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Density peaks clustering (DPC) is an advanced clustering technique due to its multiple advantages of efficiently determining
cluster centers, fewer arguments, no iterations, no border noise, etc. However, it does suffer from the following defects: (1) difficult
to determine a suitable value of its crucial cutoff distance parameter, (2) the local density metric is too simple to find out the proper
center(s) of the sparse cluster(s), and (3) it is not robust that parts of prominent density peaks are remotely assigned. &is paper
proposes improved density peaks clustering based on natural neighbor expanded group (DPC-NNEG).&e cores of the proposed
algorithm contain two parts: (1) define natural neighbor expanded (NNE) and natural neighbor expanded group (NNEG) and (2)
divide all NNEGs into a goal number of sets as the final clustering result, according to the closeness degree of NNEGs. At the same
time, the paper provides the measurement of the closeness degree. We compared the state of the art with our proposal in public
datasets, including several complex and real datasets. Experiments show the effectiveness and robustness of the
proposed algorithm.

1. Introduction

Clustering algorithm, usually as unsupervised learning, is a
type of fundamental technique of machine learning [1]. It
aims to divide a dataset into several subsets, which are also
called categories, clusters, groups, etc, according to simi-
larity, dissimilarity, or distance of samples. Hence, unlike
supervised learning [2–18], clustering methods implement
classification tasks without any prior knowledge and have
been applied to image processing, pattern recognition,
bioinformatics, data mining, the Internet of things, and
other fields.

Due to flexibility and validity, various clustering algo-
rithms have been proposed one after another. Jain classified
these methods into partitioning-based, model-based, hier-
archical-based, grid-based, and density-based approaches
[19]. Partitioning methods aim for grouping the dataset into
a preset number of clusters via an iterative process. K-means
[20, 21] and Fuzzy c-means [22, 23] are two famous

partitioning-based clusterings. Although they are simple to
understand and easy to implement, K-means is extremely
sensitive to outliers and the selection of the initial cluster
centers; besides, Fuzzy c-means approaches suffer from
initial partition dependence [1]. Model-based clustering
methods require one or more appropriate probability
models to represent the dataset and often use the expec-
tation-maximization approach to maximize the likelihood
function [24]. Hierarchical-based approaches [25–28] par-
tition the dataset into several categories using two opposite
ways: top-down or bottom-up approach [23]. &e first one
considers the whole dataset as a cluster and split it into a
suitable number of subclusters. Another regards each sample
as a cluster and thenmerging these atomic clusters intomore
and more massive clusters. However, the effectiveness of
hierarchical clustering algorithms depends on the type of
distance measurement chosen for the clusters. Grid-based
[29] and density-based [30, 31] approaches automatically
determine the number of categories using suitable and preset
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parameters such as epsilon, min-pts, or others. While it is
necessary to take a mass of argument adjustments to obtain
optimal clustering results, these two types of algorithms
generate noise at the cluster borders.

To overcome the above shortcomings, recently, density
peaks clustering [32] is proposed and based on the as-
sumption that cluster centers are relatively denser and are far
from each other. Using a suitable value of cutoff distance
(namely, dc, the only parameter of DPC), this approach
manually selects the appropriate center of each cluster from
a decision graph. It then assigns each of the remaining el-
ements to the nearest denser point (NDP) that is the nearest
one of neighbors possessing bigger density than the assigned
sample. It has many advantages, including higher efficiency
in finding cluster centers, fewer parameters, no iterations,
and no noise around the cluster border. However, the al-
gorithm is still affected by the following defects:

(1) It is challenging to determine suitable dc. It must also
be mentioned that the original DPC algorithm does
not cover a reliable and specific method to ensure
proper dc. Besides, this was demonstrated in several
studies [33, 34] that DPC is sensitive to its parameter,
and even when being normalized or using the rel-
ative percentage method, a small change in dc will
still cause a conspicuous fluctuation in the result.

(2) &e formula of local density is too simple to find out
suitable center(s) of the sparse cluster(s) and is only
useful in datasets with balanced density [33]. As
shown in Figure 1(a), the Jain dataset has two
clusters: the upper one is sparse and the lower one is
denser. However, DPC overlooks the center of the
upper cluster, instead of a prominent density peak of
the lower cluster.

(3) Its assignment strategy is not robust [35]. Each point
is assigned to its NDP, which results in some
prominent density peaks (PDP) that are relatively
bigger on density and δi value but not cluster centers
are mistakenly attributed to a denser superordinate
but are far away from each other. Accordingly, the
subordinates of the incorrect-assigned PDP are
portioned to an incorrect group. Figure 1(b) shows
that we manually modify the center to the densest
point of the upper cluster. However, the prominent
local peak of the top cluster is assigned to its NDP
belonging to the lower cluster, which leads to the
incorrect assignment of its subordinates. And there
is a distinct gap between the assignment path.

To improve the performance of DPC and inspired by the
idea of natural neighbor (NN) [36], we propose an improved
density peaks clustering based on natural neighbor ex-
panded group. &e main innovations and improvements in
our algorithm are as follows:

(1) Define natural neighbor expanded and natural
neighbor expanded group based on the well-known K-
nearest neighbor method and its optimal version
named natural neighbor. &e concept of natural

neighbor expanded is to absorb those close neighbors
overlooked by the NN method. And NNEG is able to
overcome the shortcoming of the remote assignment of
PDP and mine the potential structure of data.

(2) Provide a density metric formula based on NNE. With
the aid of NNE, the new measurement adaptively
calculates the local density for each sample without any
arguments, unlike one of the original DPC.

(3) Propose the measurement of the closeness degree of
NNEGs that based on the mutual and pairwise
neighbors which belonged to different NNEGs. Due
to its application, all NNEGs are divided into the goal
number of sets as the final clustering result.

(4) &e time complexity is O(K n log n), where K is a
constant, while the time complexity of all of the
optimization algorithms and DPC is O(n2) [34].

&e remainder of this paper comprises four sections.
Section 2 describes the related works. Section 3 represents
the DPC, NNmethod, and details of our algorithm. Section 4
presents the clustering results on our proposal and related
works. In Section 5, we have a summary of the contributions
and features of this paper.

2. Related Works

To improve the performance of the DPC algorithm, scholars
proposed many optimization methods, as shown in Figure 2.
Xie et al. modified the density metric formula using the K-
nearest neighbor (KNN), which used the number of the nearest
neighbors to replace dc. Besides, they devised an entirely new
assignment scheme based on fuzzy weighted K-nearest
neighbors (FKNN-DPC) [33]. Furthermore, this method is
easier to determine the suitable value of parameter. Lotfi et al.
proposed a technique called IDPC [37]. &e algorithm sorts
samples using the local density and then apportions the labels
of centers to their KNN to develop cluster cores. Finally, IDPC
implements a specific propagation strategy to attach the
remaining points with labels. Guo et al. capitalized on the linear
regression method to fit the decision values of DPC with a
preset proper dc required (DPC-LRA) and then choose the
instances above the fitting function as the centers [38]. Ding
et al. proposed an algorithm based on the generalized extreme
value distribution (GEV) to fit the DPC decision values in the
descending order (DPC-GVE). To reduce the time complexity,
they also represented a substitution method using Chebyshev
inequality (DPC-CI) [39]. Ni et al. presented the definitions of
density gap and the density path, as well as a new threshold
[35]. Instead of the decision graph of DPC, the proper value of
dc is determined by manually observing a summary graph
incorporating the density gaps calculated by different dc. &e
method, named PPC, is able to reduce obviously the difficulty
on threshold determination. Jiang et al. provided a novel
density peaks clustering algorithm based on K-nearest
neighbors (DPC-KNN) to overcome the issue of the assign-
ment [40]. In this method, there are two sets for each sample i:
the first one is Si, which is composed of sample i and its KNN,
while the second is Hi, which covers the data points possessing
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higher densities than sample i in the whole dataset. &e cluster
centers are determined via the decision graph of DPC, DPC-
KNN assigns each remaindering sample to an element of Hi,
who has the smallest distance from any member of Si to any
member of Hi. Lotfi et al. improve DPC using density
backbone and fuzzy neighborhood (DPC-DBFN). &ey use a
fuzzy kernel for improving the separability of clusters. DPC-
DBFN uses a density-based KNN graph for labeling backbones
and effectively assigns correct category labels to samples
around the group borders to effectively cluster data with
various shapes and densities [34].

However, FKNN-DPC, IDPC, DPC-KNN, PPC, and
DPC-DBFN require manual operations. And a preset dc is
necessary for DPC-LRA, DPC-GVE, and DPC-CI. More-
over, DPC and these algorithms require the time complexity
of O(n2) [34].

3. Methods

&is section aims to present the short versions of the original
DPC algorithm and NN method and show a detailed de-
scription of our method.

3.1./eOriginalDPCAlgorithm. DPC is the basis on which
cluster centers are relatively denser and are distant from
each other. For a given dataset X � x1, x2, . . . , xn , where

xi � xi1, xi2, . . . , xim , i � 1, 2, . . . , n, cluster centers are
manually picked from the decision graph, which is two-
dimensional with δi as the ordinate and the local density as
the abscissa. Local density is to measure the neighbor
number and distances of each sample in its neighborhood,
which is a crucial concept of DPC. &e ordinate δi is the
distance between the sample i and its nearest denser point.
Since the centers have relative lager density, each of them
must be far away from their NDP, namely, has an
enormous value of δi. In the two-dimensional coordinate
system, cluster centers simultaneously possess big values
of δi and local density and appear in the upper right corner
of the graph. To measure the local density of each element,
the author provides two formulae expressed as equations
(1) and (2). δi is calculated by equation (3):

ρi � 
j

ℵ dij − dc ,

ℵ(·) �
1, ·< 0,

0, ·≥ 0,

⎧⎪⎨

⎪⎩

(1)

ρi � 
j

exp −
dij

dc
 

2
⎛⎝ ⎞⎠, (2)
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Figure 1: Clustering results of DPC on the Jain dataset. &e diverse colors present different clusters, and the stars mark the cluster centers
and prominent local peaks. (a) Clustering results of DPC on Jain. (b) Clustering results of DPC with modified center.
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Figure 2: Improvement methods of DPC.
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where dij is the distance between pairwise elements i and j,
dc is the cutoff distance, the only argument of DPC.
&erefore, &e DPC algorithm inherits a defect, where
Gaussian kernel is sensitive to bandwidth:

δi �
minj: ρi < ρj

dij , if ∃j s.t. ρi < ρj,

maxj dij , otherwise,

⎧⎪⎨

⎪⎩
(3)

As shown in equation (3), δi is the minimum distance
between elements i and j whose density is higher than i. For i

with the highest density, its δi is the maximum distance
between i and j. After the cluster centers have been found,
each remaining point is assigned to the same cluster as its
nearest neighbor of higher density.

3.2. Natural Neighbor Method. K-nearest neighbor is a
popular method inmachine learning to complete the tasks of
classification and clustering. However, the crucial argument
K is preset manually. And natural neighbor is an adaptive
method to find the relative near neighbors of each sample.
&e basic idea of NN is that samples of the dense regions
have more neighbors; data points of the sparse area have

relatively fewer neighbors; the outliers only have a few or no
natural neighbors.

In the dataset X, the authors assume that sij is the
similarity between two points xi and xj. With the help of
comparing the similarity, let findKNN(xi, n) denote the
function of KNN searching which returns the rth nearest
neighbor of the point xi, KNNr(xi) is a subset of X, and it is
defined as follows:

KNNr xi(  � ∪
r

n�1
findKNN xi, n(  . (4)

Definition 1. (natural neighbor). Natural neighbor of xi is
defined as

xj ∈ NN xi( ⇔ xi ∈ KNNλ xj ∧xj ∈ KNNλ xi(  . (5)

Definition 2. (natural neighbor eigenvalue). When the al-
gorithm reaches the Stable Searching State, Natural
Neighbor Eigenvalue (NaNE) λ is equal to the searching
round r:

λ ≜ rr∈N r| ∀xi(  ∃xj (r ∈ N)∧ xi ≠xj ⟶ xi ∈ KNNr xj ∧xj ∈ KNNr xi(   . (6)

3.3. /e Proposed Method. In this section, the improved
density peaks clustering based on natural neighbor ex-
panded group is presented. Our method includes three
major steps, including (1) calculating the local density of
each sample according to the formula proposed, (2) de-
termining natural neighbor expanded groups, and (3)
grouping NNEGs into several sets as the final clustering
result. &e details of these steps are described in the
remaining part of this section. To realize the above pro-
cessing, we define the concept of natural neighbor expanded
and then provide a straightforward but useful formula for
local density. Besides, the definition of the natural neighbor
expanded group is to reveal the structure of the dataset and
divide the dataset into several local groups. For ensuring the
grouping of NNEGs accuracy, we propose a measurement of
closeness degree. And more details are presented in the rest
content of this section.

3.3.1. Basic Concepts. &e NN method only considers the
relationship of mutual neighbors and overlooks the impact
of distance between samples. And to fit the density metric
and the searching of density peaks, we propose the concept
of Natural Neighbor Expanded.

Definition 3. (natural neighbor expanded). Natural
Neighbor Expanded is defined as the following equation:

NNE xi(  � KNN2Ki
xi( , (7)

where we assume that the number of NN of xi is |NNi| and
the |NNi|

th NN(xi) is the Ki
th KNNr(xi). Hence, Ki < � r.

As shown in Figure 3, sample 1 is not the NN of sample 8,
since it does not belong to the KNN6(8). However, sample 1
is closer to sample 8 than 14. Hence, for calculating the
density more wholly and accurately, we expand the natural
neighborhood of sample 8 to include samples 1, 2, and 7.

Natural Neighbor is the set of close neighbors. Still, as
shown in equation (2), the local density formula measures
not only the close neighbors whose distances to sample i are
smaller than dc but also the rest samples of whole datasets. In
the latter part, the distance to sample i being approximate to
dc and the corresponding sample also impacts the density of
i. &erefore, 2Ki of equation (7) is to cover the more sec-
ondary-adjacent samples beside the close neighbors. And the
new local density formula based on NNE is shown as

ρi � 

j∈NNE xi( )

max(distNNE) − dij

max(distNNE) − min(distNNE)
, (8)

where NNE � ∪ n
i�1NNE(xi), distNNE � ∪ n

i�1distNNE(xi),
and distNNE(xi) is the set of the distances of xi to all of the
elements in NNE(xi). Inspired by the famous K-means
method, equation (8) considers each point as core and
calculates the sum of distances of it to its NNE. And the
smaller the distance sum is, themore likely it is to be the local
center.

Equation (2) maps the distances to similarities using the
Gaussian kernel and calculates the accumulation sum of
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similarities linking to xi as ρi. Hence, equation (2) based on
Gaussian kernel can resist the interference of outliers that
possess vast distances to xi. However, the equation covers
too many negligible samples that have the distances to
sample i much bigger than dc because their contribution to
density is tiny through the mapping of the Gaussian kernel.
Moreover, it brings the original DPC to the time complexity
of O(n2).

In contrast, our formula only considers NNE. It,
therefore, also gets rid of the passive impact of outliers since
they usually are distant from its nearest point and are not in
any NNE(s) of other(s), at the same time, reduce the
computational complexity. And unlike the Gaussian kernel
mapping, equation (8) retains the original information of
data, does not require any arguments, and avoids the sen-
sitivity caused by dc.

Definition 4. (natural neighbor expanded group). Natural
Neighbor Expanded Group consists of a prominent density
peak and its subordinates.

In our method, each point is assigned to the nearest
denser point of its NNE. &e assignment process is stored in
a list: the index numbers represent the samples in the given
dataset, respectively; each unit stores the index number of its
superordinate one, and if the density of a sample is bigger
than all of its NDP, the related unit saves 0. Namely, zero
samples are prominent density peaks. &e assignment di-
vides the dataset into several NNEGs, adaptively.

Essentially, NNEGs reveal the potential structure of the
dataset analyzed and are relatively tighter subcluster and
local groups in the cluster of the Ground Truth. Due to the
application of NNEG, each sample only points to a neighbor,
and our method could avoid the long-distance assignment of
the PDP.

As shown in Figure 4, after NNEGs are determined,
our method only needs to merge such local groups into
the goal number of clusters and hence remove the op-
eration of the center selection from the decision graph,
which overcomes the mentioned issue of the density
metric of DPC. To clarify the close relationship between
NNEGs, we proposed the concept of the adjacent group
graph.

Definition 5. (adjacent group graph). AGG � G(V, E),
where V � v1, v2, . . . , vk  is a set of NNEGs,
E � E(vt, vτ)|t≠ τ, vt, vτ ∈ V , and E(vt, vτ) is a set of edges
linked to NNEGs vt and vτ , and subject to

E vt, vτ(  � e xi, xj | xi ∈ vt∧NNE xj   ∧ xj ∈ vτ∧NNE xi( (   .

(9)

Adjacent Group Graph usually is a multigraph, since
there could be several e(xi, xj) between vt and vr. And the
more the edges are, the closer the two groups are. Obviously,
in Figure 4, there are no edges between the upper and the
lower clusters. Moreover, the degree of closeness (DC) of the
neighboring pairwise NNEGs is calculated by

DC vt, vτ(  � 

e xi,xj( ∈E vt,vτ( )

wiwj

max(distNNE) − dij

max(distNNE) − min(distNNE)
,

(10)

where wi � (|NNE(xi)∩ vt|)/(|NNE(xi)|) and wj � ( |NNE
(xj)∩ vr|)/(|NNE(xj)|). As shown in equation (10), the
formula of closeness degree is constituted with two parts: the
weight and the similarity normalized. It is based on an
assumption where the more compact the endpoints and
their respective NNEGs are, the more reliable the edge is. wi

represents the compactness between the sample xi and the
group vt, viz., the bigger number of intersected elements of
NNEG(xi) and vt means the relationship between them is
intenser. To ensure wi ∈ [0, 1], the number of the elements
intersected divided by |NNE(xi)|.

3.3.2. /e Specific Processing

Inputs: dataset X, the goal number of clusters.
Output: the clustering result.
Step 1: Create a k-d tree. Search NNE for each sample
using the k-d tree.
Step 2: Calculate local density according to equation
(8).
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Figure 4: NNEGs of the Jain dataset. &e diverse colors present
different NNEGs, and the stars mark the zero samples.
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Step 3: Determine NNEG according to Definition 4.
Step 4: Generate the Adjacent Group Graph as in
Definition 5, and find all edges of each pairwise NNEGs
as equation (9).
Step 5: Calculate the degree of closeness, according to
equation (10).
Step 6: Break up the original cluster containing all
NNEGs into the goal number of sets, according to the
closeness degree.

To clarify Step 6 in detail, we present an example in
Table 1. As shown in Table 1 (A), there are five NNEGs in a
dataset. And the closeness degrees of adjacent pairwise
NNEGs are recorded. Assume the goal number is 2. Our
method considers the whole dataset as a cluster, since
DC(v1, v2),DC(v2, v3),DC(v3, v4),DC(v3, v5),DC(v4,

v5)> 0. We force the minimum DC(v2, v3) � 0 as shown in
Table 1 (B), which means those NNEGs are split into two
parts: v1, v2  and v3, v4, v5 , i.e., split is a for-loop operation
which let the minimum DC � 0 until the cluster number
equals to the goal one.

And more details are as shown in the pseudocode. In the
6th line, AGG is a matrix where each row and each column
correspond to one of NNEGs. In the 16th line, inspired by the
Top-down hierarchical clustering, we consider the whole
dataset as a cluster containing all NNEGs and break the
weakest E(vt, vτ) in the AGG until the cluster number equals
the goal, which corresponds to the process, Table 1 (A) and
(B).

3.3.3. Time Complexity Analyses. &is section aims to an-
alyze the computational complexity of our method, and
suppose that the number of total samples in a dataset is n, the
number of NNEG is equal to nNNEG, the goal number of
clusters is G, the NDP of sample i is the nNDPth

i neighbor,
and the biggest Ki equals K. (Algorithm 1).

&e time complexity of creating a k-d tree is O(n log n)

[41]. It is demonstrated that determining NN for all samples
also requires the cost of O(n log n) [36]. And for finding
NNE, we can record the Ki in the processing of searching
NN. Hence, the searching NNE of a sample only needs to
2Ki times search operation, and its whole complexity for all
samples is less than O(2 Kn). Our local density metric is
based on NNE, and it is not necessary to generate a distance
matrix and only needs to 2Ki times plus operations for each
sample.&erefore, it is required with at most O(2 Kn) for the
time cost to calculate local densities of all instances. For each
sample, the method takes nNDPi time search to find its NDP
via the k-d tree in the round 2Ki, and nNDPi < � 2Ki. In the
process of generating each NNEG, we store the labels of its
prominent density peak to a list where the first unit is any
unallocated instance, and the end is an assigned one or
prominent density peak. And the operation of storing labels
of all samples only needs to the time cost of O(n). And the
cost required is O(2 Kn) on dividing a dataset into G

NNEGs. In equations (9) and (10), e(xi, xj) is requested and

determined via searching the NNE of each sample to find the
neighbors having different labels. &us, for all edges, it is
equal to O(2Kn) for the magnitude of how many times the
searching operation is performed. Furthermore, the time
complexity of grouping in the last step must be less than G.
Overall, we can conclude that the time complexity of the
entire algorithm is O(Kn log n).

4. Results

In this section, several datasets are used to evaluate the
performance of our method in comparison with some state-
of-the-art techniques such as DPC-DBFN [34], DPC-KNN
[40], IDPC [37], and FKNN-DPC [33]. &e experiments are
performed on a computer with aWindows 10, Intel (R) Core
(TM) i7-8750H, 16GB memory, and Matlab 2016b. &e
results represented are measured by several performance
metrics, including Normalized Mutual Information (NMI)
[42], Rand Index (RI) [43], and the Adjusted Rand Index
(ARI) [44]. In this section, the similarity between points is
measured using the Euclidean distance metric.

4.1. Datasets. In this paper, all tested datasets include three
low-dimensional datasets and five high-dimensional data-
sets, which are public and from UCI. &e two-dimensional
datasets have different numbers of samples and different
objective distributions. &e DMI512 dataset containing 1024
elements with 512-dimensional features, which belonged to
16 Gaussian clusters sampled from a Gaussian distribution,
is often used to test algorithm performance in high-di-
mensional space. Experiments of the four datasets, including
Statlog (Shuttle), Abalone, Wine Quality, and Libras
Movement, are applications of our method on Physical (the
positioning of radiators in the Space Shuttle), Population
Biology, Model Wine Preferences, and Hand Movement
Recognition, respectively. And more details are presented in
Table 2.

To reduce the influence of dimension weights and ensure
the validity of the experimental comparison, we processed
each dataset and normalized all dataset tested. &e nor-
malization formula is as follows:

xij
′ �

xij − min xj 

max xj  − min xj 
, (11)

Table 1: An example of Step 6.

— 4 0 0 0

4 — 1 0 0

0 1 — 3 5

0 0 3 — 4

0 0 5 4 —

v1

v1

v2

v3

v4

v5

v2 v3 v4 v5

— 4 0 0 0

4 — 0 0 0

0 0 — 3 5

0 0 3 — 4

0 0 5 4 —

v1

v2

v3

v4

v5

v1 v2 v3 v4 v5

(a) (b)

6 Complexity



where xij is the jth feature value of the ith sample, while
max(xj) and min(xj) represent the maximum and mini-
mum values of the jth feature, respectively.

4.2. Evaluation Measures. We tested our algorithm and
several related works on the above datasets. For intuitive
comparison, we chose RI, ARI, and NMI to measure the
clustering results.

&e RI formula is shown in

RI �
TP + TN

C
2
n

, (12)

where TP indicates true positive, TN indicates real negative,
and the denominator C2

n is the total number of sample pairs
in a dataset consisting of n samples.

&e ARI formula is shown in

ARI �
RI − E[RI]

MAX RI{ } − E[RI]
, (13)

where E[RI] represents the expectations of RI.
&e NMI formula is shown in

NMI �
−2MI(A, B)

H(A) + H(B)
, (14)

where H(A) � 
|A|
i�1 P(i)log2 P(i), H(B) � i�

1|B|P(j)log2 P(j), E[MI(A, B)] represents the expectations
of MI(A, B), and MI(A, B) is expressed as

MI(A, B) � 

|A|

i�1


|B|

j�1
P(i, j)log2

P(i, j)

P(i)P(j)
, (15)

where P(i) � |Ai|/n, P(j) � |Bj|/n, P(i, j) � |Ai ∩Bj|/n,
A � Ai|i � 1, 2, . . . , |A| , and B � Bj|j � 1, 2, . . . , |B| . A

and B represent two allocation methods for a dataset con-
taining n elements, and Ai and Bj are clusters. In experi-
mental verification, let A and B be the original labels and the
clustering results of an algorithm, respectively. If the clus-
tering results are as same as the real labels, the three metrics
take the value of 1, and if the clustering results are entirely
different from the labels, the values will be equal to 0.

4.3. Results. &is section aims to show the detailed clustering
results and evaluate the performance of different clustering
algorithms on the various datasets. Tables 3–5 compare the
performance of our method with DPC-DBFN, DPC-KNN,
IDPC, and FKNN-DPC in terms of NMI, RI, and ARI
measures, respectively. All these methods are using the KNN
method, and the number of nearest neighbors (K) can be set
from 1 to n. In these tables, the numbers in the parenthesis are
the value ofK, where the corresponding algorithm obtains the
results represented, and boldface marks the best results.

&e Jain dataset has 373 points and two clusters: the
upper one and the lower one. As shown in Figure 5, DPC-
NNEG divides the dataset into nineteen NNEGs and then
successfully and efficiently groups them into two sets
since there are no edges between the two clusters.
Homoplastically, as shown in Figure 6, our algorithm

Require: Dataset X � x1, x2, . . . , xn , the goal number of clusters G
Ensure: &e result of clustering: C � C1, C2, . . . , Cn 

(1) Create a k-d tree;
(2) Search the k-d tree;
(3) Determine NN according to [34], and record Ki, which means NNE(xi) determined;
(4) Calculate local density ρi according to equation (8).;
(5) Assign each point to its NDP of its NNE to generate several NNEGs;
(6) Create a matrix AGG� (|NNEG|, |NNEG|);
(7) for i� 1 : n do
(8) for t� 1 : 2Ki do
(9) if the tth NNE and sample i belongs to different NNEGs do
(10) Calculate the closeness degree of this edge, referring to equation (10);
(11) Add the DC of this edge to the corresponding unit of AGG;
(12) end if
(13) end for
(14) end for
(15) while the number of clusters does not equal G do
(16) Store zero in the unit with the min value but greater than zero;
(17) Count the number of clusters;
(18) end while

ALGORITHM 1: DPC-NNEG.

Table 2: Detailed information on tested datasets.

Dataset #Instance #Attribute #Cluster
Jain 373 2 7
Flame 240 2 2
Spiral 300 2 3
Statlog (shuttle) 58000 9 7
Abalone 4177 7 28
Wine quality 4898 11 7
DIM512 1024 512 16
Libras movement 360 90 15
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divides the Spiral dataset into several local groups and
subsequently merges all NNEGs accurately into the goal
number of clusters.

Unlike Jain and Spiral, as shown in Figure 7, the Flame
dataset containing 240 data points has no clear gap

between the two adjacent clusters. Hence, it is more
sensitive to the value of dc of the DPC algorithm because a
tiny change in dc will cause the border point is assigned to
another cluster. However, our method not only partitions
all samples into eight NNEGs but also measures the

Table 3: Clustering results measured by NMI.

Dataset DPC-KNN IDPC FKNN-DPC DPC-DBFN DPC-NNEG
Jain 1.0000 (9) 1.0000 (9) 1.0000 (10) 1.0000 (9) 1.0000
Flame 1.0000 (4) 1.0000 (7) 1.0000 (6) 1.0000 (9) 1.0000
Spiral 1.0000 (7) 1.0000 (5) 1.0000 (5) 1.0000 (4) 1.0000
Statlog (shuttle) 0.3734 (150) 0.1552 (90) 0.4226 (150) 0.5490 (7) 0.6101
Abalone 0.1780 (50) 0.1791 (758) 0.1828 (2) 0.1846 (2) 0.1852
Wine quality 0.0359 (28) 0.0339 (68) 0.0364 (244) 0.0701 (1) 0.0935
DIM512 1.0000 (10) 1.0000 (15) 1.0000 (8) 1.0000 (9) 1.0000
Libras movement 0.5287 (53) 0.5697 (5) 0.5607 (11) 0.5848 (6) 0.5855

Table 4: Clustering results measured by RI.

Dataset DPC-KNN IDPC FKNN-DPC DPC-DBFN DPC-NNEG
Jain 1.0000 (9) 1.0000 (9) 1.0000 (10) 1.0000 (9) 1.0000
Flame 1.0000 (4) 1.0000 (7) 1.0000 (6) 1.0000 (9) 1.0000
Spiral 1.0000 (7) 1.0000 (5) 1.0000 (5) 1.0000 (4) 1.0000
Statlog (shuttle) 0.6780 (150) 0.4180 (90) 0.7274 (150) 0.7512 (7) 0.7814
Abalone 0.8042 (14) 0.8236 (60) 0.7635 (5) 0.8354 (500) 0.8428
Wine quality 0.6277 (52) 0.6063 (35) 0.5107 (3) 0.5578 (1) 0.5751
DIM512 1.0000 (10) 1.0000 (15) 1.0000 (8) 1.0000 (9) 1.0000
Libras movement 0.8839 (4) 0.9089 (9) 0.8995 (10) 0.8945 (6) 0.9187

Table 5: Clustering results measured by ARI.

Dataset DPC-KNN IDPC FKNN-DPC DPC-DBFN DPC-NNEG
Jain 1.0000 (9) 1.0000 (9) 1.0000 (10) 1.0000 (9) 1.0000
Flame 1.0000 (4) 1.0000 (7) 1.0000 (6) 1.0000 (9) 1.0000
Spiral 1.0000 (7) 1.0000 (5) 1.0000 (5) 1.0000 (4) 1.0000
Statlog (shuttle) 0.3396 (150) 0.1049 (90) 0.3197 (150) 0.3584 (7) 0.5688
Abalone 0.0567 (3) 0.0589 (10) 0.0553 (7) 0.0654 (2) 0.0657
Wine quality 0.0275 (25) 0.0356 (64) 0.0214 (3) 0.0575 (1) 0.0511
DIM512 1.0000 (10) 1.0000 (15) 1.0000 (8) 1.0000 (9) 1.0000
Libras movement 0.2492 (19) 0.3337 (9) 0.2846 (11) 0.3130 (6) 0.4862
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Figure 5: &e clustering results of the Jain dataset. &e diverse colors present different NNEGs and clusters, and the stars mark the zero
samples. (a) NNEGs of Jain. (b) DPC-NNEG on Jain. (c) Ground truth.
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tightness between different groups accurately, which re-
alizes the correct grouping of those local groups. And
Figure 7 shows that the clustering result of Flame by DPC-
NNEG is consonant with the Ground Truth.

As shown in Tables 3–5, there is no difference in per-
formance among our algorithm, DPC-DBFN, DPC-KNN,
IDPC, and FKNN-DPC in three two-dimensional datasets.
However, as shown in Table 2, the clustering results of more
complex high-dimensional datasets show the out-
performance of our method: DPC-NNEG gains the best
marks measured by NMI in all datasets. For example, the
results of DPC-NNEG in the Statlog (Shuttle), Abalone,
Wine Quality, DIM512, and Libras Movement datasets are
0.6101, 0.1852, 0.0935, 1.0000, and 0.5855, respectively.
Moreover, its improvements to the second-best method (in
%) for Statlog (Shuttle), Abalone, Wine Quality, and Libras
Movement datasets are respectively 11.13, 0.32, 33.38, and
0.12.

Tables 4 and 5 show similar results, respectively,
measured by RI and ARI. &ese results also demonstrate
that the proposed method, in most cases, obtains the
biggest values of NMI except the Wine Quality dataset.

Hence, based on these results, it can be concluded that
DPC-NNEG has given an overall excellent performance in
clustering.

5. Conclusions and Future Works

&is paper proposed an efficient clustering algorithm called
DPC-NNEG, which can easily split a dataset into local
groups and then merge those groups into the goal number of
clusters with various densities, shapes, and sizes. &e pro-
posed method aims at clustering the data by three major
steps: calculating the local density of each sample, identi-
fying natural neighbor expanded groups, and merge those
groups into clusters. &e first step utilizes the natural
neighbor method in the local density calculation. And it is
entirely different from the formula of the original DPC and
could avoid the impact of outliners and reduce the sensitivity
of dc. In the second step, the NNE defined is used tomine the
potential structure of data, which is useful to divide the
dataset into several relatively more compact local groups
called NNEGs. And the last step groups all NNEGs into the
goal number of clusters using the proposed formula of the
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Figure 6: &e clustering results of the Spiral dataset. &e diverse colors present different NNEGs, and the stars mark the zero samples.
(a) NNEGs of spiral. (b) DPC-NNEG on spiral. (c) Ground truth.
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Figure 7: &e clustering results of the Flame dataset. &e diverse colors present different NNEGs, and the stars mark the zero samples.
(a) NNEGs of flame. (b) DPC-NNEG on spiral. (c) Ground truth.
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closeness degree of local groups. And the application of the
second and third steps not only overcomes the issue of
remote assignment of the prominent density peaks but also
removes the step of center selection in the original DPC.&e
effectiveness of the method proposed was verified on several
datasets.&e results show that our approach is more effective
against the related improvement algorithms of DPC. In
future work, we shall contribute to developing the concept of
NNE to find a more suitable method for secondary-adjacent
samples, instead of the given and fixated parameter 2Ki in
equation (7). Fuzzy theory is a proper technique to mine
relatively adjacent samples, in which NNE is used to con-
struct the membership function of closeness, and then de-
duce the functions of secondary-adjacent samples and
remote samples.
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