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*is paper proposes to present a novel method of generating cryptographic dynamic substitution-boxes, which makes use of the
combined effect of discrete hyperchaos mapping and algebraic group theory. Firstly, an improved 2D hyperchaotic map is
proposed, which consists of better dynamical behaviour in terms of large Lyapunov exponents, excellent bifurcation, phase
attractor, high entropy, and unpredictability. Secondly, a hyperchaotic key-dependent substitution-box generation process is
designed, which is based on the bijectivity-preserving effect of multiplication with permutation matrix to obtain satisfactory
configuration of substitution-boxmatrix over the enormously large problem space of 256!. Lastly, the security strength of obtained
S-box is further elevated through the action of proposed algebraic group structure. *e standard set of performance parameters
such as nonlinearity, strict avalanche criterion, bits independent criterion, differential uniformity, and linear approximation
probability is quantified to assess the security and robustness of proposed S-box. *e simulation and comparison results
demonstrate the effectiveness of proposed method for the construction of cryptographically sound S-boxes.

1. Introduction

*e modern secure communication based on block ciphers
plays a significant role. It provides a way to stay secure
against unauthorized access and tampering in an insecure
communication channel. *e usage of cryptographic
primitives such as data encryption methods, hash functions,
and pseudorandom number generators depends upon the
area of applications [1–4]. A block cipher is a symmetric
encryption mechanism that relies on one private key for
successful encryption and decryption of data at the sender
side and at the receiver side, respectively. It takes an input
block of size n bits and a key of size k bits and produces an
output of n bits during the process of encryption and de-
cryption. *ere exists a number of block cryptosystems, and
some of the well-known are Data Encryption Standard
(DES), Advanced Encryption Standard (AES), international
data encryption algorithm (IDEA), and KASUMI. *ese
block cryptosystems play a crucial role in multimedia

security [5].*e architecture of secure block ciphers consists
of two vital components, namely, substitution-box at the
substitution layer and permutation-box at the permutation
layer, which in combination bring the effect of necessary
confusion and diffusion in the system. *e aim of substi-
tution-box (S-box) is to produce desired confusion between
the ciphertext and the key, whereas the permutation-box (P-
box) is needed to spread the inputs linearly and randomly for
the diffusion [6].

*e substitution layer in a symmetric-key cryptosystem
is meant to perform the process of data substitution with the
help of S-boxes. Substitution-boxes are the only components
in block ciphers that add nonlinearity to the operation of the
cryptosystem. Substitution-boxes are decisive components
of symmetric-key algorithms as they are the only nonlinear
transformation that transforms inputs to outputs in some
nonlinear fashion [7]. *ey are sort of nonlinear mappings
that substitute a set of input bits of size n-bits with a different
set of bits called output bits as S: 0, 1{ }n⟶ 0, 1{ }m, where n
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represents the number of input bits for n × m S-box and m
represents output bits from S-box after substitution. An n ×

m S-box can be generated as a lookup table with 2n words of
m-bits each. S-boxes are also termed as the vectorial Boolean
functions or multiple-input multiple-output Boolean
functions. *is means that an n × m S-box consists of m
different component Boolean functions as
S[gm− 1, gm− 2, . . . , g1, g0], where each gi(0≤ i<m) is Bool-
ean function in n variables, that is,
gi(0≤ i<m): 0, 1{ }n⟶ 0, 1{ } [8]. Particularly, the sce-
nario when n � m corresponds to n × n bijective S-boxes in
which there exists a one-to-one mapping from input domain
to output domain; that is, each input of n-bit long uniquely
maps to an n-bit long output. *ere exist a vast number of
bijective S-boxes for n� 8 whose count is 256!, which is more
than 10506 [9]. *us, it is challenging for the cryptographers
to construct and find cryptographically strong S-boxes
configurations out of this vast state space. *e cryptographic
strength of S-box decides the security of block ciphers. If the
S-box is weak, then the resulting cryptosystem will have high
linearity and can be easily broken. S-boxes also make the
block ciphers powerful and robust to resist linear and dif-
ferential cryptanalytic attacks [10].

In literature, some significant research efforts have been
made to develop substitution-boxes with good measures of
desirable cryptographic properties. In [11], Özkaynak and
Özer gave a method by exploring the trajectories of 3D
Lorenz chaotic system, which determined 8 × 8 S-box with
satisfactory security features. In [12], the authors explored
the features of six-dimensional hyperchaotic system and
artificial bee colony optimization approach to generate an
optimized configuration of S-box. Çavuşoğlu et al. in [13]
investigated the dynamical characteristics of new scaled
version 3D chaotic Zhongtang system for S-box generation.
Ahmad et al. in [14] also investigated an artificial bee colony
optimization and 1D chaotic logistic map-based method to
construct an S-box which showed better cryptographic
features and S-box reported in [12]. Alzaidi et al. reported a
sine-cosine optimization and new 1D chaotic map-based
S-box construction mechanism in [15]. Wang et al. in [16]
suggested a simple 8 × 8 S-box generation algorithmwith the
help of a new 3D continuous chaotic system which has
infinite equilibrium points. In [17], Zhang et al. studied the
dynamics of fractional-order logistic map and designed an
S-box construction method with consistent security per-
formance which found application for image encryption.
Lambic proposed a new discrete-space 1D chaotic map using
the concept of multiplication of integer numbers and cir-
cular shift and gave an 8 × 8 S-box generation application for
security usages in [18]. Recently, Gao et al. presented a new
way of constructing S-boxes by using the algebraic action of
modular groups PSL (2, Z) on a particular projective line in
[19]. *e obtained S-box met all the performance criteria
well and was deemed suitable for encryption applications.
Hematpour and Ahadpour investigated strong chaotic
nonlinear map for performance improvisation of particle
swarm optimization, which was then executed to optimize

the S-box for high nonlinear property in [20]. *eir ex-
amination and application of improved PSO resulted in
some good set of S-boxes with acceptable cryptographic
features. For some recent S-box generation methods, the
readers are referred to [21–29].

Chaos-based cryptography has coveted to design and use
the chaotic maps for the development of security methods
such as multimedia encryption algorithms, watermarking,
steganography, hash functions, substitution-box design,
pseudorandom number generators, and authentication
protocols [4, 30–37]. *e robustness of these cryptographic
primitives is significantly based on the dynamical charac-
teristics of employed chaotic maps. *e chaotic maps with
frail performance may lead to weak security effect offered by
the cryptographic primitive based on weak chaotic maps or
systems [38]. But most of them are found to hold one or
other limitations that restricted their usage to develop a
strong cryptographic application. Utilization of chaotic
maps with frail performance may threaten the security of
cryptographic system and make it susceptible to attacks
[38, 39].*ey have the problems of limited chaotic range and
behaviour, nonuniform coverage of chaotic attractor in
phase space, low Lyapunov exponent, low complexity, etc.
[40, 41]. *is motivates to construct chaotic maps that
should possess better and more rich dynamical features than
conventional chaotic maps [35, 38, 40–43]. Consequently, an
improved 2D hyperchaotic map is designed, which has
significantly better dynamical characteristics compared to
existing 2D chaotic map. Some of the significant contri-
butions presented in this paper are as follows:

(1) An improved 2D discrete hyperchaotic map is
suggested, which exhibits rich dynamical features in
terms of Lyapunov exponents, bifurcation, entropy,
complexity, etc.

(2) A chaotic permutation matrix based novel approach
is presented to search a suitable configuration of
substitution-box. *e multiplication of permutation
matrix with input S-box preserves the bijectivity
property of S-box.

(3) A strong and persuasive algebraic group-theoretic
structure has been found experimentally, whose
actions further elevated the cryptographic strength of
the S-box.

(4) *e security assessment against benchmarking pa-
rameters is done, which shows excellent perfor-
mance of proposed S-box generation method.

(5) *e security strength of obtained S-box is compared
and analyzed with some recently investigated
S-boxes studies to make evident the standout fea-
tures of the proposed method.

*e structure of the rest of the paper is maintained as
follows: *e model of an enhanced 2D chaotic map and its
dynamical analyses is discussed in Section 2. *e application
of developed hyperchaos mapping for permutation matrix
based proposed 8 × 8 S-box generation algorithm and
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algebraic group action is described in Section 3. Section 4
reports the performance assessments and analyses of pro-
posed S-box and its comparison with existing S-boxes. *e
conclusion of the research works done in this paper is
mentioned in Section 5.

2. 2D Discrete Hyperchaos Mapping

*e dynamics of the proposed 2D discrete hyperchaotic
mapping are governed by the mathematical form shown in
the following equation:

xn+1 � r
2
xn + k sin πxn(  a − h xn, yn, b(  + b tan xn + yn( (  mod(1)

yn+1 � r
2
yn + k tan xn + yn(  a − h yn, xn, b(  + b sin πyn( (  mod(1)

,

(1)

where h(xn, yn, b) � (bxn/x3
n − πyn) and xn, yn ∈ (0, 1) are

chaotic state variables of the map after n iterations. It also
includes the parameters a, b, k> 0, and r> 1. Existence of
large number of map’s parameters extends the key space
when the map is incorporated in any cryptographic appli-
cations which make the brute-force attacks impractical. *e
initial values of x0 and y0 along with setting of their pa-
rameters decide the future trajectory of the map. *e default
setting in all computer simulations and experiments related
to proposed 2D map (1) is as follows: x0 � 0.11, y0 � 0.12,
a� 1.5, b� 0.5, k� 2, and r� 3.

*e mathematical form of 2D logistic chaotic map is as
follows [44]:

xn+1 � r 3yn + 1( xn 1 − xn( 

yn+1 � r 3xn + 1( yn 1 − yn( 
, (2)

where r is its control parameter.*e 2D logistic map exhibits
its chaotic behaviour when parameter r lies in [1.11, 1.15] or
[1.18, 1.19].

*e 2D Henon chaotic map is described through the
following equation [45]:

xn+1 � 1 − ax
2
n + yn

yn+1 � bxn

⎫⎬

⎭, (3)

where a and b are its system parameters that decide its
dynamical behaviour. It is known that 2DHenonmap shows
chaotic behaviour for b� 0.3 and a lies in [1.06, 1.22] or
[1.27, 1.29] or [1.31, 1.42].

*e 2D sine-logistic modulation map (SLMM) suggested
and investigated in [46] has the following mathematical
form:

xn+1 � a sin πyn(  + 3( xn 1 − xn( 

yn+1 � a sin πxn+1(  + 3( yn 1 − yn( 
, (4)

where a is the system’s bifurcation parameter. Regarding the
2D SLMM map, it was studied that it exhibits chaotic
phenomenon when a lies in [0.87, 1] but shows hyperchaotic
behaviour when the parameter lies in [0.905, 1]. In what
follows, the dynamics of the proposed map (1) are analyzed
and compared with three mentioned 2D chaotic discrete
maps: logistic map, Henon map, and SLMM map.

2.1. Lyapunov Exponents. Lyapunov exponent (LE) is a
quantitative measure used to determine the degree of chaotic
behaviour of a dynamic system. It is a commonly accepted
metric that describes the separation between two trajectories
starting from extremely close initial points [47]. Mathe-
matically, Lyapunov exponents for a dynamical map xi+1 �

f(xi, yi)&yi+1 � g(xi, yi) are computed as

LE1 � lim
n⟶∞

1
n



n

i�1
log

d

dx
xi+1( 




⎡⎣ ⎤⎦

LE2 � lim
n⟶∞

1
n



n

i�1
log

d

dy
yi+1( 




⎡⎣ ⎤⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (5)

A positive value of Lyapunov exponent indicates chaotic
nature between the two trajectories; that is, no matter how
close the initial distance is, trajectories will diverge expo-
nentially over time making them unpredictable. Hence, a
larger value of LE indicates superior chaotic phenomenon of
the system [40]. *e Lyapunov exponents of the proposed
chaotic map for different values of parameters k and r are
shown in Figure 1. It can be seen that the enhanced map
shows chaotic phenomenon for complete range of
k, r ∈ (0, 10). Particularly, a hyperchaotic nature of map (1)
is evident from Figures 1(d) and 1(e) as both exponents are
found to possess positive values over whole specified range
of bifurcation parameters k and r. Moreover, it is worth
noting that a similar kind of behaviour is experienced for
larger of values of both parameters of proposed enhanced
map (1). Specifically, the exponents get bigger for higher
values of parameters k and r, thereby reflecting the higher
divergence of orbits and complicated nature of existence of
chaos. Since the 2D map (1) has both LE positives that
indicate a KY dimension of proposed map as 2.0, *e
Lyapunov exponents for the proposed 2D map are also
analyzed by varying the parameters k and r simultaneously,
and the obtained diagrams are shown in Figure 2. *e di-
agrams confirm the existence of hyperchaos phenomenon of
the proposed map for a wide range of both parameters. For
comparison, the Lyapunov values of proposed map for
mentioned settings are listed in Table 1 and we found fairly
larger LE values obtained from our 2D chaotic map than
some existing 2D discrete chaotic maps. Hence, Figure 1
shows a richer dynamical behaviour and high sensitivity of
proposed hyperchaotic map compared to contemporary 2D
logistic chaotic map, 2D Henon chaotic map, and 2D SLMM
map.

2.2. Bifurcation. Bifurcation analysis is used to quantify
regions of chaotic behaviour of a nonlinear dynamic system.
Bifurcation is sensitive to control parameters, which, after a
special value, cause change in state from fixed to chaotic
behaviour indicating that outputs are more random. *is
shift in phase is known as bifurcation. Bifurcation diagrams
are used to visualize the chaotic system behaviour [40]. *e
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Figure 1: Continued.
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Figure 1: Lyapunov exponents spectrum for 2D discrete (a) logistic map, (b) Henonmap with b� 0.3, (c) SLMMmap, (d) improvedmap for
parameter k, and (e) improved map for parameter r.
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bifurcation analysis of the proposed map (1) is investigated
for k, r ∈ (0, 10]. *e bifurcation plots of different 2D dis-
crete chaotic maps are shown in Figure 1 (right column). It is
clear from Figures 1(d) and 1(e) that there do no exist any
blank windows or nonchaotic regions in the bifurcation
diagram of the proposed map (1). It has been found through
simulation that similar bifurcation behaviour exists for both
map’s parameters k, r> 0. *e proposed map has pretty
better bifurcation behaviour for parameters k and r under
system’s both variables x and y than bifurcation behaviour of
2D logistic chaotic map, 2D Henon chaotic map, and 2D
SLMM map as evident from Figure 1 bifurcation diagrams.

2.3. Time Series Correlation. *e X and Y time series ob-
tained from the proposed 2D hyperchaotic map with
mentioned settings are shown in Figure 3. In order to show
the sensitiveness to small change in initial conditions, dif-
ferent Xc and Yc times series are generated, whose corre-
sponding x0 and y0 initial conditions are having a minor
difference of Δ� 10− 10 only. *e respective sequences are
shown along with their counterpart series to make it evident
that the two are fairly different and nonoverlapping. To
quantify the sensitiveness, the correlations between X&Xc

chaotic sequences (denoted as C1) and Y and Yc (denoted as
C2) are calculated. *e correlation between these two pairs
of chaotic sequences is provided in Table 1. It is found that
the sequences are almost zero correlations as C1 � − 0.0061
and C2 � − 0.0049, which indicate that the two series are
highly deviated and uncorrelated to each other. From Ta-
ble 1, it is somewhat clear that the correlation coefficients for
the sequences from the proposed map are considerably
better than coefficients obtained after similar time series
analysis for the cases of 2D logistic chaotic map, 2D Henon
chaotic map, and 2D SLMM map.

2.4. Approximate Entropy. Approximate entropy is a
mathematical algorithm created to measure irregularity in
time series. It is a nonlinear algorithm that could distinguish
between noisy and chaotic time series with small number of
data points [48]. A small ApEn value represents deter-
ministic time series, whereas larger value represents ran-
domness, complexity, and unpredictability. Also, a time
series tends to have larger ApEn value when patterns are
rarely repeated. It has ability to identify intricacy in chaotic
behaviour shown by dynamical maps [49]. For an n-di-
mensional time series (x1, x2, . . . , xn), ApEn has the fol-
lowing mathematical expression:

E(e, t, n) � Φe
(t) − Φe+1

(t), (6)

where e denotes the embedding dimension, t is the tolerance,
and Φe(t) is defined as

Φe
(t) � [n − (e − 1)τ]

− 1


n− (e− 1)τ

j�1
log

pj

n − (e − 1)τ
 , (7)

where τ is the delay in time and pj is count of k such that
d(xj, xk)≤ t. We calculated the ApEn by varying values of
respective bifurcation parameter for existing 2D logistic
map, 2D Henon map, 2D SLMM map, and proposed en-
hanced 2D hyperchaos map; the obtained results are shown
in Figure 4. *e approximate entropies of different time
series obtained by the 2D enhanced chaotic map with same
initial conditions are quantified and provided in Table 1.*e
average ApEn for our enhanced map is found to be around
1.3247, which is sufficient higher than 0.0291, 0.1212, and
0.1038 from existing 2D logistic map, 2D Henon map, and
2D SLMM map, respectively. *e obtained ApEn scores
justify that the proposed map possesses better complexity
and unpredictability compared to existing 2D logistic cha-
otic map, 2D Henon chaotic map, and 2D SLMM map as
evident from Table 1.

2.5. Phase Attractor. *e phase diagram to show the cov-
erage of chaotic attractor of the proposed map is provided in
Figure 5. It is always significant to analyze the chaotic
attractor to know a comprehensive understanding of the
dynamics of chaotic maps [50]. We can see in Figure 4 that
the attractor covers the entire space like a fractal and does
not confine to have a specific shape; rather it covers ran-
domly the complete space even when initial point (x0, y0) is
fixed anywhere in [0, 1] × [0, 1]. *e phase space of the
proposed map is sufficiently complex and perfectly covers
the entire region of space compared to the phase attractors of
existing 2D logistic chaotic map, 2D Henon chaotic map,
and 2D SLMM map.

3. Proposed Substitution-Box Generation

*is section presents the proposed method of S-box gen-
eration. *e complete procedure consists of three different
phases. In the first phase, an initial bijective 8 × 8 S-box is
constructed by using the chaotic values obtained from the
improved hyperchaos map (1). *e procedure
hyperchaos2d(x, y, a, b, k, r) indicates iteration of our
proposed hyperchaotic map given in equation (1). *e block
diagram of the proposed S-box generation method is shown
in Figure 6. Meanwhile, the processing steps of different
phases of the S-box method are as follows.

Phase 1:

Require: initial conditions of hyperchaos map (2) as
x(0), y(0), a, b, c, k, r, itr n0, and sbox � []

Returns: initial S-box A, last x and y chaotic
variables

Table 1: Dynamical features comparison of different 2D discrete
chaotic maps.

2D chaotic map MLE
ApEn Correlation

Mean Max C1 C2
Logistic map [44] 0.6718 0.0291 0.3118 0.0548 0.0726
Henon map [45] 0.4343 0.1212 0.4784 − 0.0123 − 0.0121
SLMM map [46] 0.4398 0.1038 0.5986 0.0283 0.01187
Proposed map 5.8579 1.3247 1.3455 − 0.0061 − 0.0049
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(1) Iterate hyperchaos map (1) for itr_n0 times and
discard the values to remove transient effect

(2) Further iterate hyperchaos map (1) once and find w

as
[x, y] � hyperchaos2d(x, y, a, b, k, r)//equation

(1)
u � x + y

w � floor(u × 1014)mod(256)

(3) Add w to sbox if it does not exist already in it
(4) Check if length (sbox)� 256 and then exit. Else

repeat from Step 2

*e second phase evolves the initial S-box from phase-1
on the basis of average nonlinearity score. *e evolu-
tion of S-box is based on the concept of random
permutation matrix whose multiplication with a bi-
jective S-box preserves its bijectivity. *e change due to
permutation matrix multiplication is accepted only
when it causes some improvisation on the nonlinearity
score of S-box. *e algorithmic steps of phase-2 are
subsequently given below. A simple example is also
prepared to understand the effect of multiplying with
random permutation matrix P.
Phase 2:

Require: Last chaotic variable x and y from phase-1,
initial S-Box sbox, gen_count
Return: S-Box sbox_g

Set
sbox g � sbox p �

reshape(sbox, 16, 16)and find nl g �

Nonlinearity(sbox g)

while(gen count> 0)

P � zeros(N, N)//N� 16
for k � 1 to N

[x, y] � hyperchaos2d(x, y, a, b, k, r)

uu(k) � x + y

endfor
qq � sort(uu) and T �

for k � 1 to N
t � qq(k)

find index w in uu such that uu(w) � t

Set T(k)� w

endfor
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Figure 3: Chaotic time series generated from proposed hyperchaotic map: (a) X and Xc sequence; (b) Y and Yc sequence.
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for k � 1 to N
P(k, T(k)) � 1

endfor
sbox p � (((sbox p) × P)′) × P

nl p � Nonlinearity(sbox p)

if (nl p> nl g)

sbox g � sbox p

nl g � nl p

endif
gen_count � gen_count − 1
endwhile

An example of the phase-2 procedure is illustrated,
which is given in the Appendix for better apprehension.
Phase-2 of the presented method resulted in an in-
termediate S-box given in Table 2.

third phase aims to explore the merits of algebraic
technique to generate cryptographically near-optimal

configuration of 8 × 8 S-box. To solve the purpose, a
suitable algebraic group structure is constructed after
exhaustive experimental analysis. It has been found that
algebraic structure described below is the most suitable
one among all those studied during our experimen-
tation. *e action of the obtained algebraic group
structure gives the final proposed 8 × 8 S-box.
Phase 3:

Require: S-box sbox_g and algebraic group structure
G
Return: final S-box S
Now, we apply the action of a group of permutations
of order 841724928.

C346104 × C152 × C4 × C2 × C2 � s, t, u, v, w, x ,

*e group G: C346104 × C152 × C4 × C2 × C2 can be
generated by 6 elements, namely s, t, u, v, w andx.

Where,
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Figure 5: Phase portrait of chaotic attractor in 2D chaotic (a) logistic map, (b) Henon map, (c) SLMMmap, and (d) proposed hyperchaotic
map.
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s � (1, 17, 149, 90, 137, 82, 217, 180, 68, 125, 227, 172,

161, 129, 187, 212, 157, 256, 185, 240, 37, 45, 161, 129,

187, 212, 157, 256, 185, 240, 37, 45, 106, 61, 50, 28, 194,

193, 201, 218, 60, 146, 236, 6, 23, 103, 127, 204, 177, 13,

56, 158, 94, 253, 245, 118);
t:� (2, 233, 31, 150, 191, 91, 207, 80, 190, 24, 211, 154,
251, 222, 225, 43, 153, 83, 231, 111, 44, 165, 34, 18, 242,
216, 38, 239, 210, 85, 167, 5, 156, 10, 184, 135, 136, 96,

42, 112, 197, 203, 200, 47, 51, 219, 27, 252, 188, 244,
109, 97, 208, 174, 205, 75, 148, 99, 170, 79, 169, 59, 234,
86, 122, 139, 155, 35, 89, 70, 248, 52, 67, 250, 115, 71,
238, 145, 92, 151, 144, 179, 76, 116, 213, 224, 140, 120);
u:� (3, 62, 138, 195, 226, 11, 98, 235);
v:� (4, 84, 214, 209, 123, 246, 29, 141, 87, 199, 130,
108, 102, 8, 198, 168, 95, 230, 66, 132, 57, 189, 88, 48,
162, 171, 40, 176, 81, 72, 229, 77, 78, 133, 113, 249, 36,

Initial S-box generation

phase-1:

phase-2:

Permutation matrix based
S-box evolution

Phase-3:

Action of group structure
G over sbox_g

S-box S

sbox_g

sbox

2D
 h

yp
er

ch
ao

s m
ap

Eq
ua

tio
n 

(1
)

Initial conditionsStart

Figure 6: Block diagram of proposed S-box generation method.

Table 2: Intermediate S-box after phase-2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 219 253 248 0 209 115 254 81 20 142 149 74 95 125 49 132
1 217 23 7 94 246 31 77 79 193 140 123 154 4 138 244 59
2 163 6 106 222 146 90 178 55 152 3 26 109 34 100 224 51
3 242 184 171 200 194 40 129 18 73 46 243 226 252 24 165 215
4 122 43 162 93 32 5 237 186 141 139 19 96 232 159 113 85
5 160 228 214 117 176 88 150 58 212 131 64 78 196 102 14 198
6 136 92 29 240 104 225 221 111 75 33 210 216 202 103 166 50
7 16 128 97 135 11 137 251 107 68 151 57 25 208 62 2 239
8 42 53 124 86 173 250 87 60 12 144 84 47 36 191 218 227
9 147 69 157 10 101 98 71 170 195 241 161 116 130 38 172 83
10 148 203 235 192 180 205 27 1 174 44 82 182 63 67 66 70
11 28 72 168 175 91 238 65 39 230 199 234 8 105 22 76 45
12 13 48 164 134 35 120 99 187 133 143 197 206 231 190 255 89
13 41 249 179 112 121 156 169 201 17 181 188 245 223 80 155 30
14 110 108 213 126 119 52 21 211 9 185 207 233 183 204 158 54
15 61 236 189 37 114 177 145 118 167 153 15 229 220 127 56 247
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9, 65, 223, 196, 110, 160, 237, 54, 22, 46, 63, 166, 178,
114, 121, 32, 202, 55, 142, 26, 143, 21, 159, 232, 74, 49,
173, 14, 105, 12, 101, 20, 30, 19, 58, 247, 41, 39, 255);
w:� (7, 206, 100, 134, 33, 181, 15, 221, 107, 186, 192,
53, 215, 16, 73, 175, 163, 25, 147);
x:� (64, 93, 124, 220, 164, 152, 131, 228, 119, 104, 126,
69, 182, 183, 254, 128, 243, 241);

*e action of each element/permutation on sbox_g

(obtained after phase-2, shown in Table 3) yields an S-box.
After comprehensive analysis and study, it has been de-
termined that the generated S-box S corresponding to
permutation s 3t35u 7v29wx13 ∈ C346104 × C152 × C4 × C2 ×

C2 was found to have strong cryptographic features. It acts
on the indices of sbox_g. *e action of each element of said
permutation of group G on the index set of sbox_g gives
distinct cryptographically sound S-box. We declare this
S-box as our proposed S-box S which is shown in Table 3.

4. S-Box Performance Results

*e significance of cryptographically sound S-box is that if it
is not strong it means cipher has to suffer on the quality of
encryption and security [51]. *erefore, before using any
S-box in a cryptosystem, it is important to measure its se-
curity strength and robustness. A secure S-box should take
care of the performance criteria well; for example, it should
have balanced component Boolean functions, nonlinearity
of components functions which must be high, satisfaction of
SAC and BIC criteria, low differential uniformity, and linear
approximation probability to resist linear cryptanalysis and
differential cryptanalysis [20, 21]. In what follows, we dis-
cussed and assessed these performance parameters for our
S-box and analyzed its security strength.

4.1. Nonlinearity. Nonlinearity property is a measure of
dissimilarity between a function and its closest affine
function. Since S-boxes are represented using Boolean
functions, the nonlinearity of these functions becomes an
important factor to measure the cryptographic strength of
the S-boxes. Because linear functions can be easily breakable,
it is prudent for S-boxes to generate efficient nonlinear
functions. *ere should be sufficient nonlinear mapping of
input to output and the S-box strength depends upon the
value of nonlinearity which provides resistance against
linear cryptanalysis [21]. In practice, the nonlinearity of a
function F: 0, 1{ }8⟶ 0, 1{ }8 is computed using equation
(8).

*e nonlinearity of the S-box is determined by com-
puting the nonlinearity of its component Boolean functions.
We get scores such as 110, 112, 112, 110, 110, 110, 112, and
108 as nonlinearity of its component Boolean functions. *e
average nonlinearity of proposed S-box is 110.5 with least
value of 108 and largest value of 112.*e nonlinearity scores
of proposed S-box are also shown graphically in Figure 7:

NL � 27 −
1
2

max
v∈F8

2 , w∈F8
2



x∈F8
2

(− 1)
v.F(x)+w.x




. (8)

4.2. Strict Avalanche Criterion (SAC). Strict avalanche cri-
terion was introduced by Webster and Tavares in 1985 to
generalize the avalanche effect. According to SAC analysis, a
single toggle in the input bit should alter 50% of the entire
output bits to qualify as a suitable Boolean encryption function
[52]. Hence, a good measure of SAC value makes the function
show a strong random behaviour, making it complicated for
attackers. In order to measure the SAC of S-box, dependence
matrix is used. If value of each element in the dependence
element as well its mean is close to 0.5, we can confirm that the
S-box fulfils the strict avalanche criterion. *e dependency
matrix given in Table 4 is obtained using the procedure
suggested in [52]. *e SAC of the proposed S-box is found to
be 0.5046 which is significantly close to ideal value of 0.5.

4.3. Bits Independence Criterion (BIC). Webster and Tavares
also introduced another crucial criterion called output bits
independence criterion of Boolean function. Pairwise inde-
pendence of the avalanche variables for a given set of ava-
lanche vectors is measured in order to determine nonlinearity
of obtained functions [53]. *e degree of independence be-
tween the pairs is measured through correlation coefficient.
For the Boolean functions g0, g1, . . . , gn− 1 to satisfy BIC, each
Boolean function gj xorgk(j≠ k, 0≤ j, k≤ n − 1) should have
high nonlinearity to ensure sufficient independence. *e BIC
results for nonlinearity of our S-box are determined, which
are presented in Table 5. *e table shows the minimum
nonlinearity of 102 but a high mean score of 109.14.

4.4. Differential Uniformity (DU). Differential cryptanalysis
proposed by Biham and Shamir [54] and other related
techniques are powerful tools to analyze block ciphers. It led
to various research works exploring the security offered by
different types of functions. Now, differential uniformity
(DU) is used to find robustness of S-boxes against differ-
ential cryptanalysis as suggested in [54]. It is a measure of
change observed in differential output Δb with respect to
change in input Δa. In order to avoid these attacks, S-boxes
with low values of DU are desirable. *e expression given in
equation (9) is used to compute DU for an S-box. Following
the expression, we get the differential distribution table given
in Table 6. Interestingly, the maximum value of the dif-
ferential distribution table is 8 only. *e remarkable feature
of the S-box is that this maximum value of DDT (which is 8)
occurs in the table only once:

DU(S) � max
Δa≠0,Δb

(# a ∈ S|S(a) ⊕ S(a⊕Δa) � Δb{ }). (9)

4.5. Linear Approximation Probability (LAP). Linear ap-
proximation probability is another vital security measure
used to assess robustness of an S-box against Matsui’s linear
cryptanalysis [55].*is test is conducted to find imbalance of
an event. *e parity of the input bits selected by mask a is
equal to the parity of output bits selected by mask b.
According to Matsui’s definition, linear approximation
probability is measured as
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Table 3: Proposed S-box after phase-3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 220 67 24 165 121 226 157 211 150 47 92 20 2 167 91 169
1 114 204 103 155 186 14 69 185 235 70 241 33 143 134 19 51
2 250 237 116 36 247 71 31 152 40 98 212 153 230 52 22 7
3 173 34 79 60 45 1 82 206 104 83 90 13 146 144 43 170
4 99 75 198 228 189 39 35 0 132 159 109 229 156 41 236 174
5 56 101 118 205 96 249 191 138 142 219 44 224 124 95 63 244
6 195 207 6 190 122 172 233 127 222 54 223 246 26 225 162 76
7 177 105 50 8 11 102 65 89 58 176 68 126 17 239 115 25
8 213 218 32 74 57 240 253 9 217 164 27 136 129 55 160 188
9 187 133 193 180 137 10 171 62 5 151 209 30 42 28 119 81
10 208 46 66 111 97 86 135 242 201 23 145 93 16 21 141 178
11 221 73 123 12 163 61 215 107 112 210 182 80 94 243 29 199
12 184 252 108 216 64 139 140 85 154 203 255 77 166 254 113 214
13 128 168 88 148 37 72 194 78 131 48 179 251 49 161 53 202
14 106 149 175 238 117 125 200 232 231 158 248 181 120 197 227 130
15 192 147 245 110 38 59 183 87 4 3 84 15 18 196 100 234
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Figure 7: Nonlinearity scores of component Boolean functions of the proposed S-box.

Table 4: Dependency matrix for proposed S-box’s SAC assessment.

0 1 2 3 4 5 6 7
g0 0.4687 0.5312 0.5468 0.5468 0.4843 0.4687 0.5156 0.4531
g1 0.5 0.5312 0.5625 0.4843 0.4531 0.5156 0.4843 0.4843
g2 0.5468 0.5312 0.4843 0.5 0.5156 0.5312 0.5468 0.4531
g3 0.5468 0.4843 0.5 0.5156 0.4843 0.5156 0.4531 0.4531
g4 0.4843 0.4843 0.5156 0.5781 0.5625 0.4843 0.4375 0.5312
g5 0.5 0.5312 0.5468 0.4687 0.5 0.5156 0.5312 0.5156
g6 0.5 0.5625 0.5 0.4687 0.4687 0.5156 0.4531 0.5468
g7 0.5468 0.5 0.4687 0.5312 0.5312 0.4687 0.4531 0.5

Table 5: Nonlinearity scores of pairwise independent Boolean functions for BIC analysis of proposed S-box.

g0 g1 g2 g3 g4 g5 g6 g7
g0 — 112 110 112 112 110 110 106
g1 112 — 110 110 110 110 112 106
g2 110 110 — 112 110 112 108 104
g3 112 110 112 — 110 112 110 106
g4 112 110 110 110 — 110 110 102
g5 110 110 112 112 110 — 110 104
g6 110 112 108 110 110 110 — 106
g7 106 106 104 106 102 104 106 —
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LAP(S) �
1
2n max

a,b≠0
# x ∈ X|x.a � S(x).b{ } − 2n− 1

 ,

(10)

where a and b are input and output masks, respectively, and
X is the set of all possible inputs and 28 for 8 × 8 S-box which
is the number of its elements. An S-box with low LAP value
is desirable as it can oppose various linear attacks. We
evaluated the linear approximation probability of proposed
S-box and we found it to be 0.1094.

4.6. Comparison with State-of-the-Art S-Box Methods. *e
performance of any new S-box technique should be gauged
against the already investigated state-of-the-art S-boxes.
Here, we compared the cryptographic features of our pro-
posed S-box with some recent S-boxes methods in Table 7. It
is quite clear from the comparison analysis made in Table 7
that the nonlinearity of the proposed S-box is sufficiently the
highest, which is 110.5, and the smallest value of linear
approximation probability is 0.1094; both performance
scores indicate higher robustness of proposed S-box against
linear cryptanalysis and other related attacks compared to all

Table 6: Differential distribution table for proposed S-box.

4 4 4 4 4 4 4 4 6 4 4 4 4 4 6 6
6 4 4 4 4 6 4 4 4 4 4 6 6 4 6 4
6 4 4 6 6 6 6 6 4 4 4 8 6 4 4 4
4 4 4 6 4 4 6 4 4 4 4 4 4 4 6 6
6 4 4 6 6 4 4 6 6 6 4 6 6 6 6 4
4 6 4 4 4 4 6 4 4 4 4 4 4 4 4 6
4 4 6 4 4 4 6 6 4 4 6 4 4 4 4 6
4 4 4 6 6 4 4 4 4 6 4 4 6 6 4 4
4 4 6 6 6 6 4 4 6 4 6 6 4 4 4 6
4 6 4 4 4 4 4 6 4 4 4 4 4 4 4 4
6 4 6 6 4 4 6 4 6 6 4 6 4 4 4 4
4 4 6 4 6 6 4 4 4 6 4 4 4 4 6 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 6 6 4 6 6 6 4 6 4 4 6
6 4 4 4 4 4 4 4 4 6 4 6 4 6 4 6
4 4 6 4 4 4 4 4 6 4 4 4 4 4 4 0

Table 7: Performance comparison of proposed S-box with recent S-box methods.

Method
Nonlinearity

SAC BIC-NL DU LAP
Min Max Average

Proposed 108 112 110.5 0.5046 109.14 8 0.1094
Ref. [13] 104 110 106 0.5039 103.38 10 0.1406
Ref. [17] 102 108 105 0.5029 102.9 12 0.1484
Ref. [19] 106 108 106.5 0.4990 103.57 10 0.1250
Ref. [20] 104 108 106.5 0.5037 102.85 10 0.1406
Ref. [25] 102 108 105.25 0.5037 102.6 10 0.1328
Ref. [56] 102 108 105.25 0.4907 102.35 10 0.1328
Ref. [57] 106 108 107 0.4972 103.5 10 0.1563
Ref. [58] 106 108 106.5 0.5046 104.14 10 0.1328
Ref. [59] 103 109 105.1 0.5061 103.6 10 0.1563
Ref. [60] 106 108 106.7 0.4957 103.5 10 0.1250
Ref. [61] 100 110 105.5 0.5 103.78 12 0.1250
Ref. [62] 100 108 105 0.5007 104.14 10 0.1328
Ref. [63] 96 104 100.5 0.4973 102.78 10 0.15625
Ref. [64] 104 108 106.75 0.5031 103.64 12 0.1484
Ref. [58] 106 108 106.5 0.5046 104.14 10 0.1328
Ref. [65] 96 108 102.25 0.5059 103.5 12 0.1250
Ref. [66] 104 110 106 0.4978 103.92 12 0.1563
Ref. [67] 108 110 108.75 0.4946 102.78 10 0.1328
AES 112 112 112 0.5058 112 4 0.0625
APA 112 112 112 0.4987 112 4 0.0625
Gray [68] 112 112 112 0.5058 112 4 0.0625
Prime [68] 94 104 99.5 0.5164 101.71 72 0.1328
Skipjack [68] 104 108 105.25 0.5026 104.14 12 0.1172
Xyi [68] 104 106 105 0.5023 103.78 12 0.1563
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S-boxes listed in Table 7. *e proposed S-box also satisfies
the SAC criterion as its score is considerably closer to ideal
0.5 value, and it also satisfies well the BIC performance of the
proposed S-box for nonlinearity having a decent value of
109.14, which is the highest among all the BIC scores of the
comparison table. Our proposed S-box performs extremely
well in putting effort to mitigate the differential cryptanalysis
as the differential uniformity is 8, which is the lowest of all
DU listed in the table. Hence, the comparison analysis makes
it quite evident that our generated S-box has excellent
cryptographic features, which performs significantly better
than many recent and state-of-the-art S-boxes available in
the literature.

5. Conclusions

*e security of chaos-based cryptographic algorithms sig-
nificantly depends on the dynamical characteristics of
employed chaotic maps or systems. *e applied chaotic maps
should not have the frail performance for a strong chaotic
cryptosystem. Keeping this guideline in consideration, this
paper firstly suggested a 2D discrete hyperchaotic map, which
is found to have prominently better dynamical characteristics
compared to some existing 2D discrete chaotic maps when
assessed against chaotic sensitivity, Lyapunov exponent, bi-
furcation, approximate entropy, and so forth. *e proposed
hyperchaotic map has been applied to suggest a novel ap-
proach for generating 8 × 8 S-boxes based on multiplication
operation of random permutation matrices obtained through
chaotic sequences. *e approach of evolving S-boxes using
the chaotic permutation matrices determined the suitable
configuration of S-box. *e S-box cryptographic strength
improvisation is progressed by the action of experimentally
found potent algebraic group structure. *e performance
appraisal against the well-accepted criteria shows the excellent
security features of proposed S-box. It has been found after
comparison analysis that the obtained S-box has better
cryptographic security, robustness, and power than many

S-boxes recently investigated and constructed in the
literature.

*e future scope of the proposed study includes its
investigation for the construction of varying sizes of n × m

substitution-boxes. *e evolution of S-boxes can be made
based on the multiple performance criteria instead of only
nonlinearity to make it cryptographically strong and robust
against related assaults. *e generated S-boxes can also be
applied to design cryptographic primitives such as image
encryption, information hiding, and cryptographic hashing.

Appendix

For the phase-2 of the proposed S-box method for a hy-
pothetical scenario, we have the following 5 × 5-ordermatrix
named sbox p (readers note that this is not the 5 × 5 S-box):

sbox p �

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.1)

For the above 5 × 5 sbox_p matrix, one needs a 5 × 5
permutation matrix P. So, to generate a random permuta-
tion matrix P of size 5 × 5, the hyperchaos map (1) is iterated
5 times to get chaotic arrays x and y, which are obtained as
given below. Following the phase-2 algorithms, the arrays uu
and sorted sequence qq are derived. *e arrays uu and qq
help to get the permutation sequence T, which in turn
resulted in a random permutation matrix P of size 5 × 5.*e
incorporation of alteration in the previous matrix sbox p

according to the rule sbox p � (((sbox p) × P)′) × P gives
rise to another changed matrix sbox p but consisting of all
the elements of the input matrix sbox p as evident from the
matrix obtained in the presented example:

x � [0.261105755315484, 0.858825702647243, 0.163850142521255, 0.601977298436912, 0.015230243618218],

y � [0.775401184918429, 0.221530836755418, 0.992413671540929, 0.790516771946924, 0.082090433193052],

uu � [1.036506940233913, 1.080356539402661, 1.156263814062184, 1.392494070383837, 0.097320676811270],

qq � [0.097320676811270, 1.036506940233913, 1.080356539402661, 1.156263814062184, 1.392494070383837],

T � 5, 1, 2, 3, 4 ,

P �

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

sbox p � ((sbox p) × P)′(  × P,
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sbox p �

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

×

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

sbox p �

7 12 17 22 2
8 13 18 23 3
9 14 19 24 4
10 15 20 25 5
6 11 16 21 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A.2)

Proceeding further in similar fashion, the new config-
uration of sbox p obtained after 100th successive generation
for the above example case is given as

sbox p �

19 17 18 20 16

9 7 8 10 6

14 12 13 15 11

24 22 23 25 21

4 2 3 5 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.3)
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[11] F. Özkaynak and A. B. Özer, “A method for designing strong
S-boxes based on chaotic Lorenz system,” Physics Letters A,
vol. 374, no. 36, pp. 3733–3738, 2010.

[12] Y. Tian and Z Lu, “S-box: six-dimensional compound
hyperchaotic map and artificial bee colony algorithm,”
Journal of Systems Engineering and Electronics, vol. 27, no. 1,
pp. 232–241, 2016.
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