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In the actual production environment, the eddy current imaging inspection of titanium plate defects is prone to scan shift, scale
distortion, and noise interference in varying degrees, which leads to the defect false detection and even missed inspection. In view
of this problem, a novel image recognition and classification method based on convolutional neural network (CNN) for eddy
current detection of titanium plate defects is proposed. By constructing a variety of experimental conditions and collecting defect
signals, the characteristics of eddy current testing (ECT) signals for titanium plate defects are analyzed, and then the convolution
structure and learning parameters are set. (e structural characteristics of local connectivity and shared weights of CNN have
better feature learning and characterization capabilities for titanium plate defect images under scan shift, scale distortion, and
strong noise interference. (e results prove that, compared with other deep learning and classical machine learning methods, the
CNN has a higher recognition and classification accuracy for the defect eddy current image of the titanium plate in the complex
detection environment.

1. Introduction

Titanium and titanium alloy materials have been widely used
in aerospace, deep-sea exploration, and petrochemical and
high-end equipment manufacturing because of their ad-
vantages of low density, high strength, and good corrosion
resistance [1, 2]. In the application of titanium materials, the
use of titanium plate is more than 50% of the total usage [3].
However, due to the influence of manufacturing process and
service environment, various defects are inevitable in tita-
nium plate, and the most common defects are internal in-
clusions and fatigue defects. (e existence of defects in the
plate will inevitably bring major safety hazard to the service
structure and then cause safety accidents and economic
losses. (erefore, it is extremely urgent to detect and
evaluate the defects in titanium plate in time.

Eddy current testing (ECT) has been widely used in the
defect detection and performance evaluation of conductive
materials due to its advantages such as accuracy, efficiency,

and convenience [4–7]. Imaging technology overcomes the
shortcomings of traditional eddy current nondestructive
testing (NDT) methods that cannot obtain defect shapes and
has the advantages of intuitive defect information and good
visibility. (erefore, defect imaging has received extensive
attentions from researchers in recent years. He et al. used
pulsed eddy current C-scan to detect the surface and sub-
surface of metal plate specimen and realized the recognition
and classification of simple defects based on defect images
[8]. Xu et al. detected the hardness distribution of metal plate
welding seam through eddy current scanning and judged the
hardness distribution of specimen welding surface from the
actual scanning image [9]. Ricci et al. used a multifrequency
excitation to detect defects in the metal plate and addressed
the effect of lift-off effect on defect imaging detection [10]. Li
et al. studied the improved the eddy current probe imaging
detection of metal subsurface corrosion defects and analyzed
that the depth of defects has a great impact on the image
quality [11]. In addition, some classical machine learning
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algorithms have also been applied to the recognition and
classification of ECTsignals, such as support vector machine
(SVM) [12], Hilbert transform (HT) [13], Fisher linear
discriminant analysis (FLDA) [14], and empirical mode
decomposition (EMD) [15]. However, the accuracy of defect
detection and classification of the existing methods is still
insufficient, and most of them are based on the defect signal
acquisition under ideal conditions, which leads to the lack of
generalization of the methods. In the actual application
environment, the detection effect is poor under complex
circumstances such as uncertain scanning mode and serious
noise influence.

In recent years, deep learning has attracted significant
attentions due to their powerful high-level feature learning
capabilities and their ability to perform more essential
characterization of data [16]. Especially, in the field of image
processing, convolutional neural network (CNN) has been
widely studied and applied in the field of image under-
standing and video processing because of its three structural
characteristics: local connectivity, shared weights, and
downsampling [17–19]. In the same way, the structural
characteristics of CNN also provide a novel idea for the
recognition and classification of ECT images of titanium
plate defects in complex detection environment.

(erefore, the recognition and classification of ECT
images of titanium plate defects in the complex inspection
environment based on CNN are studied in this paper. (e
results show that the local connectivity still has a good effect
on defect edge feature extraction when the defect image of
titanium plate is shifted and distorted. (e pooling layer
using the maximum pooling has a strong ability to suppress
the noise in the detection signal, and the shared weights
make the training efficiency of the network model greatly
improved. (erefore, the accuracy of the CNN for the
identification and classification of the titanium plate defect
eddy current detection image in the complex environment is
better than that of other deep learning and classic machine
learning methods.

(e remainder of this work is arranged as follows:
Section 2 introduces the structure setting and parameter
selection of the CNN by combining the characteristics of
ECT signal. (en, the experimental design and defect signal
acquisition are introduced in Section 3. Section 4 carries out
the experiment and discussion of defect image analysis based
on convolutional neural network. Finally, conclusions and
further work are outlined in Section 5.

2. Methods

CNN is a kind of deep neural network that includes con-
volution operation in the calculation process. It was first
applied to handwritten digit recognition and character
recognition by LeCun et al. [20,21]. (e convolution cal-
culation in the network can effectively reduce the number of
parameters of the multilayer network, thus reducing its
complexity and preventing the over fitting problem of the
training model. (e typical structure of CNN is shown in
Figure 1.

CNN is mainly composed of the input layer, convolution
layer, pooling layer, full connection layer, and output layer.
Its training process is to learn network parameters such as
kernel parameters and interlayer connection weights of
convolution layer through existing training sets, while the
classification process is to calculate the corresponding class
labels based on input signals and network parameters
trained. In the actual model training process, multiple
convolution layers and pooling layers are alternately con-
nected layer by layer. (e convolution process is a weighted
summation of local input and connection weights, and then
the bias is added, as shown in Figure 1.

2.1. Convolution Layer. Convolution calculation is the basic
process of CNN, which convolves through the convolution
kernel and the input feature map of the previous layer and
then obtains the output of a convolution calculation through
the activation function. Sliding the convolution kernel in the
X and Y directions in turn can get a new feature map. (e
convolution process is shown in Figure 2.

By sliding the convolution kernel on the input feature
map for many times, the new values of multiple feature maps
can be obtained by convolution:
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where bl
j represents the bias to the convolution value convl

j,
f(·) represents the nonlinear activation function, and yl

j is
the new output feature map obtained.

For the setting of nonlinear activation function f(·), the
existing activation functions include sigmoid function, tanh
function, and rectified linear unit (ReLU). Considering the
sparsity of the ECTsignal of titanium plate defects, as well as
the convergence speed of the network in the training process
and the problem of alleviating the disappearance of the
gradient, ReLUwas adopted as the activation function in this
paper as follows:

ym,n � max 0, xm,n . (3)

In the process of convolution solving the input feature
map, combined with equation (2), suppose that the size of
the input feature map ism × n, the resulting new featuremap
should be (m − p + 1) × (n − q + 1). (e convolution pro-
cess can be expressed as the feature extraction of the input.
In the feature extraction process, the convolution kernel
only computes the partial elements of the input feature map.
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At the same time, for the same layer of feature map, the same
convolution kernel weight is used to calculate the whole
input, thus reducing the number of weight parameters.
(ese two processes are the local connectivity and shared
weights characteristics of CNN.

2.2. Pooling Layer. (e pooling layer is also called the
downsampling layer, and its input corresponds to the
output feature map of the convolutional layer. According
to the analysis of different characteristics of training
samples, the pooling methods include the maximum
pooling and average pooling. (e maximum pooling
method only takes the maximum value in the pooling area
as the sampling result, while the average pooling method
is to obtain the average value of all elements in the area.
(e maximum pooling method has better pooling effect
for the samples with strong sparsity [22], and it is also
easier to express the contour information in the samples.
(erefore, the feature extraction of defect contour in-
formation from defect image is studied, and the maximum
pooling method is used in this paper. (e maximum
pooling method is shown in Figure 3.

In this paper, a pooling area with 2 × 2 is used for
maximum pooling, and the input feature map is nonover-
lapping sliding to take the maximum value, and the output
feature map size is only 1/4 of the input. After the pooling

layer, the feature space of the input image is reduced again,
which further reduces the complexity of the network model.

2.3. Full Connection Layer. In the fully connection layer, the
pooling features of the last layer in the convolution process
are reconstructed into one-dimensional features as the input
of the fully connected network.(e output of this layer is the
category corresponding to the extracted features, which can
be expressed as follows:

y
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l
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(4)

From the above equation, it can be seen that the output
of the fully connected layer is determined by one-dimen-
sional characteristic x, weight w, bias b and activation
function f(·).

(e classification of titanium plate defects belongs to a
multiclassification model. (erefore, the output value of the
fully connected layer in this paper is classified by softmax
logistic regression, as follows:

Sj �
e

aj


T
k�1 e

ak
, (5)
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Figure 2: Schematic diagram of the convolution process.
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Figure 1: Structure diagram of CNN.
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where T represents the total number of categories in the
sample and aj represents the j-th value of full connection layer
output. (e output of the softmax layer is the probability
vector of each category for the preinput feature vector.

3. Experimental Setup and Signal Acquisition

In order to verify the identification and classification ability
of the proposed method in this paper for the eddy current
detection images of titanium plate defects in the complex
detection environment, defects with different sizes were
manufactured in the titanium plate specimen and various
experiments were conducted on the defects based on the
ECT instrument and the detection signals of defects were
collected.

3.1. ECT Instrument. Figure 4 shows the ECT instrument,
which consists of an electromagnetic (EM) instrument, a
probe, a scanning stage, a stage controller, and a PC host
system [9]. (e EM instrument was designed and devel-
oped based on the field programmable gate array (FPGA).
FPGA uses the direct digital synthesis technology to
generate excitation signals, and the signal is output to the
excitation coil of electromagnetic probe after digital to
analogue conversion (DAC) and multistage amplification.
After amplification and analogue to digital conversion
(ADC), the induced voltage of the probe detection coil is
demodulated by FPGA and the real and imaginary parts of
the induced voltage are finally obtained. (e EM instru-
ment can operate from 5 kHz to 200 kHz and perform
digital demodulation at the rate of 100 k/second. (e EM
instrument has been demonstrated to provide a signal-to-
noise ratio (SNR) of ∼96 dB.(e transmit and receive probe
(TR probe) is used in this paper, which is made of copper-
enamelled wire with wire diameter of 0.08mm, and its
structure and parameters are shown in Figure 5 and Table 1,
respectively. (e PC host system based on LabVIEW is
mainly used to set the detection parameters such as ex-
citation frequency, scanning range of mobile platform, and
minimum step and monitor and save the collected signals
in real time.

As shown in Figure 5, the alternating magnetic field
generated in the exciting coil acts on the specimen, and eddy
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Figure 5: Structure of the TR probe.

Table 1: TR probe parameters.

Sensor parameters Value
Inner radius rexi/rrei 0.75mm/0.75mm
Out radius rexo/rreo 1.25mm/1.5mm
w (spacing between two coils) 3.5mm
l 2 − l1 (height of coil) 3mm
Permeability of ferrite core 2300
Number of turns Nex/Nre 160/200
Ferrite core diameter 1.5mm
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current is generated in the tested specimen. (e strength,
phase, and distribution of eddy current in the specimen are
related to the characteristics of the specimen. (e magnetic
field generated by eddy current in the specimen is induced
again by the pickup coil, and then the defects and charac-
teristics of the specimen are analyzed.

3.2. Defect Signal Acquisition. (e defects produced in the
production process and service process of the titanium plate
are mainly crack defects. (erefore, in this paper, different
sizes of defects are manufactured on the surface of TA2
titanium plate to simulate the defects in the actual titanium
plate. (e schematic diagram and defect parameters of the
manufactured specimens are shown in Figure 6 and Table 2,
respectively.

In this paper, C-scan is adopted to collect the defect
signal. (e frequency of the excitation signal is set to
30 kHz, the lift-off height l1 of the probe is set to 0.5mm,
the scanning area size is 15.4mm × 22.2mm, and the steps
in X-axis and Y-axis direction are set as 0.14mm and
0.2mm, respectively. (e scanning direction is shown in
Figure 7.

In our previous studies [23, 24], it can be found that
when the scanning direction of the probe is perpendicular
to the edge of the defect, the detection accuracy is better.
However, in the actual inspection process, it is impossible
to predict the position and shape of the defect, which leads

to large differences in the inspection results of the same
defect, and then affects the further analysis and judgment
of the defect. (erefore, a number of experiments were
carried out in different scanning directions and scanning
starting positions in this paper. (e initial position is set
when the scanning direction is perpendicular to the defect
edge. On the basis of the initial position, it is scanned
every 5°, and the total deviation angle is set to 25°. Sim-
ilarly, based on the initial position, it is extended twice
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Figure 6: Schematic diagram of specimen and defects.

Table 2: Defect parameters.

Defect
number

Depth
(mm)

Length/diameter
(mm)

Width
(mm)

C1/C2/C3 0.5
4/8/12 1C4/C5/C6 1.5

C7/C8/C9 2.5

15.4mm
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m
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Figure 7: Schematic diagram of scanning.
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Figure 8: (e (a) real and (b) imaginary parts of the detection signal for defect C1.
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Figure 9: Original scanning real part imaging of titanium plate defects.

Table 3: Parameters of the CNN.

Parameters Value
Learning rate 0.01
Minibatch 128
MaxEpochs 40
Activation function ReLu

Table 4: Classification accuracy using original signals.

Classifier Accuracy (%)
Convolutional neural networks 99.79
Stacked autoencoder 95.24
Deep belief network 96.35
Support vector machine 96.51
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Figure 10: Real-part imaging of C8 defect with different noise effects. (a) SNR� 95 dB. (b) SNR� 90 dB. (c) SNR� 80 dB. (d) SNR� 70 dB.
(e) SNR� 60 dB. (f ) SNR� 50 dB.
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Figure 11: Real-part imaging of C5 defect with different noise effects. (a) SNR� 95 dB. (b) SNR� 90 dB. (c) SNR� 80 dB. (d) SNR� 70 dB.
(e) SNR� 60 dB. (f ) SNR� 50 dB.
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along the X-axis and Y-axis directions, respectively, and
the extension interval is 2 mm.(e experiment is repeated
5 times under each scanning.

4. Experimental Results and Discussion

Due to the existence of defects in the titanium plate, the
distribution of induced eddy current is unbalanced and fi-
nally the amplitude and phase of voltage in the detection coil
are changed. (e real and imaginary parts of the detection
signal for defect C1 are shown in Figure 8. From the actual
detection results, both the real and imaginary parts of the
detected signals changed significantly in the defect positions
of the titanium plate, and the change of the real part is much

greater than that of the imaginary part. At the same time,
considering that the actual detection of titanium plates will
inevitably suffer from the influence of noise and other
factors, the real part is used to detect and analyze the defects
in this paper.

(e original image of the real part of the eddy current
detection of the defect of the titanium plate is shown in
Figure 9, and the defect corresponds to the schematic dia-
gram of the defect shown in Figure 6.(e scanning direction
is perpendicular to the edge of the defect, and the defect
position is at the center of the scanning area. From the
analysis of the actual imaging results, the length and width of
the defect are reflected in the contour of the scanning image,
and the amplitude of the real part is related to the depth of
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Figure 13: Classification accuracy of (a) training set and (b) testing set with noisy signal.
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the defect, that is, the deeper the defect is, the smaller the
amplitude of the real part is. However, the location and edge
of defects cannot be known in advance during the actual
defect detection process. (erefore, a variety of scanning
directions described in Section 3.2 are used for detection
experiments to verify the effectiveness of the method in the
paper.

In the defect detection experiment, 200 groups of real
part of each defect are randomly selected as training samples,
and the remaining 70 groups are used as test samples. Fi-
nally, the training and test set of 9 defects are 1800 groups
and 630 groups, respectively. (e size of defect image ob-
tained by scanning is 112×112, which is the input of CNN.
Combining with the defect image and the parameters of
CNN, it is easy to over fit when the convolution layer is more
than 2 layers. (erefore, the network structure of single
convolution layer, pooling layer, and full connection layer is
adopted in this paper. (e maximum pooling method as
shown in Figure 3 is adopted. Other parameters set in CNN
are shown in Table 3.

In order to verify the effectiveness of CNN for the defect
recognition and classification of titanium plate defect de-
tection images, stacked autoencoder (SAE), deep belief
network (DBN), and SVM are used for experimental
comparison in this paper. (e original defect signal is used
for identification and classification, and the results are
shown in Table 4. According to the actual classification
results, the accuracy of these classifiers is more than 95%,
and the accuracy of DBN and SVM is more than 96%. (e
accuracy of CNN is 99.79%. Because the CNN can accurately
extract the contour information of different defects in the
process of convolution processing of defect image, it can
classify defects more accurately.

However, when defects are detected in the actual pro-
duction environment, the detected defect signal is often
interfered by different levels of noise due to the influence of
working conditions and environment. In order to further
verify the classification performance of the CNN for defect
images interfered by noise of different intensity in this paper,
Gaussian white noise with different intensities were added to
the signals to make the SNR from 30 dB to 95 dB. (e
imaging results of defect C8 and C5 under different noise
intensities are shown in Figures 10 and 11, respectively.

After adding different intensities of noise into the
original signal, the existing model trained based on the
defect data set in the ideal laboratory environment is used to
classify the noisy signal, and the classification results are
shown in Figure 12. From the analysis of classification re-
sults, the accuracy of these classifiers is reduced under
different levels of noise interference. When the SNR is 30 dB,
the classification accuracy of CNN is 95.68%. However, even
in the presence of noise, the classification accuracy of the
CNN is higher than that of other classifiers.

In addition to using the existing trained models to
identify and classify the noisy defect signals, some noisy
signals are also added to the training set to train a new
classification model in this paper, and the classification
accuracy of training and testing is shown in Figure 13. By
adding part of the noise signals into the training set, the

training classification model can be more robust to noise
interference, and the training model can also be updated in
real time. Figure 13(a) shows the classification accuracy
during training. On the basis of the new model, the noisy
signals are reclassified.(e classification results are shown in
Figure 13(b).

Based on the new model, the classification accuracy of
defect signals affected by different noises is improved in
different degrees. When SNR >50 dB, the classification ac-
curacy of CNN is still more than 98%.

5. Conclusions

Compared with other deep learning and classical machine
learning methods, the convolution process of CNN can
accurately extract the defect edge features of titanium plate
defect images under different scanning directions and
starting positions and then achieve higher defect classifi-
cation accuracy. At the same time, the pooling layer of the
CNN also plays a good role in resisting the noise interference
in the defect image, which makes it have high defect clas-
sification accuracy under strong noise interference. By an-
alyzing the defect feature extraction and antinoise
interference of CNN, the application range of eddy current
testing method in the titanium plate defect detection is
widened. In future research, we will continue to optimize the
network parameters in order to quickly learn and update the
model online. Moreover, the defect type and defect damage
degree of titanium plate will be further expanded.

Data Availability

(e (DefectSignals_ECScan.rar) data used to support the
findings of this study have been deposited in the Aliyun
Server repository (http://120.76.226.240/KH_AnCore/
DefectSignals_ECScan.rar), and other researchers can
download original data from this URL. (e experimental
equipment setup and specimen parameters are shown in
Figure 6 and Table 2.
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