threshold of SIR model [52]:

Δ �

����������

〈ρ2〉 − 〈ρ〉
2



〈ρ〉
, (11)

where the operator 〈. . .〉 represents the ensemble average
over all realizations. We can identify the epidemic threshold
βc, at which the variability Δ exhibits a peak.

Figure 1(a) displays the final fraction of infected nodes ρ
as a function of basic transmission rate β for different values
of instinctive awareness α. Figure 1(b) shows the plots of
variability measure Δ vs. β. )e initial fraction of infected
nodes is set to be i(0) � 0.001.We observe that the threshold
βc increases with the increase of α, see the peaks of Δ in
Figure 1(b). In addition, when the basic infection rate is
fixed, e.g., β � 0.2, the value of ρ decreases with the increase
of α, as shown in Figure 1(a). )e results suggest that the
more self-protective people are during the outbreak of an
epidemic, the more effectively the disease can be controlled.

Next, we study systematically the effects of self-aware-
ness α and basic transmission rate β on the spreading dy-
namics by presenting the full phase diagram in parameter

plane (α − β) in Figure 2(a). Colors in Figure 2(a) encode the
value of ρ. )e white circles connected by segments identify
the epidemic thresholds βc at different values of α, which are
obtained by the method of variability measure presented in
equation (11). We observe that the overall the epidemic
threshold βc increases monotonously with the increase of α.
Besides, when α is relatively small (in phase I), the value of βc

increases slowly, and the final fraction of infected nodes ρ
increases abruptly with β at a fixed value of α. And then,
when the α grows larger (in phase II), the final infected
density ρ increases slowly with β at a fixed α. Finally, when α
is large enough (in phase III), the disease can not break out
any more.

To identify the critical points of α, we calculate the
change rate of βc, which is defined as

vr ≡
dβc

dα
� lim
Δα⟶0

βc(α + Δα) − βc(α)

Δα
, (12)

where Δα is the increment in α and is set to be Δα � 0.01. By
performing extensive Monte Carlo simulations, we calculate
the value of vr at each point of α, and identify the two critical
points, namely, the first point αI

c ≈ 0.64, at which the value of
vr exceeds an threshold value that is preset to 0.1, and the
second point αIIc , at which vr reaches maximum value.
Figure 2(b) shows the plot of vr as a function of α. We can
observe that the parameter space is separated by the two
critical values into three phases, which is in accordance with
the three phases marked by phase I, phase II, and phase III in
Figure 2(a), respectively.

)e above results suggest that during the outbreak of an
epidemic, as long as the populations maintain sufficient
awareness of self-protection, say α> αIc, and take effective
protective measures, such as conserving their resources to
reduce waste of resources and reduce exposure, the disease
can be suppressed effectively.

Next, we qualitatively explain the above conclusions by
studying the time evolution of several important dynamical
parameters at three typical values of α located in α< αIc,
αIc ≤ α< αIIc and α≥ αIIc , respectively. Note that, in order to
study the evolution of the dynamic parameters for nodes
with large degrees and small degrees, respectively, we define
the nodes with degrees larger than 30 as the hub nodes, and
the remaining nodes as small-degree nodes. Subsequently,
we define the average awareness, transmission rate, recovery
rate, and probability of resource donation as 〈αx〉, 〈βx〉,
〈μx〉, and 〈qx〉, respectively, where x ∈ (h, s). For the hub
nodes, x � h, and for the small-degree nodes, x � s.

First of all, we investigate the time evolution of the
dynamical parameters in α< αIc, as shown in Figure 3.
Without loss of generality, the instinctive self-awareness is
set to be α � 0.1. Figure 3(a) displays the evolution of the
dynamic parameters for the hub nodes. We find that when
α � 0.1, nodes in the network have a relatively small in-
stinctive self-awareness and a large probability of resource
donation to support the recovery of the I-state nodes in the
initial time. )erefore, we can learn from equation (3) that
the recovery rate of the nodes is large. Consequently, it has a
relatively small value of the effective infection rate βe, which
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is defined as βe � β/μ [53]. )us, we can observe from
Figure 3(c) that the disease propagates slowly in the initial
stage (about t< 5). )e slow growth of the infected nodes
leads to a weak awareness of the disease for the susceptible
nodes. )us, at the early stage, i.e., t< 5, there is a slow
growth in the self-awareness and a slight decrease in the
resource donation probability for all nodes in the network, as
shown in Figures 3(a) and 3(b). Whereas, after the early
stage, i.e., t> 10, there is a rapid increase in the exposed
nodes e(t) and infected nodes i(t) (see Figure 3(c)). )e

surge in the number of infected nodes induces a rapid
improvement of the self-awareness, which makes a rapid
increase in 〈αh〉, as shown in Figure 3(a). However, the value
of 〈αs〉 and 〈qs〉 changes slowly, as shown in Figure 3(b).
)e above phenomena can be explained as follows: the
propagation process of the epidemic exhibits hierarchical
feature in the network [54], namely, the hubs are likely to be
infected firstly, and then they transmits the disease to the
intermediate nodes; finally, the small-degree nodes are in-
fected. As a result, as more and more hub nodes become
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infected, the disease transmits rapidly in a hub node-cen-
tered area, and the value of e(t) and i(t) increases rapidly.
Consequently, there is an abrupt increase in 〈αh〉 and a rapid
decrease in the resource donation probability 〈qh〉 in this
stage, which induces a decrease in both the transmission rate
〈βh〉 and simultaneously, the recovery rate 〈μh〉 as the
shortage of treatment resources. We can observe that the
effective infection rate βe increases in this stage as the value
of 〈βh〉 drops more rapidly than 〈βh〉. Consequently, the
disease continues spreading in the network, and finally a
large fraction of nodes are infected by the disease.

As for the small-degree nodes, as there are fewer con-
nections with the outside, they have less information about
the status of the epidemic and a lower self-protection
awareness compared with the hub nodes in the early stage.
)us, the values of 〈αs〉 and 〈qs〉 change slowly in this stage

(Figure 3(b)). However, in the later stage, due to the pro-
tective measures adopted by hub nodes, the transmission of
disease from hub nodes to small-degree nodes is basically
blocked. )us, there is a slight decrease in 〈αs〉 and a small
increase in 〈qs〉 in this stage.

Based on the above description, we can reasonably ex-
plain the phenomenon in phase I in Figure 2 that the disease
increases abruptly in this phase.

Secondly, we study the time evolution of the dynamical
parameters in αIc ≤ α< αIIc in Figure 4. We find that, when
α � 0.7, nodes in the network have a larger instinctive self-
awareness compared with the case of α � 0.1. In this case,
due to the hierarchical nature of disease transmission, a
small number of global and local infected nodes (Ii and mi)
will lead to a high vigilance of the hub nodes. )erefore, the
value of 〈αh〉 increases abruptly before time t ≈ 50, as shown
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Figure 3: (a) Temporal evolution of average values of awareness 〈αh〉 (red line), transmission rate 〈βh〉 (yellow segment), recovery rate 〈μh〉

(purple dots), and probability of resource donation 〈qh〉 for hub nodes. (b) )e evolution of average values of awareness 〈αs〉 (red line),
infection rate 〈βs〉 (yellow triangles), recovery rate 〈μs〉 (purple circles), and probability of resource donation 〈qs〉 (green squares) for nodes
with small degree. (c) )e evolution of the fraction of the nodes in susceptible s(t), exposed e(t), infected i(t), and recovered r(t) states,
respectively. )e instinctive self-awareness is α � 0.1, and the basic infection rate is β � 0.2. )e other parameters are the same as those in
Figure 2. )e results of the simulations are obtained by averaging over 102 × 102 independent realizations on 102 networks.
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in Figure 4(a), which leads to a rapid decrease of resource
donation probability 〈qh〉 and a reduction in the trans-
mission rate 〈βh〉. In this condition, the hub nodes are
protected from been infected, which can also stop the
reinfection of the hub nodes, as they can connect directly to
each other or via a few small nodes [55, 56]. Further, the
reduction of the resources will lead to a decrease in re-
covery rate 〈μh〉, as shown in Figure 4(a). Besides, the
effective infection rate βe keeps a relatively small value in
the initial stage, where the fraction of infected and exposed
nodes i(t) and e(t) increases slowly. It indicates that the
epidemic spreading is suppressed effectively compared
with the case of α � 0.1. After that, with the gradual re-
covery of the I-state nodes, there are fewer and fewer I-state
neighbors around the hub nodes, which makes them
gradually relax their vigilance against the disease and lead
to the gradual decline of 〈αh〉. )is phenomenon is fully

consistent with the case that, in real scenarios, the slow-
down in the epidemic spreading will lead to increased daily
contact and economic recovery activities [57, 58]. As
shown in Figure 4(a), the value of 〈αh〉 decreases after
t ≈ 50, which is accompanied by the increase of 〈qh〉. )e
decrease of 〈αh〉 leads to a rise in the effective infection rate
〈βe〉 (see the gap between 〈βh〉 and 〈μh〉), which will lead
to a rise in the infected nodes, whereas the increase of
infected nodes can immediately lead to the enhancement of
self-protection awareness of hub nodes, as they have a high
instinctive self-awareness, which in turn suppresses the
spread of disease. Consequently, we can learn that there is a
dynamic balance between the spread of disease and indi-
viduals’ self-protection awareness after t ≈ 100
(Figure 4(a)). )us, there is a lower value of final infected
density ρ compared to the case in phase I, and the disease
can be suppressed to a certain extent.
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Figure 4: (a) Temporal evolution of the average values of awareness 〈αh〉 (red line), infection rate 〈βh〉 (yellow segment), recovery rate 〈μh〉

(purple dots), and probability of resource donation 〈qh〉 for hub nodes. (b))e evolution of the average values of awareness 〈αs〉 (red line),
infection rate 〈βs〉 (yellow triangles), recovery rate 〈μs〉 (purple circles), and probability of resource donation 〈qs〉 (green squares) for nodes
with small degree. (c) )e evolution of fraction of the nodes in susceptible s(t), exposed e(t), infected i(t), and recovered r(t) state,
respectively. )e instinctive self-awareness is α � 0.7 and the basic infection rate is β � 0.2.
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Based on the above description, we can reasonably ex-
plain the reason why the disease increases slowly in phase II
of Figure 2. Similarly, we can also explain the phenomena in
phase III of Figure 2. Specifically, the hub nodes are very
sensitive to the spread of disease as they all have a large value
of instinctive self-awareness. Consequently, a small increase
in the values of mi(t) and I(t) will lead to the rapid increase
in 〈αh〉 at the very early stage of spreading process.
)erefore, the hub nodes are effectively protected from being
infected and the disease is well suppressed at the beginning
of the transmission process. )erefore, the disease will not
breakout any more.

3.2. Effects of Network Heterogeneity on the Coupled Disease-
Awareness Dynamics. In this section, we study the effects of
network heterogeneity on the coupled dynamics of self-
awareness and epidemic spreading. Since the network
heterogeneity decreases with the increase of the power ex-
ponent c [55], we construct the networks with different
heterogeneity by changing the degree exponent based on the
UCM model.

First of all, we study the value of ρ as a function of β in
networks with different degree exponents. In Figure 5(a), the
curves for the four typical values of c are displayed. In-
terestingly, we find that the network heterogeneity plays the
role of “double-edged sword” in that they can either suppress
or promote the epidemic spreading. Specifically, we find that
the curves of the infected density intersect at a fixed basic
infection rate about β∗ ≈ 0.13 and dynamical processes are
separated into two phases. In phase I, i.e.,
HTML transalation failed, the basic infection rate is small,
the final infected density ρ increases with the increase of
network heterogeneity at a fixed value of β, and the epidemic
threshold βc increases with c. While, in phase II, i.e., β> β∗,
the value of β is large, the value of ρ decreases with the
increase of network heterogeneity. )e results indicate that
when the basic infection rate β is small, the network het-
erogeneity promotes disease spreading, which is consistent
with the results in the classical epidemiological model [59].
While, when there is a large value of β, e.g., β � 0.2, it
suppresses the outbreak of disease.

To illustrate the conclusions more clearly, we plot the
value of ρ as a function of c at two typical values of β in the
two regions β< β∗ and β> β∗, respectively, in Figure 5(b).
Without loss of generality, we select β � 0.1 in phase I and
β � 0.2 in phase II, respectively. )rough extensive simu-
lations, we find that when β � 0.1, the value of ρ increases
monotonously with c; in contrast, it decreases with c when
β � 0.2.

Further, we study the relationship between the epidemic
threshold βc and the self-awareness α for different values of
c. Figure 6 displays the value of βc as a function of α. We find
that the value of βc increases monotonously with the increase
of α for each value of c. Specially, the value of βc increases
abruptly when α> αIc defined in Figure 2. When α is fixed,
the value of βc increases c.

We can use the same theory as in the previous section to
qualitatively explain the “double-edged sword”

phenomenon. Specifically, in a network with strong het-
erogeneity, the vast majority of nodes have small degrees and
only a few nodes have a large number of connections. Due to
the hierarchical character of the disease transmission, the
disease is likely to spread rapidly in a hub node-centered
area. )us, when the basic infection rate β is large, e.g.,
β � 0.2, the number of infected nodes in the local area in-
creases rapidly, which induces to a rapid increase in the self-
awareness of the hub nodes 〈αh〉. Subsequently, the infec-
tion rate of the hub nodes 〈βh〉 drops significantly, which
reduces the infection between hub nodes and the small-
degree nodes. )erefore, the stronger the network hetero-
geneity, the more the disease transmission can be sup-
pressed. On the contrary, when the transmission rate is
small, e.g., β � 0.1, this inhibition to disease transmission
will disappear. In this case, the structural heterogeneity will
promote the spread of the disease.

At last, to further investigate the “double-edged sword”
effects of network heterogeneity on the coupling dynamics,
we study the relationship between the final fraction of in-
fected node ρ and self-awareness α on networks with dif-
ferent degree exponents when there is as relatively large basic
infection rate, e.g., β � 0.2. Interestingly, once again, we find
the “double-edged sword” effect of network heterogeneity
on dynamic properties. As shown in Figure 7(a), the value of
ρ decreases with α and the curves intersect at a critical value
α∗ that is equal to the first critical point in Figure 2. When
α< α∗ (in phase I), the value of ρ increases with c (see the
curve for α � 0.5 in Figure 7(b)), which indicates that the
network heterogeneity inhibits the spread of disease. )e
above result is in accordance with that in phase II of
Figure 5(a). On the contrary, when α> α∗, the value of ρ
decreases with c (see the curve for α � 0.7 in Figure 7(b)),
which indicates that the network heterogeneity promotes the
spread of disease in this phase.

Next, we continue explaining the reason why the net-
work heterogeneity promotes the spread of disease in phase
II of Figure 7(a). Specifically, when α> α∗, there is a strong
instinctive self-awareness for all nodes in networks. When
there is strong degree heterogeneity of a network, e.g.,
c � 2.1, the vast majority of nodes have small degrees and
only a few nodes have a large number of connections. Due to
the hierarchical character of the disease transmission, the
disease is likely to spread rapidly in a hub node-centered
area, which means that the value of 〈αh〉 increases abruptly
in the early stage of an epidemic according to equation (1).
)us, there is a small value of 〈βh〉. Consequently, the hubs
are protected effectively in this condition. However, as the
small-degree nodes that make up the vast majority of the
network have few connections with other nodes, the number
of their infected neighbors mi is very small. )erefore, there
is a relatively small value of 〈αs〉. Consequently, the in-
fection rate 〈βs〉 of the small-degree nodes is relatively large,
which leads to a large probability to be infected for these
nodes. On the contrary, in the network with a relatively
homogeneous degree distribution, e.g., c � 4.0, the pro-
portion of nodes with large degree is larger than that of
networks with strong degree heterogeneity. )us, a larger
proportion of nodes have a larger value of 〈αh〉 in these
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networks, and the disease can be suppressed under this
condition.

4. Discussion

)e self-protection awareness of the individuals can influ-
ence their behavior response to the epidemics, such as re-
ducing contacts with others and large public gatherings.

More importantly, it will also affect the behavior of indi-
vidual resource allocation that is of critical importance in
controlling the outbreak of an epidemic. To investigate the
effects of the self-awareness-driven individual resource
support on the epidemic dynamics, we have proposed a
resource-based susceptible-exposed-infected-recovered (r-
SEIR) epidemiological model and a self-awareness-based
resource allocation model, respectively. In the models, the
self-awareness of the individuals is assumed to come from
both local communities and global mass media, which is
measured by the number of infected neighbors and global
infected nodes.

Firstly, we have studied the effects of the awareness-
driven individual resource allocation on the spreading dy-
namics in sale-free networks with fixed degree exponent.
)rough extensive Monte Carlo simulations, we have found
that the final infected density ρ decreases with the increase of
the instinctive self-awareness α. More importantly, there are
two critical values αIc and αIIc that separate the parameter
space into three phases. In phase I, i.e., α< αIc, the final
infected density ρ increases abruptly with the basic infection
rate β, which implies that the disease can not be suppressed
effectively. In phase II, i.e., αIc ≤ α< αIIc , the value of ρ grows
gently with β, which means that the disease can be controlled
to a certain extent. At last, in phase III, i.e., α≥ αIIc , the disease
does not break out in the network and the value of ρ remains
a very small value. Combining the study of the time evo-
lution of dynamical parameters, we have qualitatively
explained the corresponding phenomena. )e results sug-
gest that the disease can be effectively controlled as long as
we maintain a proper level of self-protection awareness.

Next, we have investigated the effects of network het-
erogeneity on the coupled dynamics. )rough extensive
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Figure 6: )e relationship between the epidemic threshold βc and
the instinctive self-awareness α when the degree exponents are set
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simulations, we have found that the network heterogeneity
has “double-edged sword” effect on the coupling dynamics.
Specifically, we have found that there is a critical value of basic
infection rate β∗, when β< β∗, the network heterogeneity
promotes the spread of disease. On the contrary, when β> β∗,
the network heterogeneity inhibits the spread of disease. To
further investigate “double-edged sword” effects of network
heterogeneity on the coupling dynamics, we have studied the
relationship between ρ and α on networks with different
degree exponents when there is as relatively large basic in-
fection rate. )rough extensive simulations, we have found
the instinctive self-awareness denoted as α∗, which is in
accordance with αIc. When α< α∗, the network heterogeneity
inhibits the spread of disease. On the contrary, when α> α∗,
the network heterogeneity promotes the spread of disease.

Our findings make a substantial contribution to un-
derstanding the effects of people’s awareness of self-pro-
tection on the spreading dynamics during a pandemic,
which will be of practical significance in controlling the
outbreak of infectious diseases, especially in the context of
the COVID-19 pandemic. )e results obtained in this paper
can guide people to maintain the right self-awareness and
behavior during an outbreak and also have a direct appli-
cation in the development of strategies to suppress the
spread of the disease.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

)e authors declare that they have no conflicts of interest
regarding this paper.

Acknowledgments

)is work was supported by the Fundamental Research
Funds for the Central Universities (nos. JBK190972,
JBK171113, and JBK170505), National Natural Science
Foundation of China (nos. 71671141 and 71873108), the
2020 school-level scientific research project of Aba Teachers
University (no. ASA20-01), and the Financial Intelligence
and Financial Engineering Key Lab of Sichuan Province.

References

[1] A. Trilla, G. Trilla, and C. Daer, “)e 1918 “Spanish flu” in
Spain,” Clinical Infectious Diseases, vol. 47, no. 5, pp. 668–673,
2008.

[2] K. H. Chan, P. H. Li, S. Y. Tan, Q. Chang, and J. P. Xie,
“Epidemiology and cause of severe acute respiratory syn-
drome (SARS) in guangdong, people’s Republic of China, in
february, 2003,”>e Lancet, vol. 362, no. 9393, pp. 1353–1358,
2003.

[3] M. P. Girard, J. S. Tam, O. M. Assossou, andM. P. Kieny, “)e
2009 a (H1N1) influenza virus pandemic: a review,” Vaccine,
vol. 28, no. 31, pp. 4895–4902, 2010.

[4] WHO, Coronavirus Disease 2019 (Covid-19) Situation
Report–209, WHO, Geneva, Switzerland, 2020.

[5] Z. Wang, M. A. Andrews, Z.-X. Wu, L. Wang, and
C. T. Bauch, “Coupled disease-behavior dynamics on complex
networks: a review,” Physics of Life Reviews, vol. 15, pp. 1–29,
2015.

[6] C. Liu and Z.-K. Zhang, “Information spreading on dynamic
social networks,” Communications in Nonlinear Science and
Numerical Simulation, vol. 19, no. 4, pp. 896–904, 2014.

[7] S. Funk, E. Gilad, C. Watkins, and V. A. A. Jansen, “)e
spread of awareness and its impact on epidemic outbreaks,”
Proceedings of the National Academy of Sciences, vol. 106,
no. 16, pp. 6872–6877, 2009.

0 10.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

ρ

Phase I
Phase II

α

γ = 2.1

γ = 2.4
γ = 3.1
γ = 4.0

(a)

ρ

0

0.2

0.4

0.6

0.8

2 2.5 3 3.5 4
γ

α = 0.5
α = 0.7

(b)

Figure 7: Effects of self-awareness and network structure on the spreading dynamics. (a) Plots of ρ vs. α when c � 2.1 (blue line), c � 2.4
(red line segment), c � 3.1 (yellow dots), and c � 4.0 (black dotted line), respectively.)e two regions marked by phase I (filled by gray) and
phase II (filled by sky blue) are separated by the critical value α∗ ≈ 0.64. (b) )e value of ρ as a function of c when α � 0.5 (red circles) and
α � 0.7 (black squares), respectively. )e basic transmission rate is set at β � 0.2, and the other parameters are the same as those in Figure 1.

10 Complexity



[8] W.Wang, H. E. Stanley, and L. A. Braunstein, “Effects of time-
delays in the dynamics of social contagions,” New Journal of
Physics, vol. 20, no. 1, Article ID 013034, 2018.

[9] J. J. Van Bavel, K. Baicker, P. S. Boggio et al., “Using social and
behavioural science to support covid-19 pandemic response,”
Nature Human Behaviour, vol. 4, no. 5, pp. 460–471, 2020.

[10] H. Peng, W. Peng, D. Zhao, and W. Wang, “Impact of the
heterogeneity of adoption thresholds on behavior spreading
in complex networks,” Applied Mathematics and Computa-
tion, vol. 386, Article ID 125504, 2020.

[11] R. Li, W. Wang, and Z. Di, “Effects of human dynamics on
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