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Recently, cross-view feature learning has been a hot topic in machine learning due to the wide applications of multiview data.
Nevertheless, the distribution discrepancy between cross-views leads to the fact that instances of the different views from same
class are farther than those within the same view but from different classes. To address this problem, in this paper, we develop a
novel cross-view discriminative feature subspace learning method inspired by layered visual perception from human. Firstly, the
proposed method utilizes a separable low-rank self-representation model to disentangle the class and view structure layers,
respectively. Secondly, a local alignment is constructed with two designed graphs to guide the subspace decomposition in a
pairwise way. Finally, the global discriminative constraint on distribution center in each view is designed for further alignment
improvement. Extensive cross-view classification experiments on several public datasets prove that our proposed method is more

effective than other existing feature learning methods.

1. Introduction

Under the modern technique background, there are many
artificial intelligence methods inspired by nature, such as
machine learning [1-4], reinforcement learning [5], and arti-
ficial immune recognition [6]. Among them, machine learning
can effectively deal with image recognition problems. However,
some researches have indicated that the adaptive ability of
traditional machine learning drops sharply, when the learned
images have large distribution discrepancy, such as cross-view
data [2]. This discrepancy means that data variance in the view
space is larger than data variance in the class space. It generates
that the different views become the major factor affecting
recognition. Therefore, we mainly focus on cross-view sub-
space learning to deal with the distribution discrepancy
problems in this paper.

In recent years, subspace learning (SL) has made great
contributions in the field of machine learning and has a wide

application in computer vision, data mining, and so on
[7-21]. One of the most typical methods is principal
component analysis (PCA) [22], which uses an orthogonal
transformation to reduce the dimensionality while pre-
serving unique information (principal component) of the
data. However, PCA is an unsupervised dimensionality
reduction method, which disregards the discriminative in-
formation attached to the semantic component. So, a su-
pervised  dimensionality reduction method, linear
discriminant analysis (LDA), using semantic component
was proposed in [23]. LDA learns a supervised linear
combination to adjust the spatial dispersion. However, LDA
generates the overfitting phenomenon when processing
noisy data. To overcome corruption, rank minimization
technique has been spotlighted in recent years. Candés et al.
enforced low-rank and sparse constraints to eliminate
corrupt information in the data [24]. After that, low-rank
representation (LRR) was proposed to restore clean data
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through dictionary representation in multiple spaces [7]. In
the last decade, LRR model has achieved satisfactory results
in various fields [8-16, 25-35], such as domain adaptation
[8], clustering [9], transfer learning [25], and low-rank
texture structure [26]. However, Liu et al. pointed out that
the dictionary of LRR may fail when the data is insufficient.
To solve this problem, the latent LRR (LatLRR) was pro-
posed to enhance subspace learning by latent information
[10]. However, LatLRR is still unsupervised. Inspired by LRR
models and LDA, Li et al. unified linear discriminant
constraint and low-rank representation into subspace
learning to enhance the learned low-dimensional feature
[11]. Afterwards, the low-rank embedding (LRE) proposed
in [12] provides a robust embedding subspace learning
framework that eliminates reconstruction errors by adopting
l,,-norm constraint on the projection residual. The latent
low-rank and sparse embedding (LLRSE) was developed in
[13] based on LRE. LLRSE additionally introduces a
reconstructed orthogonal matrix, which makes the projec-
tion space contain more unique feature.

Recently, a lot of algorithms dedicated to cross-view
feature learning based on above methods have been de-
veloped [27-31]. The low-rank common subspace (LRCS)
was proposed in [27], which finds a view common subspace
by LRR. Nevertheless, LRCS only considers the view label
and ignores the discrimination of the class label. From the
perspective of multiview data structure, a supervised sub-
space learning method, namely, multiview discriminant
analysis (MVDA), was proposed in [28] by using the dis-
criminative information in the different views. After that, a
multiview manifold learning with locality alignment
(MVML-LA) framework proposed in [29] provides us with a
discriminative low-dimensional latent space. Most recently,
the robust cross-view learning (RCVL) was designed to learn
a common view-invariance discriminative subspace by
adopting a novel rank minimization technique [30]. How-
ever, RCVL ignores the global discriminative information.

Human visual perception works through visual circuit,
whose function is to understand the visual signal in a layer-
wise way. In detail, our brain uses a small feature extractor
(each layer in the visual circuit) to obtain some simple
features from the real complex signal. Drawing inspiration
from layered processing in human visual system, we rep-
resent the cross-view data in two different structure layers,
class structure layer and view structure layer, respectively, in
order to construct the view-consistency feature learning
model. Hence, we design two novel discriminative align-
ment constraints from simultaneous local and global
viewpoints, which can not only disentangle the class and
view layers but also bridge the gap existent in cross-view
data. Our contributions are as follows:

(1) The dual low-rank representation model is set up to
discover the two latent structures existent in cross-
view data, which are view and class structures, re-
spectively. These two distinguished structures are
conducive to discovering the potential feature for
cross-view classification task.
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(2) A local alignment constraint based on two designed
local graphs is utilized to transform the neighbouring
relationships between each pair of samples in the
learned subspace. This constraint can make the view
and class structures be separated effectively.

(3) A global alignment constraint designed in our
framework ulteriorly cut down view discrepancy.
The projected samples from view and class subspaces
are used to compose the discriminative constraint in
global alignment by enforcing the mean distance
between classes in different views.

Figure 1 illustrates how to learn an aligned subspace in
which samples have a large distance between classes and a
close distance within class from both of class perspective and
view perspective. The structure of this paper is organized as
follows. Related works simply review the baseline of our
work. Part three presents the proposed model and its so-
lution process. Experiments show the results of the com-
parison experiments and parameter experiments. At last,
conclusions summarize this paper.

2. Related Works

Our method has an intimate connection with the two fol-
lowing methods: (1) low-rank representation and (2) linear
discriminant analysis.

2.1. Low-Rank Representation. LRR is unaffected by errors
and can explore the underlying structure of data. Suppose
that X = [X,, X,, ..., X] is a matrix of natural data from k
classes. The model of LRR can be expressed by

minrank (Z) + A|E[,
ZE (1)
S.t. X = XZ + E)

where Z is the low-rank linear combination coefficient
matrix of data X. Matrix E with [;-norm can fit the
corrupted information in real life. 1 > 0 is used to balance
the level of corruption. Therefore, LRR that can simulate
the corrupted data with representation framework pos-
sesses a feasible skill, which can handle the cross-view data
well.

2.2. Linear Discriminant Analysis. LDA is a familiar su-
pervised method proposed for dimensional reduction, which
is constrained by discriminative semantic information. The
main principle of LDA is to find a discriminative subspace
with the largest interclass variance and the smallest intraclass
variance. Assume that n samples from m classes are
{X, y} ={(x1, ¥1), ..., (x,, ¥,)}, where X represents sam-
ples and y represents labels of different samples. In addition,
X and X; denote the center of all samples and samples be-
longing to the ith class, respectively. Hence, between-class
scatter and within-class scatter are as follows:
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F1GUrke 1: Illustration of the discriminative alignment constraint framework.

(2

where n; is the number of samples from the ith class.
Therefore, the generalized Rayleigh quotient can be de-
scribed as follows by Fisher discriminant criterion:

Tr(wTSb w)
max 7 Ta Vv (3)
w Tr(w Sw w)
where w is a projection matrix and Tr(-) denotes the trace
operator. Furthermore, the solution of equation (3) is rel-
atively complicated, so we transform it into trace-difference
problem as follows [36]:

T T

muz)ixTr(w Sbw) - Tr(w Sww). (4)

LDA not only can retain as much information for

recognition as possible while reducing the dimensionality

but also can remove superfluous and dependent variable

feature to the disadvantage of classification task. Never-

theless, due to the distribution of cross-view data, the

performance of LDA only considered class semantic in-
formation is not outstanding.

3. Our Proposed Method

This section contains four parts. The first part of this chapter
is to specify the symbols in our algorithm. Part two is a
detailed introduction and direction about our framework.
The third one develops a numerical scheme to obtain the
approximate solutions iteratively. The last part discusses the
computational complexity of our proposed algorithm.

3.1. Notations. Assume that X, and X, (X = [X,X,] €
R¥™") are two matrices of different views from same ¢ classes,
where n and d denote the number and dimensionality of all
training samples, respectively. Class structure Z_. € R™" and
view structure Z, € R”" are two linear combination ma-
trices, which are included in local graph framework to
discover view-invariant structure of cross-view data.
P € R*? is a basis transformation projection matrix, where
p is dimensionality of projected data. E € R*" is a matrix of
error data designed to obtain a robust subspace from noise.
In addition, V|, V,,V,V, € R™ are four constant coeffi-
cient matrices utilized for aligning the global information of
cross-view data.

3.2. Objective Function. To address the cross-view dis-
criminative analysis, we formulate our subspace learning
model with simultaneous local and global alignments as
follows:
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Z(P.Z.,Z,)

m1n

G(P.Z.Z,)

T+ MIEL, + oc<Tr(PTXZCLC(PTXZC)T> - Tr(PTXZVLV(PTXZV)T»

S (PTXZ)) 15 (P XZ) - TSP X2.)))

st X=X(Z,+Z)+EPP=1I,

where D (Z,, Z,, E) is a low-rank framework of two potential
manifolds in cross-view data. £ (P,Z.,Z,) enforces the
view-specific discriminative local neighbor relationship
among instances. G (P, Z,, Z,) performs the discriminative
clustering and separation of the global structure in the class
manifold and the view structure, respectively. In the fol-
lowing, the above terms are illustrated in detail.

3.21. Dual Low-Rank Representations. Only one linear
combination matrix, which is constrained by the rank
minimum, is used by methods based on low-rank model.
Nevertheless, unitary low-rank structure gives rise to the
failure of linear representation due to differences between
distributions of views, which endow cross-view data from a
same class with a large divergence. Therefore, the two
structure matrices Z. and Z, are adopted to solve this
specific problem, where the between-view samples from the
same class are far away and the within-view samples from
the different classes are closer. The first term is defined with
dual low-rank representations to strip down the class and
view structures as follows:

D(ZC’ZV’ E) =||Zc"* vl % +/11"E”2,1
st. X=X(Z.+Z,)+E,

(6)

where | - |, is a sign of the nuclear norm, which is close to a
representation of the rank minimum problem, and its so-
lution is relatively convenient. Assuming that part of the
data from real world contains corruption, we adopt the
I, ,-norm to make matrix E have the structured sparsity as
the noisy data. I,;-norm can effectively remove the cor-
ruption of specific sample while holding the other clean
samples. A; >0 is used to balance the corruption.

(5)

3.2.2. Graph-Based Discriminative Local Alignment. To in-
troduce the local discriminative constraint, two graph-based
constraints are constructed on each pair of synthetic samples
with Z, and Z, from class and view subspaces, respectively,
as follows, which can better cluster intraclass samples and
decentralize interclass ones.
2
Yo Wi

gc = Z (Yc,i -

ij

2= 3 (V- W,
ij

whereY_; and Y, ; denote the ith projected samples of cross-
view data from the class space Y, = PTXZ_ and view space
Y, = PTXZ,, respectively. Correspondmgly, cjand Y, ;
denote the jth projected samples. W;, and W7, denote graph
weight matrices that are defined as follows:

{1, if x; eNk( )andl —l

(7)

0, othervise,

1’
Wi = {
0)

where [; and [; are the labels of samples x; and x;, re-
spectlvely x; € Ny (x;) denotes that x; belongs to the k,

adjacent datasets ofL the same sample x ; X € N7} k, (x ) means
that x; belongs to the k, adjacent datasets of the same view
sample x;. Hence, Z, can calculate the distance between two
similar samples from same class. Similarly, &, denotes the
distance between two similar samples from different classes.
With the help of Fisher criterion, the pairwise local dis-
criminative constraint £ (Z,,Z,, P) can be rewritten as
follows:

, (8)
if x; € Ny (x;),butl; #1;,

othervise,

L(Z 2, P) = oc(Tr(PTXZCLC(PTXZC)T> - Tr(PTXZVLV(PTXZV)T», 9)

where L, and L, denote the Laplacian operators of W¢ and W".
« is a balance parameter. Minimizing the subtraction of trace in

equation (9) can weaken the impact of view information and
separate the class structure and the view structure.
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3.2.3. Discriminative Global Alignment. The discriminative
projection of all pairwise samples through < (Z, Z,, P) can
reduce the impact between views, but the differences be-
tween learned features from different classes are not

significant enough. So, to further enhance the separation of
two manifolds, we design a global discriminative constraint
for cross-view analysis as the third term G(P, Z,, Z,):

G(P,Z.Z,) = Tr(Sy(P'XZ,)) - Tr(Sp (P'XZ,)) - Tr(Sp,(P'XZ,)), (10)

where Sy, (PTXZ,) is within-class and between-view scatter
matrix in class manifold and Sy; (PTXZ,) (i = 1,2) is within-
view and between-class scatter matrix in view manifold.
These scatter matrices are formulated as

Sw(P'XZ) = ) (i - ) - )
'\ an
SBi(PTXZv) = (n”lj - ”i)(‘”j' - /’li)T’
j=1
G (P’ Zc’ Zv) =

where V; is the coefficient matrix of the within-class mean
feature of the ith view and \7,-(1' =1,2) is the coeflicient
matrix of the overall mean feature of the ith view. In detail,
V;(k,m) = (1/n") only if x; belongs to the mth class from
the ith view, where #/" denotes the number of samples of the
mth class from the ith view; in other cases, V;(k,m) = 0.
V. (k,m) = (1/n;) only if x; belongs to the ith view, where n;
denotes the number of samples from the ith view; in other

[z +12.]. + AElL,

+a<Tr<PTXZCLC(PTXZC)T) - Tr<PTXZVLV(PTXZV)T)>

where 4/’ (i = 1,2) denotes the overall mean feature from the
ith view and 4’ denotes the mean feature of the jth class
from the ith view. In this way, the within-class view margin
in class structure can be reduced, and the margin of between-
class data from same view in view structure can be mag-
nified. The third term can be framed as

Ay (Tr(Sy (P'XZ,)) - Tr(Spy (PTXZ,)) - Tr(Spy(P'XZ,)))

/\2<||PTXZC Vi - Vo)l P Xz (v, - \71)||i -|P"xz,(v, - \72)”;)

(12)

cases, V; (k,m) = 0.1, is a trade-off parameter. Equation (12)
achieves global alignment by the mean vectors of joint
synthetic samples from global representation and further
enforces the view-invariant constraint on the same class.

In addition, we add an orthogonal constraint PTp=Tto
neglect trivial solutions. In the end, we rewrite equation (5)
with all the terms as

(13)

2
P

h([P7x2 (v, - V) - |Px2 (v - V) - [Pxz (V.- 7))

st X=X(Z +Z)+EPP=1
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3.3. Optimization Scheme. To obtain the feasible solution of
Z, and Z,, we adopt two auxiliary variables J. and J,. Then,
equation (13) can be transformed into the following term:

ZC,Z%%]CJV ”IC

* +||]V

. T /11||E”2,1

+oc<Tr(PTXZCLC(PTXZC)T> - Tr(PTXZVLV(PTXZv)T»

(14)
2 2 N2
+/12<||PTXZC V= Vo)le =[P Xz, (v, - V)| - [P X2 (v, - V2)||F>
stX=X(Z +Z)+EPP=1].=2,],=2,
For optimization problems with equality constrains,  solution. The Augmented Lagrangian form of equation
the Augmented Lagrangian method is an effective  (14) is as follows:
i W D e,
+oc<Tr(PTXZCLC(PTXZC)T> - Tr<PTXZVLV(PTXZV)T)>
2 ~\2 N2
([P X2 (v, = Vo)l - [PTx2, (v - T - [Pz (v, - 7)) )
+Tr(Y{ (X - X(2Z,+ 2,) - E)) + Te(Y; (J - Z.)) + T(Y3 (J, - Z,))
1 2 2 2
H(x-x(z+2) - Bl 4 -z + .- 207
stP'P=1,
where Y,,Y,, and Y are the Lagrange multipliers and >0 First, by ignoring the other variables except P, equation
is the penalty parameter. We use an alternating solution to ~ (15) becomes
optimize iteratively all variables. We define the left bottom of
the variable plus t as the t-th solution.
. oc(Tr(PtTXZC’tLC(PtTXZC)t)T) - Tr<PtTXZV’tLV(PtTXZVJ)T)>
min 5 o o
g +A2<||PtTXZc,t V=Vl —"PtTXZv,t(Vl - Vl)"F —"P:TXZv,t(Vz - Vz)"F) (16)
stP'P=1
We obtain the projection matrix P, one by one, because
P, is an orthogonal matrix. For the ith column of P,, the
objective function is rewritten as
min o Tr( PLXZ,, L (P[XZ,,) ) - Te( PLXZ, L (PLXZ,,)" ) ) + e (PEPy - )
i (17)

N AZ(IIPZtXZC,t Vi =Vo)ls [Pz (v - V)L - [P, (V- \72)||;)
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We enforce the derivative of function (17) to be zero.

X

Zu(Vi= 7)W= 7)) (Vo= V) (Vo= V) v, )2

_Zc,t((Vl Vo) (Vy - Vz)T + “Lc)ZcT,t

Therefore, P;, is the ith eigenvector of the matrix in
equation (18) and P can be simply solved.
Update J:

]c,t+1 = II]lll’l "]c,t" % + Tr(Y§<]c,t - Zc,t)) + %"]c,t - Zc,t "}2?

er))
]c - Zc H—

The singular value thresholding is an approximate
method to solve the above kernel norm minimization
equations [37].

2

= Vel 3 -
ne T2 F
(19)

(X"PPIX) (1 + X X)Z gy + Zeyn (

7
" \xTP, = ¢, Py, (18)
Update J,:
]v,t+1 = n}in ”]vt" « T Tr(Yg(]v,t - Zv,t)) + %"]v,t - Zv,t ”i
_1 1 Ys, ?
= E"]v,t « T > o _(Zv,t +(Z>) F'
(20)

Equation (20) can be addressed in the same way as
equation (19).

We enforce the derivative of equation (15) with respect
to Z, to be zero.

(Az (Vi=Vy)(V, - Vz)T + “Lc)>

Ny
; (21)
- X'Y,-Y
=(x"p,PIx)" <XT(X ~XZ,, ~B,) 4 J o + M)
' ’ e
It is obvious that equation (21) is a Sylvester equation.
We can easily solve it by [38]. Similarly, we enforce the
derivative of equation (15) with respect to Z, to be zero.
(x"P,PIX) 1+ X"X)Z,,.,
~ ~\T —~ < \T
</\2(V1 —V)(Vi=V,) +20,(Vy=V,) (VL= V,) + och)
V4
+ i+l 7’], (22)
- XY, -Y
=(x"p,pIx)" <XT(X ~XZy —E) + ]y + (¥, -7y 3’t)>.
' ' Ny

Equation (22) can be addressed in the same way as
equation (21).
Update E:

£ min My 1 ?

te1 = N E" el + 2

E, —(X ~X(Zey + Z,) + &)

M Jllp

(23)

The above equation is a [, ; -norm minimization problem
whose solution is shown in [39].

The entire numerical iterative scheme for equation (14) is
shown in Algorithm 1, where the parameters p, 0, ¢, #, and
Nmax are set empirically. Moreover, the matrices
Z,Z,EY,,Y,, and Y; are initialized as 0 and the pa-
rameters o, A;, and A, are tuned by the experiments.

3.4. Complexity Analysis. According to the above compu-
tational process and Algorithm 1, we discuss the compu-
tational complexity of the proposed algorithm in detail. In
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Input: data matrix X, parameters a, A, and A,

Initialize: p=1.3,0=10"°,¢t=0, ¢

while not converged or t <t do
(1)Solving P,,, by equation (18);
(2)Solving J.,., by equation (19);
(3)Solving J,,,,, by equation (20);
(4)Solving Z_,., by equation (21);
(5)Solving Z ., by equation (22);
(6)Solving E, by equation (23);

12yt =t+1.
end while
Output: J,/,,Z.,Z,, E, P

max = 200, 70 = 0.1 and 7, = 10'%;

(7)Updating Y, ;) by Y, 0y =Y, + 17, (X = X(Z 41y + Z,401) — E);

(8)Updating Y,y by Yo,y = Youun + 1 Ueper = Zegnn)s

(9)Updating Y3,y by Ys,y =Ya 0 + 7, (Jypn = Zyp s

(10)Updating the parameter #,,; by #,.; = min (1. P7,);

(11)Checking convergence by max (|X = X (Z. ;1 + Z,111) = Eriilloo Wese1 = Zepsiloo Wopir = Zopitlleo) < 65

ALGORITHM 1: Algorithm for our proposed framework.

60

Classification rates (%)

Cl1 C2 C3 C4
20% corrupted COIL-100
B PCA I LatLRR B Ours
E LDA I SRRS
[ LPP s RCVL

FIGURE 2: Classification results of different experiments on 20%
corrupted COIL-100.

Algorithm 1, the main factor of algorithm complexity de-
pends on Steps 1-5. Equation (18) is a typical characteristic
equation, which costs O (1), where # is the number of the
training samples. The SVD decomposition in Steps 2 and 3
takes about O (n%), but it can be reduced O (rn?) due to the
low-rank matrices J,. and J,, where # is the rank of low-rank
matrix. Equations (21) and (22) are two Sylvester equations
whose computational complexity is O (n*). In summary, the
computational complexity of our proposed method is O (n*).

4. Experiments

In this section, we evaluate the performance of our proposed
method with classification task. Firstly, we introduce four
cross-view datasets: face database, object databases, image-
text database, and experimental setup. Secondly, we adopt
several excellent subspace learning algorithms for com-
parison with ours. The initializations of all unknown pa-
rameters are tuned to get the best experimental results. The

analysis of parameters is shown in Figure 2. In addition, each
experiment is repeated 10 times and the average classifi-
cation results are shown.

4.1. Experimental Datasets. CMU-PIE Face dataset contains
face images in 9 postures and 21 illumination conditions of
68 people. In our experiment, we chose 4 kinds of postures,
which are P05, P09, P27, and P29. The original dimension of
the cropped face images is 64 x 64. To enhance efficiency of
our algorithm, the 300-dimensional principal feature
extracted by PCA was adopted to our experiment.

Wikipedia dataset, which is an image-text bimodal
dataset, consists of 2866 pairwise samples from 10 classes.
The dimensions of the image and text are 4096 and 100,
respectively. Therefore, due to inconsistency of dimen-
sionality of the two features, we use PCA to adjust the image
dimension.

COIL-20 object dataset is composed of 20 objects from
a level 360-degree view. There is 5° between every two ad-
jacent images, so each category has 72 samples. We divide
the 72 images into two groups, G1 and G2. In addition, G1 is
composed of samples from V1 [0°, 85°] and V2 [185°, 265°].
Similarly, G2 is composed of samples from V3 [90°, 175°]
and V4 [270°, 355°].

COIL-100 object dataset is an extension of the COIL-20.
The only difference is that the COIL-100 is composed of 100
objects from a level 360-degree view. Therefore, the set of the
COIL-100 dataset is similar to that of the COIL-20 dataset.

4.2. Experimental Results and Analysis. In experiments, we
need not use any information about the test set, including
class and view information. We select several subspace
learning methods as comparison methods, that is, PCA,
LDA, locality preserving projections (LPP) [40], LatLRR,
SRRS, and RCVL. After extracting feature with the com-
parison methods, we uniformly choose KNN as classifier to
evaluate their performance. In addition, we also add 10
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(a)
FIGUure 3: The instances of original data and corrupted data. (a) CMU-PIE face dataset. (b) COIL-20 object dataset.
TaBLE 1: Classification results (%) of all methods on original CMU-PIE dataset.

Methods C1 C2 C3 C4 C5 C6

LDA 62.96 + 0.66 66.76 £0.58 62.16 +1.20 61.50+1.14 56.54 +0.55 61.83+0.88
PCA 48.28 £0.59 50.50 £0.72 49.07 +£0.95 48.43+1.11 45.51 +0.84 49.68 +0.43
LatLRR 65.10+0.97 66.61 +1.57 62.47 +£1.34 63.09 £2.08 61.04 +1.87 60.42 +0.73
LPP 62.40+0.80 60.17 +£0.27 61.97 +0.33 62.13+0.45 58.34+0.10 60.72 £0.28
SRRS 95.35+1.05 91.66 +1.84 95.82+1.35 90.22 £ 0.26 96.04 + 1.07 87.16 +0.55
RCVL 97.14+0.09 93.70 +0.59 97.26 £0.04 92.99 +0.12 97.55+0.06 88.60 +£0.03
Ours 98.27 +0.11 93.47 +£0.06 98.15 +0.08 91.69 +0.08 98.53 +0.02 90.27 +0.14

TasLE 2: Classification results (%) of all methods on 10% corrupted CMU-PIE dataset.

Methods C1 C2 C3 C4 C5 C6

LDA 20.45 +0.04 21.01 +0.06 19.16+0.17 16.42+0.12 13.64+0.15 14.96 +0.05
PCA 48.09+0.74 46.90+0.25 47.74+0.31 47.99+0.08 46.90+0.10 46.63+0.06
LatLRR 59.14 +1.82 60.38 % 1.10 57.94+0.81 58.10 +1.24 57.03 +0.56 56.98 +0.96
LPP 38.47+0.27 34.97 +0.80 37.85+0.47 38.06 +0.24 3316 +0.63 35.77+0.57
SRRS 69.54 +0.41 66.91+0.96 70.02 +0.96 68.89 +0.31 70.28 +0.97 65.64 +0.51
RCVL 87.14+0.04 78.10+0.07 85.52+0.12 77.75+0.07 86.87 +0.10 76.09 +0.05
Ours 88.68 + 0.05 79.22 +0.02 87.31 +0.04 79.75+0.11 90.69 + 0.09 78.39 +0.04

TaBLE 3: Classification results (%) of all methods on 20% corrupted CMU-PIE dataset.

Methods C1 C2 C3 C4 C5 C6

LDA 9.23+0.10 8.66 +0.07 8.57:+0.13 6.270.11 6.82:+0.12 6.59+0.10
PCA 25.98+0.06 25.99+0.15 26.58+0.14 21.97+0.10 22.01+0.19 20.15+0.17
LatLRR 3826+ 1.04 34.67+1.18 35.00+0.84 36.11+1.12 34.97+0.74 35.76 +0.78
LPP 34.25+0.22 30.08 +0.67 29.89+0.93 33.27+0.25 30.95+0.51 31.07+0.59
SRRS 74.30+0.14 63.02+0.19 72.79+0.15 59.21+0.36 68.73+0.17 54.98 +0.27
RCVL 70.63 +0.08 61.39+0.16 71.44+0.10 57.34+0.16 65.02+0.09 53.05+0.07
Ours 74.58 +0.03 64.74+0.12 7317 +0.07 60.86+0.08 69.06 +0.06 56.56 +0.10

TaBLE 4: Classification results (%) of all methods on original COIL-20 dataset.

Methods C1 C2 C3 C4

LDA 63.85+1.89 61.23 +1.02 64.12 +2.07 62.77 +1.73
PCA 65.3+0.76 63.42+1.88 66.83 + 1.45 70.31 +1.60
LatLRR 80.65+ 1.57 81.7+2.13 80.39+1.05 86.8+1.29
LPP 76.06 +1.17 74.6 +1.04 77.53+1.45 78.99 +1.86
SRRS 85.56 +1.05 83.89+0.63 83.47 +0.84 94.58 +0.77
RCVL 83.22+0.97 79.04 +1.25 81.44 +0.75 90.23 + 1.00
Ours 86.39+0.55 84.61+0.99 85.67 +0.26 95.06 +0.57
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TaBLE 5: Classification results (%) of all methods on 10% corrupted COIL-20 dataset.
Methods Cl1 C2 C3 C4
LDA 3413+ 111 35.12+0.87 35.27 +1.24 38.55+1.47
PCA 49.44+0.97 51.69 + 0.94 48.31+1.49 50.81 +0.61
LatLRR 58.71+1.58 57.74+1.49 57.66 +1.27 60.00 +1.51
LPP 57.63+1.28 54.84+1.42 5825+ 1.31 58.62 + 1.01
SRRS 80.72 +0.70 7436 +0.79 75.50 +0.41 89.06 +0.57
RCVL 78.20 +1.07 71.92 +1.02 73.67 +0.80 87.13+0.55
Ours 82.22+0.90 75.14 +0.65 77.08+0.31 90.28+0.93
TaBLE 6: Classification results (%) of all methods on 20% corrupted COIL-20 dataset.
Methods Cl C2 C3 C4
LDA 21.45+1.22 20.76 + 1.57 2115+ 1.06 20.77+1.39
PCA 43.49+ 146 44.16 +0.64 43.98+1.10 45.03+1.42
LatLRR 33.71+1.13 34.92+0.88 30.73+1.28 33.55+1.36
LPP 3513+ 1.04 31,26 +0.97 3272+ 1.60 3416+ 131
SRRS 75.64 % 1.02 66.72 +0.84 70.56+ 1.17 81.14 +0.45
RCVL 73.20 +0.94 64.96 +0.48 66.03 +0.56 79.02+1.26
Ours 76.25 +0.57 68.36 +0.24 71.69 + 1.10 82.64+ 116
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FiGure 4: Classification results of different experiments on COIL-100.
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FiGure 6: Classification results of comparison experiments on original and corrupted Wikipedia.
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percent and 20 percent of random noise to part of the
datasets to demonstrate the adaptability of our subspace
learning algorithm to different levels of corrupted data and
some instances are shown in Figure 3.

For CMU-PIE, we randomly perform cross-view sub-
space learning on two poses, with a total of 6 experimental
groups, which are C1{P05,P09}, C2{P05,P27}, C3{P05,P29},
C4{P09,P27}, C5{P09,P29}, and C6{P27,P29}. Tables 1-3
respectively show the classification results of all experi-
mental algorithms on the original data, 10% noisy data, and
20% noisy data. For COIL-20 and COIL-100 object datasets,
we select two sets of samples from G1 and G2 as a cross-view
training set, respectively, and the others as a test set. So we
get 4 experimental groups from COIL-20 and COIL-100
datasets, including C1{V1,V3}, C2{V1,V4}, C3{V2,V4}, and
C4{V2,V3}. Tables 4-6 display the classification results of all
experimental algorithms on the original data, 10% noisy
data, and 20% noisy data from COIL-20. Figures 2, 4, and 5
show the experimental results of four groups from original
COIL-100 dataset, 10% corrupted COIL-100 dataset, and
20% corrupted COIL-100 dataset. For Wikipedia, we use the
reduced dimensionality image feature and text feature as two
views and Figure 6 displays the results of comparison ex-
periments on the original data, 10% noisy data, and 20%
noisy data.

The results of experiments prove that our method
achieves the persistent higher classification results compared
to other methods. For noisy data, the classification results of
most methods based on LRR are more robust than those of
other methods. It is due to the fact that low-rank repre-
sentation framework can restore raw information from
corrupted data by learning latent structure. Besides, another
result also can be found that the classification results of
methods used for cross-view data are better than those of

Complexity

other comparisons. Our proposed method projects data into
the discriminative view-invariant subspace via dual low-
rank representations framework, so that the method can
better learn from cross-view data.

4.3. Performance Evaluations. In this part, we test what
parameters should we assign to ensure that the performance
of our method can get a best grade. Then, we show the
convergence of our algorithm.

There are three tunable parameters a,1,, and A, in our
framework. We evaluate the effect of parameters on COIL-
20 Cl. a, A, are two parameters to adjust discriminative local
alignment and discriminative global alignment. From
Figures 7(a) and 7(b), it can be seen that our method gets the
best result, when « = 100 and A, = 0.01. Furthermore, A, is a
parameter to constrain the corrupted data and the classi-
fication result is optimal around 1.

In the end, we show the convergence analysis of our
method on different datasets: the original, the 10% corrupted
COIL-20 C1, and the CMU-PIE CI. The maximum value of
”X - X(Zc,t+1 + Zv,t+l) - Et+1"oo’ ”]c,t+1 - Zc,t+1"00’ and
1Tyie1 = Zyse1lloois used as convergence criterion in each
iteration. The variation of the maximum value with the
increase of the number of iterations is shown in Figure 8. The
curves point out that the proposed algorithm converges
steadily and efficiently after 20 iterations.

5. Conclusions

We proposed a subspace learning algorithm with discrim-
inative constraint via low-rank representation to solve the
cross-view recognition task. Our method can learn a dis-
tribution-invariant subspace from cross-view data by de-
signing two substantial structures with dual low-rank
constraints. We also integrate the local alignment and the
global alignment into our framework to eliminate the in-
terference caused by the view manifold in the subspace.
Meanwhile, we also design a feasible iterative scheme to
ensure that the model converges and obtains the optimal
solution. Extensive experiments on several public datasets
prove that our proposed method has strong robustness and
stability for cross-view classification tasks.

Data Availability

The datasets used in this paper can be downloaded through
the following links: (1) CMU-PIE face dataset: http://vasc.ri.
cmu.edu/idb/html/face/. (2) Wikipedia dataset: http://www.
svcl.ucsd.edu/projects/crossmodal/.  (3) COIL-20 dataset:
https://www.cs.columbia.edu/CAVE/software/softlib/coil -20.
php. (4) COIL-100 dataset: https://www.cs.columbia.edu/
CAVE/software/softlib/coil-100.php.
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