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Model predictive control (MPC) technology can effectively reduce the bad effect caused by inaccurate data prediction inmicrogrid
energy management problem. However, the use of MPC technology needs to dynamically select an optimal solution from the
Pareto solution set to implement, which needs the participant of the decision-makers frequently. In order to reduce the burden on
decision-makers, we designed a knee point-based evolutionary multiobjective optimization algorithm, termed KBEMO. Knee
point is the solution on Pareto front with the maximummarginal utility, which is considered as the preferred solution if there is no
other preference. (is algorithm focuses on obtaining the knee region and automatically outputs knee points after the opti-
mization. By combining this algorithm withMPC technology, it can effectively reduce the amount of computational consumption
and obtain better convergence. Experimental results show that this method is more competitive than the traditional single-
objective MPC method.

1. Introduction

In recent years, energy shortages and environmental pol-
lution problems have become increasingly severe. In order to
improve the safety and survivability of traditional power
grid, microgrid technology has received more and more
attention, especially in absorbing large-scale wind and solar
energy into the power grid, which has great application
prospects. (e concept of microgrid was first proposed by
the American Electric Power Technology Research Institute,
the Consortium for Electric Reliability Technology Solutions
(CERT) [1]. It is a small power supply and distribution
autonomous system that contains a variety of microgrid
sources, e.g., electrical loads, energy storage devices, and
energy conversion devices. (e microgrid can be self-reg-
ulated, monitored, and self-protected [2, 3].

(e uncertainty of renewable energy in the microgrid
increases the risk of system scheduling. How to adapt to the
uncertain working conditions of various renewable energy
output and realize the benign interaction of multiple re-
sources and economic operation is a difficult task of the

research in energy management and optimization [4]. (e
main problem in energy management is how to formulate a
power generation plan and dispatch plan with the lowest
overall operating cost under the stable operation of the
system in response to the uncertainty in the process of power
generation and power consumption so as to meet the needs
of production and life better. With the development of
microgrid technology, more and more energy supply and
energy-consuming equipment are connected to the micro-
grid. However, renewable energy power generations such as
wind and solar power and users’ energy demand are random
and uncertain. Existing studies have shown that the method
of day-ahead scheduling [5] is useful. Specifically, energy
management optimization is performed based on the
forecast results of the next 24 hours. However, the result
often differs from the actual situation. In response to this
problem, Zhang et al. [6] introduced a model predictive
control (MPC) framework to optimize the microgrid energy
management problem.(emain process can be summarized
as follows: (1) in each period, the microgrid system will
predict the renewable energy power generation and user
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load of the next 24 hours; (2) optimize the operation based
on the predicted data; (3) apply the optimal solution ob-
tained at the current moment and run the system according
to real-world data; (4) update the status of the microgrid
system; and (5) return to the first step and repeat the whole
process. (e MPC framework [7] continuously optimizes
the energy management problem during the continuous
advancement of the period, thereby reducing the impact of
uncertain factors. (is method has been successfully applied
to many microgrid energy management problems, and a
high-quality solution has been achieved.

Microgrid energy management is a typical multi-
objective optimization problem (MOP). We need to
consider optimizing more than one objective when
dealing with the microgrid energy management problem,
e.g., the loss of energy storage system, stability of power
supply, energy-saving, and pollutant emission reduction
[8]. To deal with MOPs, the traditional linear program-
ming method generally adopts the method of weighted
sum (WS); that is, the decision-maker gives a set of weight
vectors in advance and then couples the objective vector
and the weight vector into a scalar function for optimi-
zation. Although this method is simple to apply, it has
many problems. On the one hand, due to the inconsis-
tency of the scales between different objective functions, it
is difficult to determine the exact value of the weight
vector, resulting in poor robustness when optimizing the
single-objective optimization problem. Specifically, the
use of larger weights will increase the influence of the
objective function noise, leading to unilateral preference.
On the other hand, it is often difficult for decision-makers
to give his appropriate preference weights in advance.

To address the issue of using the WS method to solve
MOP, evolutionary multiobjective optimization (EMO) has
attracted more and more attention [9, 10]. (e EMO al-
gorithm can give a satisfactory solution set when the
number of objective functions is 2 or 3 and has been
successfully applied to solve a large number of real-world
engineering problems [11]. Without loss of generality, the
definition of a multiobjective optimization problem is as
follows:

Minimize, F(x) � f1(x), f2(x), . . . , fm(x) ,

s.t., x � x1, x2, . . . , xn(  ∈ Ω,
(1)

whereΩ denotes the feasible decision space,m is the number of
objectives, and x is a decision vector consisting of n decision
variables xi. A solution xa is said to Pareto dominate another
solution xb if and only if ∀i � 1, 2, . . . , m, fi(xa)≤fi(xb) and
∃j � 1, 2, . . . , m, fj(xa)<fj(xb). (e images of all Pareto
optimal solution sets (PSs) in the objective space are termed the
Pareto optimal front (PF).

Generally speaking, the EMO algorithm will give a set of
Pareto optimal solution that does not dominate each other
and no solution can outperform other solutions on all
objective functions. Since it is always necessary to select a
solution from many Pareto optimal solutions to apply in
real-world engineering problems, general multiobjective
optimization problems need to be combined with

corresponding decision-making methods. When the num-
ber of goals is small, such as 2-3 goals, the decision-makers
can intuitively select the appropriate solution from the
Pareto front according to their own preferences by plotting
all solutions. However, it is pointed out from cognitive
studies that when the number of objectives is greater than 5,
the applicability of this type of method is greatly reduced. In
response to this problem, researchers have proposed many
posterior methods, such as grey correlation analysis [12] and
TOPSIS method [13].

Microgrid energy management combined with the
MPC framework is a dynamic optimization problem. To
solve this problem by the EMO algorithms, it is necessary
to use a posteriori method to select an optimal solution for
application after optimization, which will lead to the waste
of computational resource. Generally speaking, the de-
cision-maker is only interested in a small area of Pareto
front, and other solutions on the Pareto front will waste a
lot of computing resources. (erefore, focusing on certain
representative areas of the Pareto front is of great sig-
nificance for solving real-world engineering problems.
Research points out that knee, as the point with the
greatest marginal utility on the Pareto front, is more at-
tractive to decision-makers [14]. For the two-objective
optimization problem, the knee in the Pareto front refers
to the solution with the largest marginal rate of return;
that is, a small improvement in one objective will lead to
serious degradation of at least another objective [15], as
shown in Figure 1. Intuitively, the knee area is a “bulge” on
the front of Pareto, where the slope changes suddenly.
Many works have discussed the importance of knee and
pointed out that, for general MOPs, if the decision-maker
has no other preference, the knee can be used as the
preferred solution.

Based on the above considerations, to solve the online
microgrid energy management problem by the EMO al-
gorithm, we first proposed a microgrid energy management
mathematical model combined with the MPC framework.
Moreover, a knee-based EMO algorithm (KBEMO) is
proposed to solve the energy management problem, which
can focus on obtaining the knee region on the Pareto front
and give the global knee point as the final solution. Com-
bined with this algorithm, the optimal solution is adopted
continuously after each optimization process. (erefore, the
microgrid can run as time goes, and the impact of renewable
energy and user load uncertainty in the microgrid can be
reduced. As a result, the running cost of themicrogrid can be
improved. Experiments show that this method can effec-
tively obtain the optimal result of the microgrid energy
management problem and reduce the impact of
randomness.

(e rest of this paper is organized as follows: Section 2
introduces the related models of microgrid energy
management; Section 3 describes the knee-based EMO
algorithm in detail and its application under the MPC
framework; the experimental settings and experimental
results are mentioned in Section 4; finally, we summarize
the advantages and disadvantages of the current method
and propose possible future research directions.

2 Complexity



2. Microgrid Energy Management Model

Since this paper mainly discusses the application of the
EMO algorithm in dynamic microgrid energy manage-
ment, we select a typical microgrid model, which specifi-
cally includes renewable energy (wind and solar), energy
storage system, user load, and the power grid. (e time-of-
use electricity price strategy is adopted, which means that
the electricity price changes over time. (erefore, by in-
troducing an energy storage system, we can purchase
electricity from the power grid when the electricity price is
low and sell electricity to the power grid when the price is
high. (erefore, the overall operating cost of the microgrid
can be reduced. Since there are many parameters involved
in this model, the relevant parameters are summarized as
follows (Table 1).

With the development of microgrid technology, more
and more energy supply and energy-consuming equipment
are introduced, and the model of microgrid energy man-
agement has become more and more complex. (is article
mainly studies the application of knee-based algorithms in
dynamic energy management, so it considers the basic
microgrid composition, including renewable energy power
generation, energy storage systems, user loads, and large
power grids.

As one of the most flexible and directly controllable
devices in the microgrid, the energy storage system can
not only be used as a consumer device to absorb excess
electric energy but also as a backup power supply when the
power generation is insufficient. Its constraints mainly
include the maximum and minimum capacity limits and
charge and discharge energy transfer power, which can be
expressed as

P
min
bess ≤Pbess(k)≤P

max
bess , (2)

E
min
bess ≤Ebess(k)≤E

max
bess , (3)

Ebess(k + 1) � Ebess(k) + ηbessPbess(k)Δt. (4)

Equations (2)–(4), respectively, represent the charge and
discharge power constraints, energy level constraints, and
dynamic energy transfer constraints of the energy storage
system. Energy storage systems have different battery losses
under the different state of charge (SOC), which can be
expressed as

fsoc(k) � 1 −
1

1 + α∗ exp β∗soc(k)( 
. (5)

Among them, soc(k) � E(k)/Emax
bess represents the current

state of the energy storage system and α and β characterize
the internal parameters of the energy storage system, which
is provided by the manufacturer. Similarly, the interaction
between the microgrid system and the power grid also needs
to meet the upper and lower power limits:

P
min
grid ≤Pgrid(k)≤P

max
grid . (6)

(e prerequisite for the economic dispatch of the
microgrid is that the power supply and consumption of the
microgrid system are always balanced, which is expressed as

Psolar(k) + Pgrid(k) � Pbess(k) + Pload(k). (7)

Many objective functions can be considered for
microgrid energy management problems. We take the
economic operation of the microgrid and the loss of the
energy storage system as the optimization objectives, which
can be expressed as

minf1 �  Cgrid(k) �  cgrid(k)Pgrid(k)Δt,

minf2 �  Cbess(k) �  fsoc(k).
(8)

Among them, f1 is the cost incurred by the interaction
between the microgrid and the power grid and f2 represents
the loss of the energy storage system incurred during the
operation.

(e day-ahead scheduling technology of the microgrid
means that, for the period that needs to be scheduled, the
forecasting method is used to obtain data such as future
renewable energy generation and user load. According to the
data, the microgrid energy management is optimized, and
the operation plan in the future period is obtained. In actual
operation, it is difficult to accurately predict the data, so it
will be adjusted according to the real-time data and the
principle of power balance to achieve the purpose of stable
operation.

3. Knee-Based Multiobjective
Optimization Algorithm

3.1. Motivation and Framework. Generally speaking, the
process of the algorithm based on the knee can be sum-
marized as detecting the knee on the Pareto front and
guiding the evolutionary search direction according to the
knee information, so as to obtain the knee area. In recent
years, researchers have proposed many methods on how to
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Figure 1: Illustration of knee point.
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detect knee. Das [16] proposed a knee point detection
method based on the normal boundary intersection (NBI).
Das defines an extreme line for the two-objective problem,
called individual minimal convex hull (CHIM), which passes
through the two boundary points (also called edge points) of
the Pareto front. As shown in Figure 1, the knee point
corresponds to the solution furthest from CHIM. (is
method is also known as a distance-based knee detection
method and has been successfully applied to algorithms such
as KnEA [14] and k-NSGA-II [9].

(e existing knee detection methods can be mainly
divided into two categories: (1) detection based on the
geometric characteristics of the Pareto front. Unlike other
parts of the Pareto front, the knee area has obvious geo-
metric characteristics, that is, a curvature of the Pareto front.
Representative methods include distance-based method
[16], minimum Manhattan distance [17] (MMD), and re-
flection angle [15]. (2) Use Pareto front to evaluate the trade-
offs between solutions. In the knee region, the influence
between the objective function values increases. (e knee
region is detected by calculating such influences. Repre-
sentative methods include cone-domination [18], trade-off
[19], and expected marginal utility [15] (EMU) method. (e
performance of each method in knee detection is compared
in [20] in detail, which pointed out that the distance-based
detection method has strong robustness. However, the
distance-based method is highly sensitive to the position of
the boundary point, and different algorithms have different
determinations of the Pareto front boundary. (erefore, this
methodmay cause the problem of inaccurate knee detection.

(e minimum Manhattan distance (MMD) method
calculates the Manhattan distance of each solution on the
Pareto front, and the solution with the minimumManhattan
distance is the current global knee point. (e calculation
method of this method is simple and has strong robustness.
(erefore, we adopt the MMD method to detect the knee.
(e specific steps are as follows:

(1) Standardize the objective function values of the
currently obtained solutions x(1), . . . , x(k):

fm
′ x

(i)
  �

fm x
(i)

  − z
∗
m

z
nad
m − z

∗
m

, (9)

where z∗ and znad are the best and worst values of all
Pareto optimal solutions and fm and fm

′ are the
original target value and the normalized target value
of the m-th dimension, respectively.

(2) Calculate the Manhattan distance of the solution x(i)

on the Pareto front:

f1′ x
(i)

  + f2′ x
(i)

  + · · · + fM
′ x

(i)
  � v. (10)

(3) (e solution with the smallest Manhattan distance is
the knee point of the current evolutionary process.

It can be seen from Figure 2 that the Manhattan distance
of the solution x(i) can be expressed as a straight line with a
slope of −1, which passes through the solution x(i) and the
intercept is v. (is paper detects the knee based on theMMD
method. After obtaining the current knee information, the
information is used to guide the evolution direction of the
population, and the final knee region is obtained based on
the NSGA-II [21] algorithm. (e algorithm framework is
illustrated in Algorithm 1.

After the algorithm detects the knee, it calculates the
environmental fitness value of all individuals based on the
knee information (line 8). (e calculation process can be
expressed as follows:

(1) Calculate the crowding distance of all individuals x(i)

according to the crowding distance cd(i)calculation
method of the NSGA-II algorithm.

(2) If the Euclidean distance Di,j between the individual
x(i) and the knee point in the objective space is less
than the given threshold δ, the crowding distance of
solution x(i) will be rewarded according to the fol-
lowing equation:

Table 1: Parameter name and meaning.

Parameter type Symbol Meaning

System parameters

T Control period of the model
Pmin
grid Pmax

grid Upper and lower power limits of interaction with the power grid
Ecur
bess Initial energy storage level of the energy storage system

Emax
bess Emin

bess Upper and lower limits of energy storage system capacity
Pmin
bess Pmax

bess Upper and lower limits of charging power for energy storage system
εbess Self-discharge energy loss of energy storage system
ηbess Energy storage system charging and discharging efficiency

Predictive variable Psolar(k) Power of PV prediction generation
Pload(k) Power of load prediction generation

Decision variable δ c
bess(k) Energy storage system charge and discharge status

P c
bess(k) Energy storage system charge and discharge power

Cost
Cbess(k) Energy storage system operation and maintenance costs
Cgrid(k) Interaction costs with large grids
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cd(i)
� cd(i)

· 1 +
1

1 + exp Di,j − δ 
⎛⎝ ⎞⎠. (11)

Among them, 1/1 + exp(Di,j − δ) is the activation
function; that is, when Di,j < δ, cd

(i) will be rewarded. (e
threshold δ is set by the user and is used to adjust the size of
the knee area finally obtained.

Since the NSGA-II algorithm is likely to choose solutions
with a larger crowding distance to form the next generation
during the evolution, by increasing the crowding distance of
individuals that are near to the current knee, the fitness value
of such individuals is improved. In the process of evolution,
the solutions around the knee are retained. On the other
hand, by detecting the knee point during the evolution
process, we can utilize the knee as the current elite indi-
vidual. Moreover, the excellent genes of current knee so-
lution will be shared with other solutions through crossover
(line 5) to improve the convergence performance of the
algorithm. It is worth noting that the edge point on the
Pareto front of the multiobjective optimization problem
plays a guiding role in obtaining the Pareto front. Besides, in
some special situations, the decision-maker is interested in
the solution of the boundary point, so the proposed algo-
rithm treats the boundary point as knee points as well so that
the boundary points can be retained during the evolution
process.

3.2.DynamicOptimization ofMicrogridEnergyManagement.
(e day-ahead scheduling method predicted data for some
time in the future (usually a day) to obtain the running
strategy in advance. In actual running time, it will dy-
namically adjust based on actual data to satisfy the energy
balance constraints. Although this method can make a
reasonable control strategy for system operation to a certain
extent, it has many disadvantages. Because it is difficult to
accurately predict the renewable energy generation and user
loads, in the actual operation process, the operating state of
the system is also different from that of the preplanning

stage. Applying solutions obtained based on inaccurate
forecast data will make the actual running cost more ex-
pensive than the plan.

Model predictive control [19] will plan the operation
strategy for a period of time in the future based on the
predicting data and execute the obtained operation strategy
at the current moment. At the next moment, the system state
and the prediction for the future will be updated based on
actual operating data, and the new planning operation
strategy is applied at this moment. By continuously re-
peating the above process, the microgrid energy manage-
ment system continues to obtain the operating strategy of
the microgrid. Because this method continuously adjusts the
optimizer based on actual data, it can reduce the impact of
randomness and reduce the requirements for prediction
accuracy.

After the EMO algorithm obtains the Pareto solution set,
it needs to introduce the preference of the decision-maker to
choose a solution for implementation. However, in dynamic
optimization problems, it is unrealistic to frequently require
decision-makers to participate, so we must find a way to
automatically select a solution that satisfies the preference of
decision-maker. (e knee point on the Pareto front is the
most “cost-effective” point in the entire solution set, which is
regarded as the better solution when there is no other
preference. In the model predictive control framework, the
current global knee is selected as the optimal solution for
implementation so that decision-makers do not need to
provide preference information. It is worth noting that when
there are multiple knees in the Pareto front of the problem,
the algorithm will select the global knee as the optimal
solution. (e mainframe of the proposed method is shown
in Figure 3.

It is worth noting that the optimization strategy of the
current period has guiding significance for the next stage of
optimization. In particular, when the forecast data are 100%
accurate, the microgrid energymanagement strategy derived
at the current moment should be also suitable for the next
stage. In order to make better use of the optimization in-
formation obtained in the previous period and reduce the
computational waste, we select solutions from the final
population in the current stage to form up the elite indi-
viduals, which is combined with the initial population for the
next stage. By doing this, the optimizer can converge to the
Pareto optimal front faster. Specifically, the boundary points
and the points around the knee point are chosen. (e reason
to select only a small part of the population is that it is easy to
fall into the local optimal solution if we directly use the
current population as the initial population. For the ex-
cellent individuals in the previous stage, the coded sequence
2 to Tneeds to be moved to the sequence 1 to T−1, and the
value is randomly generated to fill the code T.

3.3. Experimental Parameter Setting. (is paper proposed a
microgrid energy management model including energy
storage system, renewable energy power generation, user
load, and power grid and selects a microgrid project as a
case to verify the optimization method proposed in the
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Figure 2: Illustration of the MMD method.
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article. (e main parameters of this microgrid are shown in
Table 2. (e relevant parameters of the knee-based EMO
algorithm (hereinafter referred to as KBEMO algorithm)
are shown in Table 3. For renewable energy power gen-
eration and user load data, we use the global energy
forecasting competition 2014 data set and get the time-of-
use electricity price based on the local electricity price, as
shown in Figure 4.

4. Result and Analysis

4.1. Performance of theProposedAlgorithm. In order to exam
the performance of the proposed KBEMO algorithm in
searching and obtaining the knee area, we selected the classic
knee test problems to test the KBEMO algorithm. Specifi-
cally, Branke et al. [15] proposed DEB2DK, DEB3DK, and
DO2DK problems based on the DTLZ test problem [22], and
the parameter K is introduced to control the number of
knees on the Pareto front. We independently run 31 times
for each test problem, calculate the generation distance (GD)
of the results obtained in each run, and select the result
closest to the average GD for display.

Figure 5 shows the Pareto fronts obtained by the
KBEMO algorithm on DEB2DK, DEB3DK, and DO2DK
problems. It can be seen from the figure that KBEMO can
accurately detect and obtain the knee area on the Pareto
front, and the boundary points of the Pareto front can be
completely preserved. In terms of algorithm convergence,
KBEMO can be very close to the true Pareto front.(erefore,
the KBEMO algorithm can completely find and retain the
knee area on the selected test problem, and it has great
convergence performance.

4.2. Algorithm Performance Comparison. In order to com-
pare the difference between the KBEMO algorithm and the
classic multiobjective optimization algorithm, we compare
the Pareto fronts obtained by KBEMO andMOEA/D-DE for
the same problem. We choose MOEA/D-DE [23] to rep-
resent the classic multiobjective optimization algorithm,
which has been proven to have strong competitiveness in
dealing with multiobjective optimization problems. To en-
sure fairness, the two algorithms use the same operating
parameters and run 31 times independently and compare the
results that best represents their average level.(e results are
shown in Figure 6.

It can be seen from Figure 6 that the Pareto front ob-
tained by the KBEMO algorithm is closer to the theoretical
optimal value than the classic optimization algorithm
MOEA/D-DE, which shows that the KBEMO algorithm can
obtain a better convergence solution under the same con-
ditions. At the same time, the algorithm accurately gives the
global knee point for this problem. (e solution represented
by this point can well balance the two objective functions,
which can better represent the preference of the decision-
maker. For the traditional EMO algorithm, generally
speaking, a larger population is required to describe the
complete Pareto front, which greatly increases the waste of
irrelevant calculations because the decision-maker does not
need this information. Because the KBEMO algorithm only
focuses on a specific area on the Pareto front, the required
population is smaller and more advantageous, and because it
focuses more on the search in a specific area, the algorithm
has a stronger convergence ability than the normal
algorithm.

4.3. Comparison of MPC Framework and Day-Ahead
Scheduling. (e method based on day-ahead scheduling
(hereinafter referred to as DA) only needs to use the op-
timizer for a single-time optimization, so it has a great
advantage in computational efficiency. However, the
scheduling method obtained by this method is based on the
premise of an accurate prediction of future data and the
actual situation is also different from the forecast data. To
compare the difference between the day-ahead scheduling
and the MPC-based framework, we conduct energy man-
agement for the microgrid in the next 24 hours. In actual
operation, we will design fluctuations in renewable energy
generation and user load demand, and there is a 10% error
between the prediction and the actual situation. In order to
reduce the impact of randomness, all experiments are in-
dependently run for 31 times, and the averaged results are
listed in Table 4.

It is worth noting that the optimization results based on
the MPC framework are significantly better than the opti-
mization results of the day-ahead scheduling.(is is because
when optimizing the energy management of the microgrid
based on the MPC framework, the algorithm can update the
system’s status according to the actual operating data in each
period. On the contrary, since there is no real-time feedback
mechanism in the day-ahead scheduling method, its optimal

Renewable energy 
prediction

Optimizer

User load 
prediction

Apply knee 
solution

Initial 
system

Update 
system

End? Yes

No

Output 
result

Figure 3: MPC framework optimization flow chart.
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results are poor. It is foreseeable that as the optimization
period increases, the data prediction errors generated by the
day-ahead scheduling will gradually accumulate, resulting in
the continuous deterioration of the optimization effect.

4.4. Comparison of Results of Different Algorithms. (e
KBEMO algorithm proposed in this paper can utilize knee as
the optimal solution for application after the optimization in
each stage, without the need for decision-makers to give
preference information. For the traditional method, the
decision-maker needs to give a set of weight vectors in
advance, after each optimization, and use the weighted sum

(WS) method to convert the objective function vector into a
scalar value, thereby selecting the best solution. To compare
the efficiency and performance of the WS method and the
KBEMO method, we use the knee obtained by the KBEMO
algorithm and the optimal solution obtained by the WS
method under the MPC framework to solve the dynamic
microgrid energy management problem. For the WS
method, since the dimension of the objective function in-
volved in this problem is inconsistent, after each run, the
objective function value is first normalized. Since it is im-
possible to determine which weight can obtain the best
performance, we set up multiple different weight vectors. In
order to reduce the impact of randomness, all experiments
were run 31 times independently, and the average of the
results was taken as the final result.

Figure 7 shows the results that are closest to the average
running result based on different weight vectors and the
KBEMO algorithm. (is result shows the running state of
the charging and discharging power of the energy storage
system and the interaction power with the power grid over
time. It can be seen from the figure that both methods can
make corresponding adjustments according to the time-of-
use electricity price. When the electricity price is relatively
high, the optimizer chooses to use the energy storage system
for discharge to reduce the cost of purchasing electricity
from the power grid; on the contrary, when the electricity
price level is low, the optimizer chooses to charge the energy
storage system with high power and purchase electricity
from the power grid.(is shows that the proposedmicrogrid
energy management model can well describe the operating
status of the microgrid.

It is worth mentioning that the running state of the knee
solution is a good trade-off of the two objective functions.
Solutions with w � [0.1, 0.9] mainly consider to optimize

Input: maximum generations MaxGen, population size N

Output: nondominated set PF, knee point kc

(1) kc⟵ ϕ and n nc⟵ 0
(2) PS⟵ Initialization(N)

(3) Costs⟵CalObjValue(PS)

(4) While itcur ≤ itmax
(5) OS1⟵Crossover(PS, kc)

(6) OS2⟵Mutation(PS)

(7) joint S � PS∪OS1 ∪OS2
(8) EF⟵Cal Env Fitness(joint S, kc)

(9) joint S⟵Nondominated Sort(joint S)

(10) PS⟵Env Selection(EF, joint S)

(11) kc⟵KneeDetection(PS)

(12) itcur � itcur + 1
(13) End While

ALGORITHM 1: General framework.

Table 2: Parameter values of the microgrid system in this research.

T k Δt Pmin
grid Pmax

grid Ecur
bess Emin

bess Emax
bess Pmin

bess Pmax
bess εbess ηbess
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Figure 4: Schematic diagram of microgrid user load, renewable
energy generation, and time-of-use electricity price.
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Figure 5: Pareto fronts obtained by KBEMO on knee test problems: (a) DEB2DK; (b) DO2DK; (c) DEB3DK.
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Figure 6: Pareto fronts obtained by MOEA/D-DE and KBEMO.
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the 2nd objective function, and the loss of energy storage
system is good but results in high electricity buying cost. On
the contrary, the solution with w � [0.9, 0.1] will consider
the 1st objective function more.

It can be seen from Figure 8 that choosing solutions by
different weights at each stage will result in the final result
being more biased towards the objective function.(erefore,

the WS method can reflect the preference information of the
decision-maker to a certain extent. However, the results of
most weight vectors under theWSmethod are inferior to the
KBEMO algorithm. In other words, the objective function
value obtained by the KBEMO algorithm dominates the
objective function value obtained by the WS method under
most weight values. On the one hand, during the operation

Table 3: Algorithm running parameters.
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Figure 7: Operation states of different components: (a) w � [0.1, 0.9]; (b) w � [0.9, 0.1]; (c) knee.

Table 4: Results of microgrid.

Method Actual cost of buying electricity Loss of the energy storage system
DA 92.7634$ 0.7856
MPC 89.6854$ 0.5598
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of the MPC framework, the KBEMO algorithm can obtain
the most balanced solution every time, so the final solution
obtained by this method can well balance the two objectives.
(e WS method selects the solution with a specific weight
vector every time, and the trade-off between the two goals is
poor, so the quality of the obtained solution is not high. On
the other hand, because the KB algorithm focuses on
searching the knee area, its convergence performance is
better than the classic multiobjective optimization
algorithm.

5. Conclusion

Microgrid plays an important role in making use of renewable
energy and restraining fluctuation of the power grid supply.
With the increase in the dimensions of the problem to be
considered, the role of multiobjective optimization algorithms
in the energy management of microgrids is becoming more
andmore important. Although themultiobjective optimization
algorithm can give the Pareto optimal front of the problem, the
decision-maker still needs to choose one solution from many
solutions to apply. (is will put pressure on decision-makers
and consume computing resources to search for areas that
decision-makers may not be interested in. Knee, as the largest
marginal utility point on the Pareto front, is considered to be a
more popular solution for decision-makers.

Aiming at the situation that the optimal solution needs
to be continuously determined in the model predictive
control, this paper proposes an evolutionary multiobjective
optimization algorithm based on the knee, which can find
the knee region of the Pareto front during the evolution
process. (e algorithm is used to optimize the energy
management problem of the microgrid, and the knee is
applied as the optimal solution in each period. Experiments
have proved that this method can effectively obtain an
optimized scheme for microgrid energy management and
requires less computing resources.

Future research work includes the following: (1) fully
considering the uncertainty of power generation and con-
sumption and improving the multiobjective energy

management method of microgrid combined with a model
predictive control method. (2) Improving the knee-based
EMO algorithm so that the algorithm can obtain the knee
area of the problem more accurately and reliably and im-
prove the computational efficiency of the algorithm. For
now, the KBEMO is based on NSGA-II, which is proposed
several years ago. Some recent algorithms with better per-
formance can be considered [24–26]. (3) Consider applying
the knee-based EMO algorithm to the multi-microgrid
group, which provides new ideas for the efficient solution of
the multi-microgrid system.
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