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-is paper aims to propose an improved learning algorithm for feature selection, termed as binary superior tracking artificial bee colony
with dynamic Cauchy mutation (BSTABC-DCM). To enhance exploitation capacity, a binary learning strategy is proposed to enable
each bee to learn from the superior individuals in each dimension. A dynamic Cauchymutation is introduced to diversify the population
distribution. Ten datasets from UCI repository are adopted as test problems, and the average results of cross-validation of BSTABC-
DCM are compared with other seven popular swarm intelligencemetaheuristics. Experimental results demonstrate that BSTABC-DCM
could obtain the optimal classification accuracy and select the best representative features for the UCI problems.

1. Introduction

Feature selection is one of the cornerstones in machine
learning [1] to select the proper combination of features to
best describe the target problem. -e useful features are
retained while the redundant features and irrelevant features
are removed by feature selection. As a result, an appropriate
set of selected features can reduce computational com-
plexity, improve knowledge discovery, and achieve satis-
factory learning performance [2]. However, the number of
possible combinations increases exponentially with the
number of candidate features, which make efficient methods
always in need for feature selection.

Existing feature selection methods can be classified as
filter method, embedded method, and wrapper method [3].
-e filter method is to evaluate the correlation between
variables to reduce feature size of dataset, and the evaluation
process does not involve specific learning algorithms [4].-e
embedded method embeds feature selection with classifiers,
where the commonly embedded methods include support
vector machine (SVM), ID3, C4.5, and Lasso, a least-squares

regression method based on L1 regular terms [5]. -e
wrapper method uses a feature search component to pro-
duce feature subset and utilizes the specific classifier to
evaluate the performance of different feature subsets until
achieving termination conditions. In the wrapper method,
swarm intelligence algorithms [6], such as particle swarm
optimization [7], bacterial foraging optimization [8], grey
wolf optimization [9], and brain storm optimization [10],
have attracted great interests across various areas [5, 11].

Artificial bee colony (ABC) [12], as a recently proposed
swarm intelligence metaheuristic [13], has been employed to
address feature selection problems due to its promising
efficiency and simple implementation. Keles and Kılıç [14]
applied ABC to feature selection on SCADI dataset with 70
samples and 206 attributes. Seven features were finally se-
lected from 206 features to classify the dataset with various
classification methods. -e classification accuracy was sig-
nificantly improved. Kiliç and Keleş [15] proposed ABC to
select features on z-Alizadeh Sani dataset with 303 samples
and 56 attributes, and the classification accuracy is enhanced
on the original data.
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-e promising applications encourage researchers to
continuously improve the optimization performance of
original ABC in feature selection. Shunmugapriya et al. [16]
enhanced ABC by mining the global optimal solutions and
previously abandoned solutions. Experimental results showed
that the feature selection performance was improved without
significant increase in computational cost. Özger et al.[17]
implemented 8 variants of the binary ABC algorithm to solve
feature selection problems, and the proposed algorithm using
the bit-by-bit operator has a better global search capability.
Wang et al. [18] diversified the initial food sources to make
the initialization evenly distributed. Numerical results dis-
played that the method could get high classification accuracy
and smaller feature subset. Liu [19] proposed an ABC variant
based on knee points to accelerate the convergence speed on
feature selection problems. -ough the proposed strategies
improve original ABC performance, however, in each iter-
ation of the ABC variants, each food source is only updated in
one dimension, and the searching strategy enables the bees to
randomly learn from other bees. -is results in slow con-
vergence speed and inferior exploitation capability of ABC in
the process of optimization.

In this work, a binary superior tracking artificial bee
colony with dynamic Cauchy mutation (BSTABC-DCM) is
proposed to further improve convergence speed and ex-
ploitation capability of ABC for feature selection. Two ef-
ficient search strategies, namely, superior tracking strategy
[20] and dynamic Cauchy mutation, are integrated into the
proposed algorithm. Compared with original ABC, superior
tracking strategy enhances ABC’ learning behaviors in two
aspects: (1) instead of only updating one dimension in each
iteration, bees learn from others in each dimension in each
iteration; (2) instead of learning randomly, bees select in-
dividuals with better fitness to follow. A dynamic Cauchy
mutation is integrated to diversify the population and im-
prove global search ability. Ten datasets of different types of
UCI are adopted to test BSTABC-DCM on feature selection
problems. Seven popular swarm intelligence algorithms are
included for comparison. Comprehensive experiments are
conducted to evaluate the effectiveness of the proposed
method for feature selection.

-is paper is organized as follows: Section 2 introduces
the background includes the principle of the original ABC
algorithm and related work on feature selection. Section 3
presents the proposed BSTABC-DCM. Section 4 shows the
process and results of the experiment. Section 5 makes
conclusions.

2. Background

2.1. Artificial Bee Colony. -e ABC framework is divided
into employed bee stage, onlooker bee stage, and scout bee
stage [21]. -e employed bee first mines food source and
shares the information of food source with the onlooker bee.
-e onlooker bee selects food source to be mined according
to the information. If the better food source not be mined,
the onlooker bee transforms into the scout bee and searches
for the new food source [22, 23]. Firstly, initialize the food
source. -e initialization method is as follows:

xij � lbj + rand (0, 1) ubj − lbj􏼐 􏼑, (1)

in which i � 1, 2, . . . , SN, where SN refers to the number of
food source, j � 1, 2, . . . , D, D refers to problem dimension,
and ubj and lbj refer to the maximum and minimum values
of the j dimension of source, respectively.

(1) Employed bee stage: -e amount of the employed
bee is half of the initial food source, and it is attached
to half of the better source. A new food source is
mined near the attached food source. -e mining
method is shown in the following equation:

vij � xij + Rij xij − xkj􏼐 􏼑, (2)

where vij refers to the newly mined food source, Rij is a
random number between [− 1, 1], and xij andxkj refer
to the j dimension of food source i, k, respectively.
Calculating and updating the objective function value
of the new food source, and after the employed bee
found a better food source, calculating the new fitness
according to the following equation:

fit xi( 􏼁 �

1
1 + f xi( 􏼁

, f xi( 􏼁≥ 0,

1 + xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, f xi( 􏼁< 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

where f(xi) refers to objective function value of
food source xi.

(2) Onlooker bee stage: Calculating the probability by
(4) and then selecting food source, the better food
sources are retained by the roulette method. Further
exploring food source by the following equation:

Pi �
fit xi( 􏼁

􏽐
D
i�1 fit xi( 􏼁

, (4)

vij � xkj + Rij xkj − xgj􏼐 􏼑, (5)

wherexkj refers to the j dimension of food source
selected by roulette and xgj is the food source dif-
ferent from k.

(3) Scout bee stage: If the food source is not replaced by a
better one, then the scout bees start to generate new
food sources randomly according to equation (1).

2.2. RelatedWork on Feature Selection. It is a great challenge
to train the high-dimensional dataset. With the increase in
dimensions, the demand of training samples increases ex-
ponentially causing “curse of dimensionality”. In addition,
manymodels are inapplicable to high-dimensional data [24].
-erefore, feature selection is an important way to improve
learning performance and a key role in the data pre-
processing step of machine learning.

Existing feature selection methods can be divided into
three categories: filter method, embedded method, and
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wrapper method [25]. -e principles of each type of method
and the corresponding algorithm are reviewed in this
section.

(1) Filter method: -e filter method is to evaluate the
correlation between variables according to statistical,
information theory, and distance measurement [4].
Filter methods find out K variables with strong
correlation based on the correlation parameters
including correlation coefficient, chi-square test,
Fisher score, and information gain [5]. It does not
involve any specific learning algorithm in the eval-
uation process. Peng et al. [26] derived the minimal-
redundancy-maximal-relevance criterion (mRMR)
based on the principle of statistics and improved a
two-stage feature selection algorithm, and experi-
mental results show that mRNR performs well in
classification accuracy. Meyer and Bontempi [27]
proposed a filter method of feature selection based
on the double input symmetrical relevance (DISR), a
new information theoretic selection criterion. -e
proposed method is competitive with other filter
method of feature selection. Almuallim and Die-
tterich [28] presented a filter method FOCUS, a
quasipolynomial time algorithm, and FOCUS can
achieve good performance on coverage, sample
complexity, and generalization. ABB and relief are
also belonging to the filter method [25].

(2) Embedded method: -e embedded method inte-
grates the process of feature selection with the
process of classifier learning, which is mainly to solve
the problem of high computational costs caused by
the reconstruction of the classification model when
processing different datasets. -e commonly em-
bedded methods can be divided three types [5]. -e
first is the pruning method, which is eliminating
features from all features, and support vector ma-
chine (SVM) eliminates features recursively. -e
second is the feature selection algorithms with a
build-in mechanism such as ID3 and C4.5. -e third
is regularization models. -is method minimizes
fitting errors by objective functions and the features
with low coefficients are eliminated, such as lasso
regularization and bridge regularization [5]. Moh-
senzadeh et al. [29] proposed relevance sample
feature machine (RSFM), which is an embedded
feature selection method based on sparse Bayesian
approach and Gaussian priors. -e results show that
RSFM performs well in both eliminating redundant
features and classification accuracy. Mirzaei et al.
[30] proposed an embedded feature selection
method based on a fully Bayesian framework and
introduced a multistep algorithm with variational
approximation to maximum the posteriori proba-
bility. -e proposed method is successful in both
regression and classification.

(3) Wrapper method:Wrapper methods put the datasets
into the algorithm for training until obtaining the

best combination of features within the number of
iterations. -e commonly used algorithms include
greedy search and stochastic search [31]. Greedy
search has two methods: forward selection and
backward elimination; forward selection expands the
subset of features from empty, and backward
elimination gradually eliminates features from the
complete feature set [25]. -e swarm intelligence
algorithm belongs to stochastic search, like genetic
algorithm (GA), ant colony optimization (ACO),
and particle swarm optimization (PSO). Yang et al.
[32] proposed chaotic binary particle swarm opti-
mization (CBPSO) for feature selection and used two
classifiers to test the algorithm, and the classification
accuracy obtained by CBPSO is higher than that of
other methods from the literature. Jingwei Too et al.
[4] put multiple inertia weight strategy into binary
particle swarm optimization and proposed CBPSO-
MIWS for feature selection. -e results show that
CBPSO-MIWS can achieve competitive perfor-
mance in all five swarm intelligence algorithms. Xue
et al. [33] studied two multiobjective feature selec-
tion algorithms based on PSO; the first algorithm
applied the idea of nondominated sorting into PSO
while the second algorithm put mutation and
crowding strategy into PSO to search for the Pareto
solutions. -ese two algorithms can evolve a set of
nondominated solutions automatically. Compared
with the three famous multiobjective algorithms, the
second algorithm obtains the better results. Cheng
and Lu [34] integrated the sampling survey method
into the heuristic intelligent optimization algorithm
and proposed a new feature selection method. -e
sampling survey method is used to build the feature-
scoring system and reduced dimension length-
scoring system. Results showed that the proposed
algorithm can select features quickly and effectively.

We have studied the wrapper feature selectionmethod in
this paper. -e flowchart of the wrapper feature selection
method is given in Figure 1.

3. Proposed Method

3.1. Binary Superior Tracking Strategy. In BSTABC-DCM, a
binary superior tracking strategy is proposed for feature
selection. Specifically, compared with ABC’s search strategy,
the integrated superior tracking strategy has two main
differences: (1) bees learn from others in each dimension
instead of only learning one dimension in each iteration and
(2) bees choose the better individuals to learn instead of
random moving. -e food sources are updated as the fol-
lowing equation:

vi � xi + ri xi − SNi( 􏼁, (6)

where SNi denotes the superior neighbor for guidance; it is a
D-dimensional vector of which elements are constructed by
itself (position of the food source) for i− th food source and
other superior food sources with two probabilistic selection
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methods (roulette selection and tournament selection). -e
pseudocode for generating SNi is presented in Algorithm 1.

Pr is the initialized probability threshold, which deter-
mines whether the current individual learns from his su-
perior neighbor or itself. rand i is a function used to produce
an integer from a uniform discrete distribution, FS refers to
the position of food source, and FV is the function value.

As feature selection is a binary optimization problem, the
continuous food source is converted to a binary one after
updating the food source using equation (6). Two-step
binarization technique [35] is used to make the binarization
of the continuous solution. -e first step corresponds to the
transfer function; sigmoid function [4] is adopted to
transform the position of food source into probability value
according to equation (7). -e second step is binarization
technique; the probability value of food source is converted
to the binary one by applying the following equation:

P vi( 􏼁 �
1

1 + exp − vi( 􏼁
, (7)

Vi �
1, rand<P vi( 􏼁,

0, rand>P vi( 􏼁,
􏼨 (8)

where vi refers to the continuous food source, Vi refers to the
binary food source, and rand is a random number uniformly
distributed between 0 and 1.

3.2. Dynamic Cauchy Mutation Method. To enhance the
global exploration of the proposed method, a dynamic
Cauchy mutation is implemented to refine the global best
solution in each iteration. -e dynamic Cauchy mutation
method in this study is defined [36] as the following
equation:

vg,d
′ � vg,d + α · cauchy(δ), (9)

where d is a random number between [1, D], δ denotes the
Cauchy distribution scale, vg,d is the global best solution in
each iteration, and cauchy refers to a random number
generated by Cauchy() distribution. -e value of δ is set to 1
to balance the exploitation ability of the proposed algorithm,
and α is a dynamic weight defined as follows:

α � 1 − rand(iter/T)
, (10)

where rand is a random number between [0, 1], and iter
means the current number of iteration.

3.3. Procedure of the Proposed Method. BSTABC-DCM in-
cludes two main searching components: binary superior
tracking strategy (BST) and dynamic Cauchy mutation
method (DCM). In BSTABC-DCM, the food sources are
explored using equation (6) in the employed bee stage and
onlooker bee stage, where each dimension of food source is
updated by learning from the better food sources. -is
ensures the timely information exchange between food
sources. After the onlooker bee stage, a dynamic Cauchy
mutation method is implemented to increase population
diversity, and the most fertile food sources are explored. -e
flowchart of BSTABC-DCM is given in Figure 2.

4. Experimental Study

In this section, a set of feature selection problems is
employed to comprehensively verify the performance of
BSTABC-DCM.

4.1. Experiment Settings. -ree metrics including classifi-
cation accuracy, average classification accuracy, and the
number of selected features are adopted for performance
assessment. Seven state-of-the-art swarm intelligence algo-
rithms, i.e., artificial bee colony (ABC) algorithm [12], gbest-
guided ABC (GABC) [37], quick ABC (qABC) [38], com-
prehensive learning particle swarm optimizer (CLPSO) [39],
PSO [7], GWO [9], and BSO [10], are included for
comparison.

Regarding the parameter setting of BSTABC-DCM,
KNN has been widely used in various fields with relatively
large sample size, such as pattern recognition, text catego-
rization, and moving object recognition [40, 41]. As more
than half of the test datasets are relatively large in size, KNN
(k� 5) is selected as the classification algorithm in our study.
In each experiment, we conduct 5-fold experiment by di-
viding 80% of the dataset as training set and the remaining
20% as testing set. Each algorithm runs 20 times indepen-
dently in each dataset. Evaluation indicators include best
accuracy, worst accuracy, mean accuracy, standard deviation
(STD), and the number of redundant features removed. -e
final accuracy is the average accuracy of 5-fold cross-vali-
dation [42].

4.1.1. Benchmark Datasets. Considering the number of in-
stances and dimensions of different datasets, ten datasets
from the UCI are adopted as test problems [4]. -e number
of instances and dimensions of the datasets are shown in
Table 1.

Input datasets Wrapper feature 
selection method

Classifier 
evaluation

Termination
criteria met

N Output datasets after
feature selection

Y

Figure 1: Flowchart of the wrapper feature selection method.
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4.1.2. Parameter Settings. For fair comparison, the number
of population and the number of iterations of each algorithm
are set to 10 and 100, and each algorithm runs 20 times
independently. All the analyses are implemented in MAT-
LAB 2017b with Intel Core i7 2.6GHz and 16.0GB RAM.
-e specific parameter settings of compared algorithms are
shown in Table 2.

4.2. Experimental Results. For each experiment, we ran-
domly divide the datasets into five parts, with 80% as
training set and 20% as testing set. -e average results

obtained by 20 times 5-fold cross-validation are obtained
as the final results. Without feature selection, the classi-
fication accuracy of the KNN (K � 5) algorithm is shown in
Table 3.

We implement the comparison algorithms on the ten
datasets for feature selection.-e average results obtained by
cross-validation are regarded as the final experiment results.
-e experimental results of the proposed algorithm and
other seven compared algorithms are shown in Tables 4 and
5. -e best experimental results among the eight algorithms
are shown in bold.

Input parameters
For d � 1 :D

If rand<Pr

A1 � FS(randi1(ps))

A2 � FS(randi2(ps))

If FV(A1)<FV(A2)

SNi,d � A1,d

Else SNi,d � A2,d

End
Else SNi,d � Ai,d

End
End
Return SNi,d

ALGORITHM 1: Pseudocode for generating SNi.

Start

Initialize population xi, termination criteria
and the imit.

Convert the continuous population to the 
binary one by Equations (7) and (8)

Calculate fitness value Fitness (xi) of initial 
population xi

Convert to the binary population, update the 
fitness value and position of population 

All employed bee assigned?

Calculate probability of current food 
source by Equation (4)

Select the chosen food source by 
onlooker bee

Update the fitness value and position 
of position of population xi 

Record the global best solution vg,d
and its position

iter = iter + 1

Termination criteria met

Obtain the best solution’s 
position and its fitness value

Output

A1 = FS(randil(PS))
A2 = FS(randil(PS))

FV(A1) < FV(A2)

SNi,d = A2,dSNi,d = A1,d

Generate superior neighbor SNi 
using superior tracking strategy

Binary 
superior 
tracking 
strategy

NY

N Y

Y

Y

N

N

Dynamic 
Cauchy 
mutation

Record vg,d as the
global best solution

′

′

′

′

fit( vg,d) < fit( vg,d)

Evaluate vg,d

Generate vg,d by Equation (9)

Figure 2: Flowchart of BSTABC-DCM.
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Table 1: -e ten utilized benchmark datasets.

UCI dataset Number of instances Number of features Number of classes
Breastcancerwisconsin 699 9 2
Diabetic retinopathy 1151 19 2
Glass identification 214 10 6
Ionosphere 351 34 2
Movementlibras 360 90 15
Musk_1 476 166 2
BreastCancerCombiadataR2 116 9 2
Lung cancer 32 55 3
Pdspeechfeatures 756 753 2
Seeds 210 7 3

Table 2: Specific parameter settings of comparison algorithms.

Algorithms Parameter values
Artificial bee colony (ABC) [10] Random number Rij ∈ [− 1, 1]

Binary superior tracking artificial bee colony with dynamic Cauchy mutation (BSTABC-
DCM) [33] Cauchy distribution scale δ � 1

Gbest-guided ABC (GABC) [34] Nonnegative constant C � 1.5, ψij � 1.5 × rand
Quick ABC (qABC) [35] dis←(sum(dis)/(FoodNumber − 1))

Comprehensive learning particle swarm optimizer (CLPSO) [36] w0 � 0.9, w1 � 0.4, c � 1.49445
Particle swarm optimization (PSO) [11] w0 � 0.9, w1 � 0.4, c1 � c2 � 2
Brain storm optimization (BSO) [9] num cluster � 3, prob one cluster � 0.8
Grey wolf optimization (GWO) [8] a � 2 − ((2 · current num iter)/num iter)

Table 3: Classification accuracy without feature selection.

UCI dataset Classification accuracy without feature selection
Breastcancerwisconsin 97.36
Diabetic retinopathy 64.73
Glass identification 67.29
Ionosphere 84.62
Movementlibras 76.11
Musk_1 87.61
BreastCancerCombiadataR2 51.72
Lung cancer 56.25
Pdspeechfeatures 72.22
Seeds 88.10

Table 4: Experimental results of the eight algorithms.

Dataset Algorithm Best accuracy Worst accuracy Mean accuracy STD

Breastcancerwisconsin

BSTABC-DCM 98.10 97.95 98.04 0.0008
GABC 97.95 97.66 97.89 0.0013
CLPSO 98.10 97.95 97.98 0.0006
PSO 97.95 97.66 97.83 0.0012
BSO 97.95 97.81 97.92 0.0006
qABC 97.95 97.80 97.83 0.0007
ABC 97.95 97.66 97.81 0.001
GWO 98.10 97.80 97.92 0.0012

Diabetic retinopathy

BSTABC-DCM 72.03 69.07 70.69 0.0136
GABC 70.98 69.94 70.29 0.0041
CLPSO 70.98 70.11 70.6 0.0033
PSO 70.72 68.12 69.73 0.0119
BSO 71.15 69.51 70.25 0.0073
qABC 71.41 69.59 70.51 0.0079
ABC 70.81 70.2 70.53 0.0025
GWO 71.85 69.06 71.05 0.0116
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Table 4: Continued.

Dataset Algorithm Best accuracy Worst accuracy Mean accuracy STD

Glass identification

BSTABC-DCM 73.87 72.88 73.29 0.0043
GABC 73.03 70.99 72.17 0.0075
CLPSO 72.99 72.40 72.63 0.003
PSO 72.53 71.54 72 0.0046
BSO 73.84 72.41 73.1 0.0065
qABC 72 70.56 71.42 0.0052
ABC 72.46 71.00 71.7 0.0071
GWO 73.31 70.06 72.28 0.0133

Ionosphere

BSTABC-DCM 90.6 88.62 89.58 0.0087
GABC 89.74 87.19 88.33 0.0094
CLPSO 88.05 87.19 87.69 0.0037
PSO 88.62 86.92 87.59 0.0062
BSO 89.46 88.31 89.06 0.0043
qABC 89.17 87.19 88.26 0.0073
ABC 88.89 87.19 87.76 0.0066
GWO 90.02 88.05 88.95 0.0081

Movementlibras

BSTABC-DCM 78.89 78.21 78.48 0.003
GABC 78.03 77.23 77.61 0.0037
CLPSO 78 77.55 77.77 0.0016
PSO 78.57 76.93 77.54 0.0081
BSO 78.38 77.18 77.8 0.0042
qABC 78.12 77.59 77.8 0.0027
ABC 77.79 77.28 77.65 0.0022
GWO 79.16 77.28 78.22 0.008

Table 5: Experimental results of the eight algorithms.

Dataset Algorithm Best accuracy Worst accuracy Mean accuracy STD

Musk_1

BSTABC-DCM 90.95 89.92 90.21 0.0043
GABC 89.92 88.23 88.83 0.0065
CLPSO 90.34 88.87 89.66 0.0054
PSO 90.13 88.45 89.04 0.0069
BSO 90.14 88.44 89.33 0.0071
qABC 89.71 88.44 89.16 0.0059
ABC 88.87 88.23 88.48 0.0023
GWO 90.34 88.24 89.62 0.0087

BreastCancerCombiadataR2

BSTABC-DCM 86.99 85.43 86.08 0.0064
GABC 86.30 84.41 85.08 0.0081
CLPSO 86.20 84.44 85.02 0.0074
PSO 85.43 77.57 82.11 0.0334
BSO 86.11 81.8 84.31 0.0167
qABC 86.19 83.54 85.08 0.0114
ABC 86.23 80.74 83.94 0.0201
GWO 86.30 83.69 84.92 0.0099

Lung cancer

BSTABC-DCM 82.38 76.67 80.48 0.0231
GABC 78.38 72.86 75.81 0.021
CLPSO 81.43 75.71 78.65 0.0238
PSO 78.86 70.29 73.92 0.0327
BSO 80.95 69.05 77.24 0.0468
qABC 78.57 75.05 76.59 0.0164
ABC 78.57 69.33 74.8 0.0401
GWO 81.90 76.19 79.10 0.0235
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Table 5: Continued.

Dataset Algorithm Best accuracy Worst accuracy Mean accuracy STD

Pdspeechfeatures

BSTABC-DCM 76.19 75.27 75.77 0.0034
GABC 75.79 75.4 75.58 0.0015
CLPSO 75.79 75.52 75.66 0.0045
PSO 75.66 75.26 75.42 0.0017
BSO 75.79 75.26 75.53 0.0018
qABC 76.06 75.27 75.64 0.0034
ABC 75.67 75.27 75.51 0.0017
GWO 75.80 75.39 75.63 0.0018

Seeds

BSTABC-DCM 97.14 96.19 96.67 0.0034
GABC 96.67 96.19 96.57 0.0021
CLPSO 96.67 96.19 96.48 0.0026
PSO 96.67 93.33 95.52 0.0129
BSO 96.67 95.24 96.1 0.0062
qABC 96.67 95.71 96.19 0.0048
ABC 96.67 95.24 96.19 0.0058
GWO 96.67 96.19 96.48 0.0026

0.982

0.98

0.978

0.976

0.974

0.972

0.97

0.968

0.966

Cl
as

sif
ic

at
io

n 
ac

cu
ra

cy

0 10 20 30 40 50 60 70 80 90 100
Number of iterations

BSTABC
-DCM
GABC
CLPSO

PSO
BSO
qABC

ABC
GWO

(a)

0 10 20 30 40 50 60 70 80 90 100
Number of iterations

Cl
as

sif
ic

at
io

n 
ac

cu
ra

cy

0.73

0.72

0.71

0.7

0.69

0.68

0.67

0.66

0.65

BSTABC
-DCM
GABC
CLPSO

PSO
BSO
qABC

ABC
GWO

(b)

Figure 3: Continued.
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Figure 3: Continued.
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From the results, it can be observed that the optimal
classification accuracy obtained by BSTABC-DCM is
higher than that of the other seven algorithms on 8 out of
10 datasets. -e average classification accuracy obtained
by BSTABC-DCM is higher on 9 out of 10 datasets. -e
classification accuracy of BSTABC-DCM increases by
16.67% on average, while the classification accuracy in-
creases by 15.27% on average by other seven algorithms.
Specifically, for classification accuracy, BSTABC-DCM

increases more than 10% on 4 datasets, the next is GWO,
which increases more than 10% on 3 datasets, and other
six algorithms increase only on 2 datasets. -e highest
increased classification accuracy obtained by BSTABC-
DCM is in BreastCancerCombiadataR2 dataset, which is
68.19%.

Figure 3 demonstrates the convergence process of the
comparison algorithms, where the proposed BSTABC-DCM
is shown in green. It is observed that BSTABC-DCM
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Figure 3: Convergence curves of eight feature selection algorithms. (a) Breastcancerwisconsin. (b) Diabetic retinopathy. (c) Glass
identification. (d) Ionosphere. (e) Movementlibras. (f ) Musk_1. (g) BreastCancerCombiadataR2. (h) Lung cancer. (i) Pdspeechfeatures. (j)
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converges faster than other algorithms on 8 out of 10
datasets. -e classification results and the convergence
curves indicate BSTABC-DCM enhances ABC’s exploitation
capability.

In addition to classification accuracy, another indicator
to measure the performance of algorithms is the number of
redundant features removed. -e number of redundant
features removed is the average number obtained by 20 runs.
Table 6 shows the number of redundant features removed by
the eight algorithms. -e best value of the eight methods is
shown in bold.

-e result in the optimal number row represents the
number of data sets that each algorithm performs best/the
total number of features removed. As can be seen from the
above table, the proposed algorithm BSTABC-DCM re-
moved the most redundant features in three datasets, which
are diabetic retinopathy dataset, ionosphere dataset, and
Pdspeechfeatures dataset. Although BSO and qABC also
performed well in removing redundant features, judging
from the percentage of redundant functions removed in the
original dataset, BSTABC-DCM is undoubtedly the most
promising, reaching 43.37%. In other words, compared with
the original dataset, BSTABC-DCM can greatly reduce the
number of features and ensure higher classification accuracy
after feature selection. In conclusion, BSTABC-DCM has
promising performance on the test problems.

5. Discussion

In summary, the above experimental results show that the
proposed method has improved the best classification ac-
curacy on 8 out of 10 datasets. For the number of removed
redundant features, BSTABC-DCM is outperforming with
the highest percentage of redundant features removed. -is
reveals that our proposed strategies have significantly en-
hanced the original ABC algorithm in terms of global ex-
ploration and exploitation capabilities. In addition, it can be
seen from Figure 2 that the convergence speed of BSTABC-
DCM is comparable to the other comparison algorithms.
-ough convergence speed is comparable to the other al-
gorithms, it is promising to combine the advantages of
different methods, e.g., random forest and Naive Bayes, with
the proposed algorithm to further refine the optimization
process.

6. Conclusion

In this study, a binary superior tracking artificial bee colony
with dynamic Cauchy mutation (BSTABC-DCM) is pro-
posed for feature selection. Specifically, a binary superior
tracking strategy is integrated to improve the learning be-
havior of bees by boosting the efficiency of information
sharing in population. In each iteration, the bees can learn
from the superior bees in each dimension. A dynamic
Cauchy mutation is introduced to diversify population and
enhance global search ability. We select ten datasets from
UCI to verify the performance of BSTABC-DCM, and seven
state-of-the-art swarm intelligence algorithms are included
for comparison. Experimental results indicate that BSTABC-
DCM achieves the best results on classification accuracy
while removing nearly half of the redundant features. -e
convergence speed of BSTABC-DCM is comparable to the
comparison algorithms.

While promising, there are still margins for further
investigation. Firstly, different binary conversion methods
could be considered to improve optimization efficiency.
Secondly, both the classification accuracy and feature size
will be combined with fitness function to build a multi-
objective model. -irdly, adaptive search strategies can be
considered to enhance the adaptability of the proposed
method. Applying BSTABC-DCM to more practical prob-
lems such as capacitated location problem of distribution
center, vehicle routing problems, and scheduling problems is
also one of our research directions.
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Table 6: -e number of redundant features removed.

BSTABC-DCM GABC CLPSO PSO BSO qABC ABC GWO
Breastcancerwisconsin 1.4 2.0 1.0 3.0 2.8 2.0 2.2 2.0
Diabetic retinopathy 11.2 9.8 9.0 10.8 10.6 10.2 10.6 11
Glass identification 1.8 1.2 2.2 3 3 2.4 2.6 1.0
Ionosphere 22.6 21.4 17 18.6 21.2 21.4 19.8 20.4
Movementlibras 43 43.2 33.2 41.2 41.4 43.6 43.8 44.6
Musk_1 81.2 83.8 81.2 75.2 78.8 84.2 81.4 81.5
BreastCancerCombiadataR2 3.2 3.6 3.4 3.8 3.8 3.8 3.4 3.8
Lung cancer 24.6 25.6 18.6 24.2 24 24.6 25.8 26.2
Pdspeechfeatures 392.1 372.4 373.7 368.6 382.0 374.2 377.8 365
Seeds 3.2 4.0 3.6 3.2 4.2 4.2 4.0 4.0
Optimal number 3/584.3 0/567 0/542.9 3/551.6 3/571.8 3/570.6 2/571.4 3/559.5
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F. Paredes, “Putting continuous metaheuristics to work in
binary search spaces,” Complexity, vol. 2017, Article ID
8404231, 19 pages, 2017.

[36] X. Chu, D. Gao, S. Cheng et al., “Worker assignment with
learning-forgetting effect in cellular manufacturing system
using adaptive memetic differential search algorithm,”
Computers & Industrial Engineering, vol. 136, pp. 381–396,
2019.

[37] G. Zhu and S. Kwong, “Gbest-guided artificial bee colony
algorithm for numerical function optimization,” Applied
Mathematics and Computation, vol. 217, no. 7, pp. 3166–3173,
2010.

[38] D. Karaboga and B. Gorkemli, “A quick artificial bee colony
(qABC) algorithm and its performance on optimization
problems,” Applied Soft Computing, vol. 23, pp. 227–238,
2014.

[39] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar,
“Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 3, pp. 281–295, 2006.

[40] Z. Deng, X. Zhu, D. Cheng, M. Zong, and S. Zhang, “Efficient
k NN classification algorithm for big data,” Neurocomputing,
vol. 195, pp. 143–148, 2016.

[41] S. Dhanabal and S. Chandramath, “A review of various
k-nearest neighbor query processing techniques,” Interna-
tional Journal of Computer Applications, vol. 31, no. 7,
pp. 14–22, 2011.

[42] C. Alippi and M. Roveri, “Virtual k-fold cross validation: An
effective method for accuracy assessment,” in Proceedings of
the International Joint Conference On Neural Networks
(IJCNN), pp. 1–6, Barcelona, Spain, July 2010.

Complexity 13


