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Wheels are the key components of a train, and the shape of the wheel flange should be maintained to ensure the security of train
operations. As a method tomaintain the shape at the cost of the diameter size, reprofiling has significant impacts on the lifecycle of
a train. A wheel model is built in this paper based on the analysis of the wheel wear features and datasets from Taiyuan lo-
comotives. With the decision variables (Ti, Ti

′), which describe the reprofiling strategy, we formulate a multiobjective opti-
mization problem simultaneously minimizing the reprofiling numbers and maximizing the serving years. To find the solutions of
the multiobjective model, the NSGA-II (nondominated sorting genetic algorithm II) is extended with an alteration of the
crowding distance calculation and genetic operators. (e improved NSGA-II performs better than other approaches (e.g., fixed
reprofiling strategy, changeable reprofiling strategy, and NSGA-II). Meanwhile, outstanding solutions with longer servicing years
and less reprofiling are listed in this paper. Our study reveals the relationship between the diameter, flange thickness, and their
individual attrition rates and proposes a wear model, multiobjective model, and improved NSGA-II. Compared with existing
reprofiling strategies, the strategy recommended in our work can significantly increase the lifecycle of the wheel coupled with a low
repair frequency.

1. Introduction

In recent years, Chinese railway construction has entered a
new stage of rapid development. According to the ministry’s
annual statistical bulletin, the running mileage of railways
reached 127,000 kilometers in 2017. More than 23,000 ki-
lometers of new railway lines will be constructed during the
thirteenth Five-Year Plan, and the total investment will be
beyond 2.8 trillion CNY. However, with the continuous
operation of the train, the cost of reprofiling takes up a large
proportion of the maintenance cost, e.g., approximately 8
billion CNY per year. (us, maintenance optimization
techniques for the railway system are required under the
rapid growth of rail transportation.

Wheels are the key components of a train, and their
health status is closely related to the safety, comfort, and
smoothness of train operations. Minor changes in the wheels
may cause train accidents. (e aim of wheel reprofiling is to
process the worn wheels to the geometric size of the standard

contour. If such worn wheels continue to be used, there will
be an increased danger of derailment.

Engineers develop most of the wheel maintenance
strategies through experience. To improve the flexibility, there
has been increasing interest in the area of optimizing
maintenance strategies over recent decades. Fires R H and
Dfivial CG built a prediction model based on the multibody
dynamics and concluded that the wheel wear model in direct
proportion to the law force is the best [1]. Roger Enblom and
Mats Berg investigated the wear distributions over nonelliptic
patches under different operating conditions and simulated
on the theory of vehicle track coupling dynamics [2]. Xu built
a wheel wear model for the metro train based on the Gauss
method and provided an optimizing policy for wheel repair
[3]. Dirks and Enblom described the differences between the
wear and RCF prediction models and showed that adjust-
ments of the models have a significant influence on the RCF
prediction [4]. Ding et al. simulated the wheel wear of a heavy
haul freight car based on the FASTSIM algorithm and Zobory
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tread wear model [5]. With the combination of the vehicle
dynamics and the wheel profile parameters, Zhang et al.
presented a new approach to optimize reprofiling decisions
[6]. According to the wheelset maintenance data of a certain
type of urban rail train, Liao acquired the optimal recovery
threshold of the flange thickness through a linear regression
analysis of the flange wear and flange thickness [7]. Wang
et al. developed a data-driven model and listed the preferred
reprofiling strategies for the Guangzhou Metro Line One [8].

(ese papers indeed discussed the optimization
problem of wheel maintenance strategies, but there are two
main shortcomings. On the one hand, most existing
strategies rely on vehicle dynamics, and various modern
algorithms have not been applied to this field. On the other
hand, plenty of data that contain rich information have not
been fully exploited. Few studies have taken serving years
and the repair frequency of a wheel into consideration
together.

Multiobjective evolutionary algorithms (MOEAs) are
widely used in multiobjective optimization problems. (e
current mainstream multiobjective evolutionary algorithm
mainly includes NSGA-II (nondominated sorting genetic
algorithm II) [9], SPEA (strength Pareto evolutionary al-
gorithm) [10], SPEA2 (strength Pareto evolutionary algo-
rithm 2) [11], etc. (ese algorithms simulate genetic
methods in nature, through iteration from parent to children
in the direction of optimal solution, to give a final solution of
the problem.

Although many MOEAs have been proposed, most re-
searchers agree that few of these approaches have been
adopted as a reference. Meanwhile, the NSGA-II is a par-
adigm within the MOEA research community for the
powerful crowding operator. (e NSGA-II [12] is based on
the GA to solve multiobjective optimization problems. It will
first generate a random parent population of size nPop.
(en, a new population with genetic operators is created,
and the generated offspring is ranked together with the
parents with the nondominated sorting procedure. Each
solution is assigned a fitness value (or rank value) equal to its
nondominated level. (e crowding distances between
members on each front are calculated. Finally, the next-
generation individuals of the population size and the pro-
cedure will be continued until the maximum number of
cycles is reached.

To overcome the above limitations about the wheel
maintenance strategies, this paper makes the following
contributions:

(1) Definition and models: the actual wheel reprofiling
problem is formulated as a mathematical problem,
and the wear model and multiobjective optimization
model are established.

(2) Improved NSGA-II: the NSGA-II is extended in the
elite individual selection strategy and the genetic
operators to better fit the proposed multiobjective
model.

(e reminder of this paper is organized as follows. In
Section 2, the definition of the problem is given. (en, the

mathematical wear model is stated, and the multiobjective
model is proposed. Section 3 presents the improved NSGA-
II algorithm. Numerical experiments and results are shown
and compared in Section 4, while the conclusions and future
studies are given in Section 5.

2. Definitions and Models

(e flange height, flange thickness, flange gradient, wheel
diameter, and QR value are all parameters that describe a
wheel. (e flange thickness and the wheel diameter are the
two most significant measurements for wheels. (erefore,
this work considers these two variables as the key
components.

2.1. Problem Definition. Reprofiling is the main method of
maintenance during the lifecycle of a wheel. As shown in
Figure 1, the wheel diameter will be reduced during the
reprofiling process to recover the original shape of the wheel,
and the flange thickness will increase. (e reprofiling gain k,
also called the turning gain [13], is defined as follows:

k �
ΔD

ΔT
, (1)

where ΔD is the wheel diameter loss in the reprofiling
process and ΔT is the gained flange thickness. A value of 4.2
is utilized as the turning gain in this paper [14].

As mentioned above, a wheel should be reprofiled as
soon as possible when the flange thickness is less than the
minimum allowable value. (us, in the daily operations of a
train, the reprofiling problem is related to a decrease in the
wheel diameter and an increase in the flange thickness.
Additionally, the wheel must be replaced once the diameter
is less than the threshold of 1150mm.

To better delimit the problem, the flange thickness T is
considered the process variable, which is used to control the
reprofiling process. (e wheel diameter D is used as the
terminate variable, which represents the end of the wheel
lifecycle.

It is assumed that the i-th reprofiling strategy is (Ti, Ti
′),

where Ti is the flange thickness before reprofiling and Ti
′ is

the flange thickness value after reprofiling. If the entire
lifecycle of a wheel contains N reprofilings, then all the
reprofiling strategies of a wheel can be expressed as
(T1, T1′), (T2, T2′), . . . , (Ti, Ti

′), . . . , (TN, TN
′).

Since the object of this work is a locomotive of type SS4-
0997, the flange thickness begins at 34mm, and the mini-
mum threshold is 28mm. Meanwhile, D begins at 1250mm
and ends at 1150mm.When considering the entire life of the
wheel, the flange thickness begins from 34mm and will
undergo repeated (Ti, Ti

′) processes until the diameter is less
than 1150mm. Assuming that the flange thickness before the
wheel scrapped is Tend, the entire lifecycle of a wheel is given
as (34, T1), (T1′, T2), . . . , (Ti−1′, Ti), . . . , (TN

′, Tend).
(erefore, the reprofiling problem is abstracted into

finding (Ti, Ti
′), where N is the minimum and the serving

years are the maximum.
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2.2. Models. With the definition of the wheel reprofiling
problem, the wear model and multiobjective model are built.

2.2.1. Wear Model. Datasets from the SS4-0997 train from
the Taiyuan North Locomotive Depot are used to study the
wear regularity. We eliminate the dirty data according to the
FSFDP proposed by Alex in 2014 [15]. Considering the
preprocessing data, the variations in the wheel diameter and
flange thickness are defined as follows:

vd �
Dti+1

− Dti

ti+1 − ti

∗ 5, (2)

vt �
Tti+1

− Tti

ti+1 − ti

∗ 5, (3)

where 5 is taken as a test unit for the interval of the Tycho
examination machine, which is relatively short. (e value of
the diameter tested on day ti is symbolized as Dti

, and vd is
the abrasion rate of the wheel diameter. (e Tti

in equation
(3) represents the value of the flange thickness tested on day
ti, while vt is the wear rate of the thickness between ti and
ti+1. (e correlative coefficients are calculated to reveal the
relationships between D, T, vd, and vt. (e computational

results in Table 1 show that vd is closely related to D (resp.
−0.1225), and vt is correlated with T (resp., −0.2041). With
the correlation coefficient of −0.0422 and a significance level
of 0.05, vd is independent from T, which is the same for vt

and D (resp., 0.0504).
(e wheel diameter and the flange thickness are both

divided into segments of 0.1 millimeters in which the av-
erages of vd and vt are calculated. (e quadratic curve fitting
method based on a weighted least squares is applied to
determine the relationships between D and vd and between
T and vt. (e fitting curves are plotted in Figure 2, and the
expressions are given as follows:

vd � −0.00621∗D
2

+ 15.4∗D − 9544.0,

vt � −0.0262∗T
2

+ 1.64∗T − 25.7.
(4)

Figure 2(a) is the fitted curves of the wear rate of the
wheel diameter. (e abscissa is the wheel diameter value, the
ordinate is the wear rate, the blue asterisk is the calculated
discrete value of the wear rate, and the red curve is the fitted
curve. It can be seen from Figure 2(a) that when the wheel
diameter is 1239.94mm, the wear rate is the smallest, which
is close to zero. Correspondingly, Figure 2(b) is the fitting
curve of the wear rate of flange thickness. When the flange
thickness is 31.2mm, the wear rate is the slowest. Comparing
the fitting effects of the two figures, it can be clearly seen that
Figure 2(a) is better. (e following error analysis is based on
the above fitting results.

(e errors between the real data and fit data are cal-
culated to increase the accuracy of this work. As shown in
Figure 3(a), the error in the wheel diameter follows a normal
distribution with mean 0 and standard deviation 1.28, as in
equation (5). In Figure 3(b), the flange thickness is divided
into three segments: [28, 29.5], [29.5, 33], and [33, 34], as in
equation (6):

Error1̃N(0, 1.28), (5)

Error2(T) �

0.8981∗T
2

− 53.5456∗T − 797.6447, T ∈ [28.0, 29.5],

−0.0347∗T
2

+ 2.1169∗T − 32.3036, T ∈ [29.5, 33.0],

−2.4∗T
2

+ 162.8∗T − 2709.4, T ∈ [33.0, 34.0].

⎧⎪⎪⎨

⎪⎪⎩
(6)

(e wear functions of the wheel diameter and flange
thickness become

vd � −0.00621∗D
2

+ 15.4∗D − 9544.0 + Error1,

vt � −0.0262∗T
2

+ 1.64∗T − 25.7 + Error2.
(7)

Coupled with these functions, we can assume that the
wheel wear process starts from the original flange thickness
of 34 millimeters and ends at 28 millimeters based on the
wear rate of function vt. (e wheel diameter abrades from
1250 millimeters with the rate of vd until 1150 millimeters.

2.2.2. MultiobjectiveModel of theWheel. With the definition
of the reprofiling problem, the serving years of each unit
(Ti, Ti
′) can be obtained from the wear functions above,

which is expressed as f(Ti−1′, Ti). (e total serving years of a
wheel can be expressed as the summation of each reprofiling
unit. (us, the first objective function is expected to be the
maximum and is stated as

maxY � f 34, T1( 􏼁 + 􏽘
N−1

i�1
f Ti−1′ − Ti( 􏼁 + f TN

′ , 28( 􏼁. (8)

∆T

∆D = D′i – Di
∆T = T′i – Ti

∆D
/2

After reprofiling

Before reprofiling

Figure 1: Reprofiling procedure.
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In addition, the reprofiling numbers are considered to be
small enough to minimize the losses of the wheel diameter.
(e entire lifecycle of a wheel contains N + 1 units, so the
second objective function is expressed as follows:

minF � N + 1. (9)

(ere are several restrictive conditions in the model.
First, the wheel diameter should be in the range of
[1150 and 1250], while the flange thickness should fall in
[28, 34]. Second, the reprofiling strategy (Ti, Ti

′) must follow
the rule Ti <Ti

′. Finally, the adjacent repair strategies should
follow Ti−1′ <Ti. Coupled with the objective functions and
restrictions, the multiobjective reprofiling model of a wheel
is presented in equation (10) and is transformed into
equation (11) to make the objective functions uniform:

max , Y,

min , F,

subject to

1150≤Di ≤ 1250,

28≤Ti ≤ 34,

Ti <Ti
′,

(10)

min, (−Y, F),

subject to,

1150≤Di ≤ 1250,

28≤Ti ≤ 34,

Ti <Ti
′.

(11)

3. The Improved NSGA-II Approach

Based on the NSGA-II, a new approach to solve the mul-
tiobjective problem is proposed. (e global density is first
introduced to overcome the limitation of the crowding
distance in the classical NSGA-II. Additionally, new genetic
operators are proposed to better apply the multiobjective
presented in Section 2.2.2.

3.1. Crowding Distance Calculation. In the traditional
NSGA-II, the crowing distance is the average of two points
on either side of this point along each of the objectives. As
shown in Figure 4(a), the crowding distance of i in its front is
the average side length of the cuboid (shown with a dashed
box).

Since the density calculation of the classical NSGA-II is
limited to a single layer, the distance calculation cannot
precisely measure the density of point i. Taking Figure 4(b)
as an example, the classical calculation shows that the
crowding distance of points c and d is the same. However,
the density of point c (including points 3, 4, a, b, and d) is
larger than that of d (points 5, 6, and e). (erefore, in terms

of the global density, point c will be better than point d, and
the global density is introduced here to overcome the
drawbacks above.

With a large population size, the discrete distances are
prone to conflict with each other. To obtain continuous
values, the Gaussian kernel equation (12) is chosen to find
the density in this paper, where ‖x − xc‖ is the distance from
point x to the target point xc, and dealt is the kernel width:

f(x) � e
− x− x2

c( )/(2δ)2( ). (12)

Equation (11) is transformed into equation (13) to better
fit the calculation of the global crowding distance:

di � 􏽘
j∈IS/ i{ }

e
− dij/dc( 􏼁

2

, (13)

where dc is the cutoff distance, which is defined by the users,
and dij is the distances of all points i to the target point i.
(erefore, the crowding distance is the sum of the Gaussian
distances of all the points to the target point.

For the cutoff distance dc, we may choose the distance
that causes the average number of each targets’ adjacent
points less than the cutoff distance to account for 1% of all
the data points.

With the calculation of the global crowding distance and
the fast nondominated sorting approach of the NSGA-II,
each individual will have two attributes as follows:

(1) Nondominated rank of the NSGA-II: irank

(2) Density value: idensity � ρi

(e population is ranked based on the nondomination
sorting procedure of the NSGA-II, which is marked as at-
tribute 1 (individuals in the first front achieve the smallest
rank). (e density value (attribute 2) between members in
the entire population is then calculated using the Gaussian
kernel. Solutions with lower ranks will be chosen first, and
individuals with a smaller ρi will be selected in advance when
solutions belong to the same front.

3.2. Genetic Operators. (is section discusses improvements
to the corresponding genetic operators of the classic NSGA-
II to solve the problem mentioned in Section 2.

3.2.1. Selection Operator. Binary tournament selection,
which is a randommethod to select individuals in parents, is
used in the NSGA-II. However, in our work, the second
fitness value is expected to be small enough to reduce the
reprofiling costs, while the using years are expected to be
larger. (erefore, the individuals we choose are mainly
concentrated at the bottom. To accurately distinguish the
individuals, the k-means classification algorithm is used first
in the choice operation.

Figure 5 shows the result of using the k-means algorithm.
(e green points are those we prefer to choose (Part A), and
then, the red and blue ones are Part B and Part C, re-
spectively. (e three parts are all chosen to guarantee di-
versity in the population.

Table 1: Correlative coefficient.

- Wheel diameter (D) Flange thickness (T)
vd −0.1225 −0.0422
vt 0.0504 −0.2041
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Figure 6 provides details of the specific selection process.
(e father population will be divided into A, B, and C parts,
where class A is the main selection object whose size might

be half of the total population nPop. (e remaining indi-
viduals are equally distributed in B, C, and A; B and A; and
C, B, and C. (e method not only retains superior parents
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Figure 2: Fitted curves: (a) the wear rate of wheel diameter; (b) the wear rate of flange thickness.
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Figure 3: Error points chart of wear rate: (a) wheel diameter; (b) flange thickness.
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with low reprofiling times but also ensures the diversity of
the population.

3.2.2. Crossover Operator. (e crossover operator is used to
explore a new solution space and vary the population from
one generation to the next. (e SBX crossover operator in
equation (14) and equation (15) in the NSGA-II will
propagate the best qualities to the next generation. However,
with a fixed α (the arithmetic crossover operator), the global
search ability is a little weaker:

X
t+1
A � αX

t
A +(1 − α)X

t
B, (14)

X
t+1
B � (1 − α)X

t
A + αX

t
B. (15)

A new crossover operator equation (16) and equation
(17) is defined in our work to take the quality of individuals
into consideration. In this way, in the early stage of the
iteration, due to the diversity of the population individuals,
the crossover operator changes greatly, and the individuals
with smaller ranking values occupy the vast majority of the
next-generation individuals. As the number of iterations
increases, individuals in the population tend to the same
nondominated solution set, and the crossover operator will
continue to approach 0.5, which will increase the searching
ability of the space to a certain extent:

α A �
RankA

RankA + RankB

, (16)

α B �
RankB

RankA + RankB

, (17)

where RankX is the nondominated rank of individual X.
(en, the crossover process is given in the following
equations:

X
t+1
A � αAX

t
A + 1 − αA( 􏼁X

t
B, (18)

X
(t+1)
B � 1 − αB( 􏼁X

t
A + αBX

t
B. (19)

3.2.3. Mutation Operator. Mutation is a genetic operator
used to maintain genetic diversity from one generation of
a population to the next. However, the mutation proba-
bility of the traditional NSGA-II is fixed. An adaptive
factor of the mutation operator equation (20) is intro-
duced to enhance the search ability and guarantee the
population density. At the early stages of the evolution,
the introduced operator will promote the global opti-
mization and will better prevent convergence to local
optimum in the late evolution:

Pm(i) �
i

gen
∗Pm. (20)

3.3. Main Loop of the Algorithm. Considering the methods
introduced above, the main loop of the proposed improved
NSGA-II (Algorithm 1) is shown in Figure 7.

4. Experiments and Discussion

(e datasets in this paper are from the SS-0997 train in
Taiyuan North Locomotives in China. (e removal of the
dirty data and outliers was discussed in Section 2.1. All the
experiments are implemented with MATLAB (R2014a, the
MathWorks Inc., USA) in Windows 7. A nonoptimized
wheel reprofiling strategy and optimization algorithm are
both discussed.

4.1. Nonoptimized Wheel Reprofiling Strategy. (is section
will give the results of the fixed reprofiling strategy and
randomly generated reprofiling strategy without the opti-
mized wheel reprofiling strategy.

(e fixed reprofiling strategy (28 and 34), which is used
in current wheel reprofiling, is first simulated in this paper,
and the results are shown in Figure 8. (e blue solid line is
the change in the flange thickness, while the red dashed line
is that of the wheel diameter. (e results show that the
serving years of this strategy are 4.42, and the repair fre-
quency is 3, which is close to the real operation parameters of
the train.

(e flange thickness is then divided into 0.5millimeter
segments to simulate different fixed strategies. Figure 9(a)
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shows all the strategies in this work. (e points labeled o are
the starting values of the reprofiling method Ti, while the
points labeled ∗ are the turning back values T’

i. During the
simulation, each time when the flange thickness is less than
Ti, the wheel will be reprofiled to T’

i. (is process will be
repeated until the diameter is less than 1150millimeters.

(e lifespan and the reprofiling numbers of the 78
different reprofiling strategies are shown in Figures 9(b) and

9(c), respectively. Detailed information of several preferable
solutions is shown in Table 2. Column 1 in Table 2 is the
reprofiling strategy, which is presented in different combi-
nations of Ti and Ti

′. Columns 2 and 3 are the serving years
and reprofiling numbers, respectively. (e last column is the
increased proportion of the serving years compared with the
current reprofiling strategy in row 1.

In Table 2, we find that, with the decrease in the recovery
of flange thickness, the reprofiling times will increase.
Meanwhile, with the increase in the reprofiling times, the
using life years show a trend of increasing first and then
decreasing. (is phenomenon is most likely due to the
excessive number of reprofilings, which will lead to an in-
crease in the amount of the wheel diameter that is removed
and ultimately reduce the wheel lifetime. Additionally, this
rule verifies the reasonableness of the model built in Section
2.

In addition, the random generated reprofiling strategy is
considered here. (is strategy will generate different
reprofiling strategies each time, and the detailed results are
shown in Figure 10. (e triangular and circular polylines
represent the flange thickness before and after reprofiling,
respectively, and the histogram shows the corresponding
using life and repair times.

(e reprofiling strategy (28.7, 33.1), (30.7, 32.1), (29.2,
29.6), (28.5, 33.1), and (28.8, 33.1) is considered the best
solution among all the solutions, with the serving years being
5.8326 and the repair frequency being 5. Compared with the
results of the fixed reprofiling approach, we find that the
lifetime of the random strategy is an improvement. In
particular, the optimal solution is 1.8% higher than that of
the fixed scheme, which is approximately 36.4% higher than
that of the 28 and 34 strategies. As the two experiments have
not used the optimization algorithm, its accuracy and search
scope are lacking, which shows the necessity of the opti-
mization algorithm in these cases.

4.2. Optimized Wheel Reprofiling Strategy. (e multi-
objective optimization algorithms, the NSGA-II and im-
proved NSGA-II, are applied to solve the reprofiling
problem in this section.

Figure 11 shows the result of NSGA-II. A larger
reprofiling number will decrease the availability of the
wheels and increase the maintenance costs. (e solutions
with reprofiling numbers less than 10 in the first front are
presented in Figure 11. Large reprofiling times will reduce

Step 1: generate a random parent population of size nPop.
Step 2: create a new population with the proposed selection method.
Step 3: mix the parents and children together and calculate the objective values.
Step 4: find the Pareto fronts using nondomination sorting.
Step 5: calculate the global crowding distance of the individuals.
Step 6: generate a new parent population with nondomination sorting and the global crowding distance.
Step 7: if the iteration is larger than the threshold, go to 8; otherwise, go to 2.
Step 8: find the Pareto fronts using nondomination sorting.

ALGORITHM 1: Improved NSGA-II.
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Figure 7: Flow chart of the algorithm.
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the wheel life and increase the maintenance costs; thus, the
strategy with less than 10 reprofilings in the Pareto frontier is
shown in Figure 12.

(e lifecycle of the wheel will increase to 7 (50.7%
increase) when the reprofiling number is 9. Compared
with the currently used strategy in the first row, NSGA-II
finds a better strategy that guarantees the wheel running
for 5.2055 years (12.1% increase) with only one more
reprofile.

(e interpretation of Figure 12 is the same as Figure 10.
Comparing the reprofiling times and the service life, it can be
found that the average growth rate of the service life was
gradually reduced from 9% to 5% with the increase in the
repair times. At the same time, the NSGA-II algorithm is
found to be superior to the randomly generated results, and
the number of searchable solutions increases from four to
five due to the use of the optimization strategy. (is section
considers the strategy with 7 reprofiling times and finds that
6.88 years is the best. In addition, the service life of the wheel
can be increased to 7.09 years or approximately 11.80 years
with 60% operation time for the entire year. (e serving
years using this strategy is approximately 52.51% higher than
that of the current fixed strategy. Furthermore, NSGA-II
found a strategy with a life of 5.47 serving years, an increase

of approximately 23.59%, with only onemore repair than the
current Chinese repair strategy.

(e improved NSGA-II proposed in Section 3 is con-
sidered here as well, and the results are shown in Figure 13.
(e solutions with reprofiling numbers less than 10 in the
first front are presented in Figure 14. (e strategy (29.9,
33.1), (30.8, 32.9), (29.3, 30.4), (29.1, 32.1), and (29.3, 32.9)
with 6.73 years is considered to be a good answer.

(e interpretation of Figure 14 is the same as Figure 10.
(e results of the improved NSGA-II have been greatly
improved compared with the results of the classic NSGA-II.
First, the number of solutions reprofiling times less than 10
is higher than that of the classic NSGA-II, and the pro-
portion of available solutions increases from 27.8% to 41.2%.
Second, the serving life of the improved NSGA-II is in-
creased by an average of approximately 0.5 years (actually
approximately 0.9 years) compared to the classical NSGA-II
under the same number of repairs. (us, the improved
NSGA-II algorithm not only has further expanded the
search range and scope but also is more targeted and
effective.

4.3. Comparison and Discussion. (e experimental results
will be analyzed from four aspects: quality evaluation,
convergence, effect, and application range.

4.3.1. Quality Evaluation. In order to compare the perfor-
mance of classical NSGA-II and the improved NSGA-II
algorithm, we chose the ZDTseries of problems [16] (ZDT1,
ZDT2, ZDT3, ZDT4, and ZDT6) as the test questions in the
experiment. In the experiment, IGD (inverted generational
distance) [17] is used to evaluate the quality of the algorithm.
In the quality comparison of multiobjective evolutionary
algorithms, IGD is one of the most commonly used per-
formance indicators. It measures the average distance be-
tween all individuals in the true Pareto optimal set and the
nearest individual in the solution set obtained by the al-
gorithm and can provide information about the convergence
of the final solution set to the true Pareto front and the
diversity of the solution set. Formally, given a solution set A
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Figure 9: Results of the fixed reprofiling strategy: (a) strategy; (b) reprofiling numbers; (c) using years.

Table 2: Details of several preferable solutions.

(Ti, Ti
′) Serving

years Reprofiling numbers Increased proportion

(28.0,34.0) 4.6438 3 —
(29.0,
34.0) 5.1664 4 11.21%

(30.0,
34.0) 5.7123 5 23.0%

(29.5,
32.5) 6.2192 6 33.2%

(29.0,
31.5) 5.3151 7 14.5%

(30.5,
32.5) 6.7397 8 45.1%

(29.0,
31.0) 5.3425 9 15.4%
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and a reference set R � r1, r2, . . . , rm􏼈 􏼉, IGD can be calcu-
lated by the following equation [18]:

IGD(A, R) �
1

M
􏽘

M

i�1
min
a∈A

d2 ri, a( 􏼁, (21)

where d2(ri, a) denotes the Euclidean distance between ri

and a. A low IGD value indicates a better solution set. In the
experiment, the population size was set as 50 and the
generation as 1000, and the IGD value was calculated
according to equation (21). (e results are shown in Table 3.

It can be seen from the table that the IGD value of the
improved NSGA-II algorithm is lower than the value of the
classical NSGA-II algorithm in most ZDT problems, except
for the ZDT3 problem. (e overall performance of the
improved NSGA-II algorithm for solving two-dimensional
multiobjective problems is higher than that of the classical
NSGA-II algorithm.

4.3.2. Convergence Properties. To compare the convergence
properties of the classical and improved NSGA-II algo-
rithms, the average using years of all strategies with less than
10 repair times in each iteration are plotted, as shown in
Figure 15.

(e abscissa in Figure 15 indicates the number of it-
erations, and the ordinate is the average service life. As seen
from the figure, the classical NSGA-II has a fast rise at the
beginning due to the randomness of the initial value and
continues to oscillate approximately 5.4 years; thus, the
convergence effect is not obvious. In the improved NSGA-II
algorithm, because of the change in the genetic operators
and global crowded density, the convergence curve increases
obviously at the beginning and tends to converge at the
120th generation.

Meanwhile, the results of the improved NSGA-II are
much better compared with the classical ones due to the
genetic operators. First, for the convergence value, the
classical NSGA-II reaches 5.4 years while the improved
NSGA-II reaches 6.4 years. Second, under the same number
of reprofilings, the improved NSGA-II has a longer lifespan

10

15

20

25

30

35

–1

1

3

5

7

9

11

13

15

Using years
Reprofiling numbers

Before reprofiling
After reprofiling

A B C D

Using years 5.83 6.33 6.19 6.08

Reprofiling numbers 5 6 7 8

Before reprofiling 28.7 30.7 29.2 28.5 28.8 28.6 29.3 28.6 28.6 29.8 28.6 29.7 29.2 29.2 28.6 28.7 28.6 28.7 28.7 29.2 29.2 29.1 28.7 28.8 28.7 29.1

After reprofiling 33.1 32.1 32.6 33.1 33.3 31.1 31.1 33.6 30.6 31.6 32.1 32.1 31.1 31.1 30.1 29.6 30.6 32.1 30.6 30.6 29.6 30.1 31.1 30.6 31.1 32.1

Figure 10: Random generated strategy.

–10 –9 –8 –7 –6 –5
Using years

0

50

100

150

200

250

N
um

be
r o

f r
ep

ro
fil

in
g 

tim
es

Pareto front of NSGA-II

Figure 11: Results of NSGA-II.

Complexity 9



than the classical NSGA-II. Furthermore, although the
Pareto frontier solution numbers of the two algorithms are
both 17, the improved algorithm has searched 41.18% fea-
sible solutions, which is higher than the classical algorithm
by 13.40%.

(us, the improved NSGA-II is not only superior to the
classical NSGA-II in terms of convergence but also in search
depth and breadth.

4.3.3. Algorithm Implementation Effects. Figure 16 shows
the service life under the same number of reprofilings with
different methods. In Figure 16, when the number of
reprofilings reaches 6, the service life of the fixed repair

strategy and the randomly generated strategy decrease, and
the growth of service life with the optimization approaches
improves slowly. (e reason for this phenomenon may due
to the mechanism of reprofiling. (erefore, reprofiling times
should be as small as possible in real life.

After analyzing all the strategies, when the repair strategy
contains 30 and 32.5, the service life will be relatively longer.
(is verifies the wear model obtained in Section 2.2 and
helps to conclude that the SS4-0997 locomotive wheel
reprofiling strategy should include 30 and 32.5. When
considering the performances of the four approaches, the
proposed algorithm outperforms NSGA-II, while NSGA-II
is better than other simulation approaches.(is is important
when applying the reprofiling strategies listed in this paper
by maintenance engineers.

With all the strategies, the improved algorithm has a
service life increase from 4.64 years to 5.232 years (14.66%)
under 3 reprofilings (the same as the current one). Com-
prehensive consideration of repair and wheel replacement
costs, (29.9, 33.1), (20.8, 32.9), (29.3, 30.4), (29.1, 32.1), and
(29.3, 32.9), found by the proposed algorithm is considered
to be the best strategy in this paper with 5 reprofiling times
and 6.73 serving life years, which is approximately 45.04%
higher than the current strategy.

5. Application Range of the Algorithm

From the practical application of the algorithm, on the one
hand, the proposed algorithm is suitable for producing the
reprofiling schedule for any wheel in SS4-0997 locomotives.
On the other hand, in the ideal locomotive operating en-
vironment, which does not need to consider the wheel

15

17

19

21

23

25

27

29

31

33

35

–1

1

3

5

7

9

11

13

15

A B C D E

Using years 5.74 6.16 6.56 6.88 7.09

Reprofiling numbers 4 5 6 7 9

Before reprofiling 29.1 28.2 29.8 29 29.6 30.2 30.8 29.3 28.6 29.9 28.8 29.3 31.8 30 29.1 30.1 30.3 29.8 30.2 29.8 30.5 31.1 30 31.3 28.7 28.7 30.4 30.7 30.6 28.2 30.8

After reprofiling 33.8 33.8 33.9 33.8 33.2 32.7 33.1 32.6 32.9 33.1 31 31.9 32.4 32.4 32.6 32.7 32.8 32.6 32.7 31.6 32.8 33 32 33.6 31.6 30.9 32.3 31.2 31.9 30.9 32.9

Using years
Reprofiling numbers

Before reprofiling
After reprofiling

Figure 12: NSGA-II strategy.

–10 –9 –8 –7 –6 –5
Using years

0

50

100

150

200

N
um

be
r o

f r
ep

ro
fil

in
g 

tim
es

Pareto front of improved NSGA-II

Figure 13: Results of the improved NSGA-II.

10 Complexity



10

15

20

25

30

35

–1

1

3

5

7

9

11

13

15

A B C D E F G
Using years 5.32 6.11 6.73 6.82 6.94 7.31 7.45

Reprofiling numbers 3 4 5 6 7 8 9
Before reprofiling

After reprofiling
28.8 29.7 29.2

33.4 32 33.6

28.7 29.7 29.3 29.2

32.5 32.8 33.1 32.6

29.9 30.8 29.3 29.1 29.3

33.1 32.9 30.4 32.1 32.9

29.9 28.7 29.7 28.4 30.8 30.8

32.3 31.6 30.5 32.8 31.8 32.9

30.5 29.9 28.2 31.4 29.6 29.9 30.8

32.5 30.9 31.7 33.7 32.7 32.8 32.2

30.1 29.6 29.2 30.6 31.7 29.9 30.8 32.7

31.3 31.9 30.7 31.8 32.8 32.6 31.9 33.1

30.2 30.9 28.6 30.3 29 29.5 29.9 30.9 28.2

31.7 32.5 30.7 31.2 30.5 30.8 31.3 32.4 29.7

Using years
Reprofiling numbers

Before reprofiling
After reprofiling

Figure 14: Random generated strategy.

Table 3: IGD value of ZDT series of problems.

Test problem Classical NSGA-II Improved NSGA-II
ZDT1 2.391929e− 03 2.082921 e− 03
ZDT2 2.710113e− 03 2.492973 e− 03
ZDT3 1.486839 e− 02 1.506779e− 02
ZDT4 5.646924e− 02 3.156867 e− 02
ZDT6 4.589117e− 02 3.598761 e− 02
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Figure 15: Convergence of the algorithms. (a) Classical NSGA-II. (b) Improved NSGA-II.
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diameter difference, the proposed algorithm can be used to
make the vehicle repair plan.

6. Conclusions

In this work, the wearmodel andmultiobjective model of the
reprofiling are introduced. An improved NSGA-II with the
change in the crowding distance calculation and genetic
operators is proposed to better fit the proposed multi-
objective model. Datasets from the SS-097 trains in the
Taiyuan North Locomotive are used to illustrate the effec-
tiveness of the proposed approach. (e results show that
improved NSGA-II performs better than NSGA-II, and
NSGA-II performs better than the simulation approaches.
(e best reprofiling strategy (29.9, 33.1), (31.8, 31.9), (29.3,
29.4), (29.1, 30.1), and (29.3, 29.9) with 6.5342 serving years
and a repair frequency of 5 is better than the strategy (28.0,
34.0) currently used (4.6438 serving years and repair fre-
quency of 3). (erefore, the strategy can significantly in-
crease the existing reprofiling strategy of the Taiyuan
locomotive depot in China. It is possible that the models and
approaches presented here are not suitable for other wheels.
However, the study in this paper provides new insights into
solving the reprofiling problem.

(ere are several recommendations for further studies:
focusing on reprofiling strategies of wheels for a carriage
with 16 wheels, taking the reprofiling gain into account, and
developing a system to analyze each wheel based on the
proposed model.
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