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/e promising potential of distributed and interconnected lightweight devices that can jointly generate superior information-
collecting and problem-solving abilities has long fostered various significant and ubiquitous techniques, from wireless sensor
networks (WSNs) to Internet of /ings (IoT). Although related applications have been widely used in different domains in
attempting to collect and harness the ever-growing information flows, one major issue that impedes the further advancement of
WSNs or IoT-based applications is the restricted battery power. Previous research mainly focuses on investigating novel protocols
to save energy by reducing data traffic with the aid of optimal or heuristic algorithms. However, data packet behaviours and
significant parameters involved are mostly preconfigured in a supervised-learning fashion rather than using an unsupervised
learning paradigm and therefore may not adapt to uncertain or fast-changing environments. Hence, this paper concentrates on
optimising the behaviours of data packets and significant parameters in a widely tested routing protocol, namely, Cognitive Packet
Network (CPN), with the aid of several bio-inspired algorithms to increase the efficiency of energy usage and information
acquisition. Two novel packet behaviours are introduced, and an on-line parameter calibration scheme is proposed to realise
packet time-to-live (TTL) adjustment and rate adaptation. /e simulation results show that the introduction of the bioinspired
algorithms can improve the efficiency of information sharing and reduce the energy consumption.

1. Introduction

Energy-efficiency-related studies in the combination with
machine learning approaches have been a long-standing
focus in computer-aided systems such as vehicular systems
[1–3], surface vessel systems [4, 5], manufacturing systems
[6, 7], evacuation systems [8, 9], and communication sys-
tems [10, 11]. Among these systems, a key component would
be information sharing system, which is used to disseminate
useful information among users without being inundated by
the less useful information [12]. Owing to their long term
monitoring ability and easy access to immediate environ-
ment, WSNs and the recent emerging IoT are the ideal
framework for information sharing and actually have been
involved in a vast number of information-sharing related
applications such as emergencymanagement, transportation
surveillance, medical care, and field monitoring. Since

WSNs and IoT are generally formed by battery-powered
devices, various protocols are designed to improve the en-
ergy efficiency in information acquisition and transmission.
However, in most previous protocols, significant parameters
such as packet rate or time-to-live of packets are commonly
fixed or preconfigured and can cause unnecessary power
utilisation in complex and fast-changing environments.
Moreover, the configuring and routing algorithms in the
optimal protocols are mostly computationally complex and
time-consuming. /e recent review in [13] has highlighted
the immense potential of self-aware computer networks
which can self-configure and self-adapt with the aid of
software defined networks and reinforcement learning
techniques. /erefore, in this paper, we propose several
bioinspired reinforcement learning like algorithms to
adaptively reconfigure the key parameters of an IoT-based
information sharing system and adjust search behaviours of
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packets to realise energy efficiency and also improve the
efficiency in sensing interested events. /ese optimisations
are constructed on top of a widely-used routing protocol,
namely, Cognitive Packet Network (CPN). To evaluate the
performance of the mechanisms, we employ a simulated
IoT-based emergency navigation system to obverse the
energy expenditure and the efficiency in delivering emer-
gency messages for evacuees in fire-related disaster
scenarios.

/e remainder of the paper is organised as follows:
Section 2 presents the related work on parameter optimi-
sation in WSNs and IoT-based applications as well as the
bioinspired algorithms in information sharing systems.
/en, we recall the concept of CPN in Section 3 and in-
troduce the bioinspired algorithms in Section 4. /e sim-
ulation tool and assumptions of experiments are depicted in
Section 5, and the results are presented in Section 6. Finally
we draw conclusions in Section 7.

2. Related Work

2.1. Parameter Optimisations in WSNs and IoT. A vast
amount of specifically designed routing protocols have been
proposed in various WSNs and IoT based applications due
to power constraints and long-term unattended operations.
/e key factor that impacts the design of WSNs and IoT-
related protocols is the underlying data delivery patterns,
which can be classified into three types: continuous pattern,
event-driven pattern, and query-driven pattern or hybrid
[14, 15]. In continuous pattern, sensor nodes gather sensory
data and transmit to sink nodes or users periodically; in
event-driven pattern, sensor nodes gather sensory data and
transmit to sink nodes or users when an event occurs; in
query-driven pattern, sensor nodes gather sensory data and
respond to users when receiving a query. In this paper, we
focus on the literature related to continuous pattern since
the performance of the latter two patterns is heavily affected
by specified scenarios. /e study in [16] models the life time
of a WSN as a function of data transmission rates among
sensor nodes and then formulates the data packet routing
problem as a linear programming problem; by solving this
problem and maximising the life time of the WSN with a
proposed flow augmentation algorithm, desired data
transmission rates can be obtained. Similarly, the work in
[17] proposes a distributed energy efficient routing algo-
rithm for a WSN to maximise the operation time before the
first node drains out of power; this routing problem is
constructed as a linear program with the objective of
maximising the minimal operation time of all sensor nodes
in the WSN; by solving this problem with dual decompo-
sition and subgradient algorithms, the optimal information
flow rates among different nodes are determined. One major
limitation of the above algorithms is the assumption that all
data-routing requests are preknown. /e research in [18]
and the extended work [19] proposes a data transmission
rate control algorithm for WSNs with respect to the node
congestion level and data priority; the data transmission rate
of a node is adjusted based on two factors: (1) the difference
between its current input rate and its maximum allowable

rate; (2) the priority of a node, which is determined by the
data class priority and the geographical priority; the
transmission rate of the WSN is calculated from the sink
node to other nodes in a backpropagation manner./e work
in [20] designs a multispeed and multipath packet delivery
mechanism for WSNs to guarantee the quality of service
(QoS) in timeliness and reliability domains; the speed of
packets is calculated by the division of geographical distance
between nodes by the transmission delay, and a compen-
sation mechanism is triggered to drop packets probabilis-
tically when the speed is below a threshold; the reliability of a
path is determined by the packet loss probability of traversed
nodes, and a multipath routing mechanism is used to
multicast packets to multiple neighbour nodes to improve
the reliability. By making use of the spatial and temporal
redundancy and correlation of the sensory data (e.g., sensors
within an area are considered as spatially correlated and data
transmitted within a time period is temporally related), the
work in [21] utilises a context-aware entropy filtering model
to regulate the transmission rate of nodes with respect to
their information type, information priority, and correlation
with previous data; to achieve energy efficiency, a node can
be adapted among various states including active, dormant,
nomadic, stand-by, and discovery based on the periodic and
event packet queue length of itself and ancestor nodes. /e
research in [22] employs a Brownian motion model [23] to
evaluate the appropriate time-to-live of packets in a wireless
network where packets are sent to search the destination
without any priori knowledge; common phenomena such as
packet loss are considered and the results indicate that a
judicious choice of time-to-live of packets can effectively
minimise the average packet travel time. /e work in [24]
proposes a game theoretical algorithm to self-configure the
transmission power of IoT devices; instead of maximising
quality of service (QoS) of IoT devices, a constrained Nash
equilibrium is introduced to achieve satisfactory QoS levels
to reduce energy consumption. /e study in [25] proposes a
lightweight context-aware service discovery algorithm to
search services in a highly dynamic IoT network; instead of
considering the service discovery problem as an optimisa-
tion problem, a plain mode-switching algorithm is used to
adjust the transition behaviours of nodes among advertising,
updating, and idle modes.

In summary, previous approaches mainly focus on
optimise one or several key parameters (e.g., packet rate) in
the routing process. /e employed optimisation algorithms
tend to configure the targeted WSN or IoT from a global
point of view./ese algorithms can therefore achieve energy
efficiency at the expense of high communication or com-
putation cost. To the best of our knowledge, there was not a
comprehensive mechanism to self-configure all the key
parameters in a network.

2.2. Bioinspired Algorithms in Information Sharing-Related
Systems. As an immense source of inspiration for system
design, various biological systems such as nervous system,
evolutionary system, ant colony, immune system, and cell
organization [26] have been investigated to optimise
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information sharing-related systems. For instance, the work
in [27] proposes a genetic algorithm-aided one-class support
tucker machine to detect outliers in large-scale IoT sensory
information; in comparison with vector-based anomaly
detection methods, anomalies in high-order sensory data
can be accurately detected while retaining the origin
structure of the data. Inspired by the growth process of the
biological brain, the study in [28] proposes a self-cognitive
learning framework for general system optimisation; a ge-
netic algorithm is utilised to gradually improve the learning
ability of the framework over generations. /e work in [29]
presents an automatic learning algorithm to predict future
events in smart spaces; a reinforcement learning like “au-
tobiographical memory” is proposed to generate cause/effect
relationships of users and the environment. /e research in
[30] employs an inter-cell signaling model and the Kur-
amoto synchronization model to develop adaptive and
flexible server node behaviours for load-balancing in a
heterogeneous server system; the unnecessary load transfers
among server nodes are avoided and the parameter con-
ditions for the stability and convergence of the system are
given and proved./e review in [31] presents various genetic
algorithms, ant colony algorithms, bee life algorithms,
particle swarm algorithms, immune algorithms, and human
brain-inspired fuzzy logic algorithms that are utilised in
routing and information-sharing of Vehicular Ad Hoc
Networks; compared with traditional counterparts, bio-
inspired algorithms are more efficient and robust in large-
scale networks. /e work in [32] employs a bioinspired
mechanism, namely, “reaction-diffusion,” to optimise the
spectrum allocation for information sharing in a cognitive
IoTnetwork; IoTnodes distributedly form clusters which are
determined by the competition of the activator and the
inhibitor in the reaction-diffusion mechanism. /e research
in [33] adopts a feed-forward neural network model to a
wireless sensor-actuator network (WSAN) for evacuation
routing; all physical nodes in the WSAN deploy a neural
network with identical topology: an input layer, a hidden
layer, and an output layer; the input layer receives the latest
two coordinates of a pedestrian, and a suggested direction is
subsequently generated by the output layer; the neural
networks are trained with the backpropagation algorithm in
standard situations and are deactivated when an emergency
happens. /e work in [34] employs a genetic algorithm to
minimise total evacuation time, travel distance, and number
of congestion encountered in an evacuation process; non-
domination sorting [35] is used as no priori knowledge and
is available to determine the weight of the three goals; the
initial chromosomes are paths found by the k-th shortest
path algorithm [36] and are incrementally evolved to feasible
solutions through crossover and mutation operations. /e
study in [37] employs a variation of particle swarm opti-
misation (PSO) to search routes and adjust velocity during
evacuation; occupants are viewed as particles to search exits;
once an exit is discovered, all the other particles will move
towards it while keep their moving inertia to expand
searching space; if more than one exit is found, particles will
choose the nearest exit as the destination. Inspired by the bee
colony foraging behaviour, the work in [38] uses bee colony

optimisation to displace evacuees in hazardous areas to safe
areas during an emergency evacuation; hives, food sources,
and bees represent safe areas, hazardous areas, and evacuees,
respectively; evacuees select a safe area with regard to “at-
tractiveness” which is determined by the distance to the area
and the distribution of people in hazardous areas; once an
evacuee determines a target, it will recruit other evacuees by
sharing information of the devoted area.

3. Cognitive Packet Network

/e Cognitive Packet Network (CPN) [39–41] is a quality of
service- (QoS-) driven protocol that was originally proposed
for route-finding in large-scale packet networks as well as
tailoring diverse QoS for end users in multimedia networks.
CPN is composed of CPN nodes in which a mailbox (MB) is
maintained to store the discovered routes. CPN contains
three types of packets, smart packets (SPs), acknowledge-
ments (ACKs), and dumb packets (DPs). SPs are responsible
for path-finding and information-gathering. Each SP carries
a cognitive map as well as executable code and can control its
own behaviours. /e search direction of SPs is determined
by either Random Neural Networks (RNNs) [42–47]
maintained at each CPN node or a random walk behaviour
controlled by “drift parameter.” /e drift parameter is de-
fined as the possibility for a SP to choose the next hop at
random over the RNN’s advice. When a SP reaches the
destination, it will generate an ACK to bring back all the
collected sensory information. DPs carry the payloads and
always follow the top-ranked route in the mailbox discov-
ered by SPs. In the context of emergency navigation,
evacuees are considered as DPs.

4. Bioinspired Mechanisms

Millions of years of evolution has made the animal foraging
behaviours become near-optimal solutions of autonomous
search and resource allocation. /ese behaviours are com-
monly constructed on top of simple but reliable mechanisms
and therefore suit contexts with limited computational ca-
pacity and energy. /e study in [48] presents a compre-
hensive literature review of biomimetic models based on
animal research. Inspired by this work, in this paper, we
investigate efficient algorithms and policies to optimise
packet behaviours as well as significant parameters used in
CPN.

4.1.Optimise Smart Packets’ Behaviour. Smart Packets play a
vital role in the route discovery and information collection of
CPN, and their behaviours contribute significantly to the
efficiency of path-finding as well as the energy usage. In the
original CPN model, SPs can discover routes efficiently but
their identical search behaviour may incur unnecessary
power when appropriate paths have been discovered and the
network situation stays unchanged. Furthermore, towards
network topologies where exits are distributed broadly, it
takes time for heuristic algorithms such as CPN or Ant
Colony Optimization (ACO) to adapt to an alternative exit
when the desired exit is suddenly blocked by fire. Hence, in
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this section, we consider SPs as social insects and present two
new search behaviours to improve the efficiency of energy
utilisation and path-searching.

Inspired by the foraging behaviours of ant or bee
colony in which most of the foraging force does not search
for new food sources but rely on the scouts (communi-
cated via pheromone or “dance language”), a portion of
source routed SPs can be generated to measure the existed
routes in the mailbox instead of exploring new paths. /is
mechanism can reduce the energy usage as the SPs do not
explore the network. Furthermore, certain interested
paths in the mailbox such as the expiring paths will be
measured by source routed SPs before being deleted.
Hence, the mailbox tends to maintain more routes and is
easier to satisfy the specific requirement of diverse cat-
egories of evacuees. /is policy can also accelerate the
reconvergence process of RNN especially in highly dy-
namic environments.

On the other hand, the work in [49] reports a consistent
novelty-seeking behaviour among honey bees to search new
food sources and nest sites. A number of food scouts continue
to search for new food sources independently even when
abundant food has already been discovered. Similarly, nest
scouts individually search for potential nesting cavities and
cooperatively determine the best one as a backup. /is be-
haviour can improve the efficiency of path-finding in built
environments where the exits are distributed broadly (e.g.,
egresses are distributed on different floors or rescuers may
generate temporary exits by using ladder trucks) because
current CPN- or ACO-based algorithms may take time to
swift the optimal solution in such topologies. For example,
“ants” in ACO rely on artificial pheromone to solve problems
and optimal solutions end up with more pheromone than
mediocre links. However, when a current optimal path is
suddenly blocked by fire, ants cannot change the search di-
rection and discover the new optimal route connected to a
distant exit immediately because pheromone evaporates at a
fixed low rate. Similarly, it is difficult for a SP which is emitted
by a node on the ground floor to find the exit on the second
floor when its desired exit is on the ground floor (e.g., search
as path from node A to node B) as shown in Figure 1. Hence,
we propose a novel SP searching mechanism inspired by the
novelty-seeking behaviour to search the alternative exits based
on other SPs’ experience. By searching routes to alternative
exits and storing them in the mailbox beforehand, CPN can
provide new suggested direction immediately when the
former optimal exit is suddenly disconnected. To increase the
efficiency of discovering distant exits, when a SP reaches a
new node, it will first inquire the local mailbox to search paths
to alternative exits, and then it will follow the best one to some
extent as shown in Algorithm 1. If each sensor node has full
knowledge of the building model, it can also perform a
Dijkstra’s algorithm to obtain the shortest path to each exit.
Otherwise, if the sensor do not have full knowledge of the
graph or an egress is newly generated (e.g., rescuers may
generate temporary exits by using ladder trucks), the nodes in
the vicinity of exits can initially broadcast a message to inform
other nodes in the network when new exits are generated as
shown in Algorithm 2. Please note that we do not need to

ensure the broadcasted messages reach every node as a SP
with novelty-seeking behaviour can get clues from the paths
in the mailbox of nodes it traverses.

4.2. Optimise the Drift Parameter. /e selection of drift
parameter is a tradeoff between path-finding efficiency and
quality. Actually, previous experiments indicate that low
drift value leads to slow but steady discovery while high drift
parameter resolves paths quickly but may stagnate with
suboptimal solutions [50]. Hence, in this section, we propose
a bioinspired mechanism to self-adapt the drift value based
on the network topology as well as observation of SPs.

American white pelicans increase degree of coordination
when the prey capture rates decrease and vice versa [51]./is
foraging strategy that alerts with prey capture rates can
benefit the exploration process of SPs. For instance, when
ACKs tend to bring back new paths (high capture rates), the
drift parameter will be set to a higher value adaptively to
disseminate SPs more randomly to expand the searching
area. In contrary, when ACKs are prone to bring back paths
that have already been stored in the mailbox, the drift pa-
rameter will be adaptively assigned to a low value, and SPs
will concentrate on monitoring the current paths. If the
obtained paths have all been existed in the mailbox, then SPs
will act as source-routed packets as mentioned in Section 4.1.

Noda et al. [52] investigate the prey searching behaviours of
stout-body chromis (Ss). /ey usually search for zooplankton
in a tortuous pattern within the conventional foraging regions,
regardless of presence or absence of prey. In contrast, Ss will
move rapidly between the foraging regions without searching.
Similarly, each node in the CPN should be able to adapt its own
drift parameter in accordance with its surrounding environ-
ment rather than setting an equivalent value. A node in a
narrow corridor should have a smaller drift parameter for
quick path-finding and rapid adjustment to a spreading hazard
while a node in a hall which tends to be linkedwithmore routes
should have a larger drift parameter.

Based on the above two interested phenomena, we
present a novel algorithm to adapt the drift parameter. /e
initial drift parameter is determined by the number of
neighbours sensed by the current node:

Dinitial
i �

2
π
arctan Nn(  − b, (1)

where Dinitial
i is the initial drift parameter of node i, Ni is

number of neighbour nodes of node i, and Term b is a
constant parameter which is set to 0.4./is ensures when the
number of neighbours of a node is 1, the node does not send
source-routed SPs (because there is not any path in the
mailbox during the initialisation process).

When a new path is discovered or the QoS of an existed
path is significantly changed, the drift parameter will in-
crease to explore broader areas. However, it can not exceed a
maximum value Dmax. On the other hand, if ACKs have not
brought back new routes for a certain time interval Tm, the
drift parameter will decrease with rate Rd similar to the
evaporation of pheromone. Hence, the drift parameter at
any time instant t can be calculated as follows:
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D(t) �

0, D(t)≤ 0,

Dinitial + Ri ∗Pn − Rd · 1 t
∗ <Tm ∗ t

∗
− Tm( , 0<D(t)<Dmax,

Dmax, D(t)≥Dmax,

⎧⎪⎪⎨

⎪⎪⎩
(2)

where D(t) is the current drift parameter, term t represents
the current time instant, Dinitial depicts initial drift param-
eter, Ri stands for the increased value when a new path is
discovered, Pn is the number of discovered paths since the
last time 0<D(t)<Dmax, Rd represents the decrease rate of
the drift parameter, term t∗ depicts the time cost since
0<D(t)<Dmax, Tm represents the time threshold after
which D(t) begins to reduce, and 1[X] is a function that
takes the value 1 or 0 if X is false or true, respectively.

4.3. Optimise the Packet Rate. Based on the dynamic drift
parameter of each node, we can also optimise the packet rate

of SPs. When the SPs of a node have a relatively large drift
parameter, more SPs are essentially required to explore the
environment. In contrary, when the current drift parameter
is small, CPN only demands a few SPs to remeasure and
explore the surroundings. If drift parameter is zero, it means
that SPs only need to measure the discovered paths. In this
case, SPs will be sent to remeasure a route only when the
path is nearly expired. /e packet rate of SPs is proportional
to the drift parameter D(t) when D(t) does not equal to 0:

T � k∗D(t), if 0<D(t)≤Dmax, (3)

where k is a constant and D(t) is the real-time drift
parameter.

A

B

Figure 1: /e initial directions given by the CPNSP algorithm before a fire breaks out. CPNSP, CPN based algorithms with distance metric.

(1) While a SP with novelty-seeking characteristic reaches a node do
(2) if the node is not an alternative exit then
(3) Examine if any route to the alternative exists in the mailbox
(4) if there are routes to an alternative exist then
(5) Choose the top-ranked route P and store it in the cognitive map of SP
(6) Generate a random value Du between 0 and 1
(7) if Du >Dn then
(8) Choose the next hop in the P to follow
(9) else
(10) Choose a random neighbour node as the next hop
(11) end if
(12) else
(13) Choose a random neighbour node as the next hop
(14) end if
(15) else
(16) Stop searching and generate an ACK
(17) end if
(18) end while

ALGORITHM 1: Search routes to alternative (distant) exits.
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4.4.Optimise theTime-to-Live. /enumber of hops that a SP
can traverse before it is dropped has a remarkably influence
on the performance of CPN-based systems. If time-to-live of
SPs is too large, the system will be overburdened with
packets that are in effect lost. On the other hand, if the live-
time constraint is too small, some distant exits will not be
reached. In this section, we make use of the optimal foraging
theory [53] to present a mechanism for SPs to adaptively
determine the time-to-live with respect to the surrounding
environment. /e optimal foraging theory is inspired by
animal foraging behaviours in which predators maximise the
average intake rate Fb:

Fb �
Ea

Ha + Sa

, (4)

where Ea is the average energy obtained from preys, Ha

represents the average time cost to capture a prey, and Sa

depicts the average searching time to discovery a prey.
When a predator finds a prey, if the current intake rate is
large than or equals to Fb ((Ec/Ha)≥ (Ea/(Ha + Sa))), it
will eat it. Otherwise, it will leave to search a new prey.

Based on the optimal foraging theory, we consider
nodes as preys and SPs as predators to optimise the
number of hops adaptively. SPs will be assigned an initial
life constraint Hi with respect to the current average hops
of paths in the mailbox. When a SP does not reach an exit
after Hi hops during a searching process, it will be
considered as a predator and use the animal foraging
behaviours to decide whether to continue searching. To
employ the optimal foraging theory, each node (prey) in
the network is allocated with a value to describe the
contained energy. /e contained energy can be calcu-
lated by taking advantage of the minimal number of hops
to the nearest exit which is brought back by ACKs. On
top of this, Ea can be calculated by summing the energy
obtained from the predecessor nodes. Ha and Sa are
represented by the number of hops instead of time. /e
details of this algorithm are shown in Algorithm 3.

5. Assumptions and Simulation Model

We use the Distributed Building Evacuation Simulator
(DBES) [54, 55] which is a multiagent discrete event
simulator to evaluate the effectiveness of the bioinspired
mechanisms in fire-related scenarios. In the simulator,
physical areas are depicted by a graph model: vertices
represent locations where evacuees may congregate;
edges depict the physical routes between locations.
Sensor nodes (SNs) are presumed to have been installed
in the vicinity of vertices. We also assume that SNs collect
sensory information periodically and provide advices to
evacuees. To investigate the influence of building struc-
tures to navigation algorithms, two building models
which separately represent the lower three floors of
Imperial College’s EEE building as shown in Figure 2 and
a canary wharf shopping mall as shown in Figure 3 are
employed.

To construct the energy usage model for SNs, we
mimic Mica2 sensor nodes developed by UC Berkeley and
make use of the measurements presented in [56]. Our
energy model considers energy consumption during
communications and computations. /e energy con-
sumption during sensing and communications processes
is borrowed from [57], while the energy utilisation of CPU
is predicted by an analogy of the code-transformation
algorithm introduced in [56]. By using this algorithm, we
can calculate the CPU active time with regard to the CPU
frequency and the recorded total CPU cycles during the
simulation. /e current levels of CPU in active mode and
idle mode is 8.0mA and 3.2mA, respectively. /e CPU
frequency is 16MHz, and the power supply is 3.0V. /e
instruction per cycle (IPC) of the CPU is set to 1. Detailed
procedures of this algorithm are as follows:

(1) Convert the codes of the algorithms to simple CPU
instructions

(2) Convert involved decimal numbers in the algorithms
to binary numbers

(1) When the network is initialised:
(2) for all the node i in the network do
(3) Set the path to exits πexitj at node i to null

where j � 1, . . . , N, N is the number of exits. Term πexitj depicts the path to the j-th exit
(4) end for
(5) When a new exit is generated:
(6) for all the exit j in the network
(7) Broadcast SPs among the entire network
(8) When a SP arrives a node, the node will extract the route from the SP
(9) /∗ If the previous path is worse than the newly obtained one, then replace it ∗/
(10) if QoSnewπexit

j

<QoSoldπexit
j(11) /en πexitjold

←πexitjnew
where πexitjnew

represents the route to exit j in the newly reached SP. QoSoldπexit
j

and QoSnewπexit
j

depict the QoS of the previous and new
routes to exit j, respectively. In our treatment, the QoS is number of hops to an exit

(12) end if
(13) end for

ALGORITHM 2: Disperse messages when a new exit is generated.
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(3) Perform bitwise operations and sum the number of
instructions used in computation

(4) Transform the number of instructions to CPU cycles
counts in accordance with the Instructions per cycle;

(5) Convert CPU cycles counts to CPU active time with
regard to CPU frequency

(6) Calculate energy consumption of CPU with respect
to time cost on each power state

(1) Process 1: assign contained energy to each prey (node)
(2) for all the node i in the network do
(3) Set the minimal number of hops to the closest exit N

hop
min at node i to an extremely large value

(4) When an ACK has arrived, extract the number of hops to the exit in the route which has been brought back by this ACK
(5) if N

hop
current <N

hop
min then

(6) /en N
hop
min←N

hop
current

where N
hop
current represents the number of hops to the exit in the route brought back by the latest ACK

(7) Assign the contained energy of node i: Ec � 1/Nhop
min

(8) end if
(9) end for
(10) Process 2: optimise the time-to-live of a SP
(11) for all the node i in the network do
(12) Calculate the average number of hops Ni

a from the obtained paths in the mailbox
(13) for all the SPs Si sent from node i do
(14) Set the total obtained energy Et to 0 initially
(15) When a SP Si

j reaches a new node
(16) Et←Et + Ec

(17) /∗ If the traversed number of hops of the current SP NS
t is larger than or equals to Ni

a
∗/

(18) if NS
t ≥Ni

a then
(19) if current node is not an exit node then
(20) /∗ Ec is the contained energy of the current node, Ha is the average handling time, which is set to 1 (one hop), Ea is the

average energy obtained from the current path, which can be calculated by Ea � Et/NS
t , Sa is the average searching time, which is

also 1 (one hop), and term Sa which depicts the average searching time to discovery a prey is set to 0 ∗/
(21) if (Ec/Ha)≥ (Ea/(Ha + Sa)) then
(22) Continue to search exits
(23) else
(24) Drop the SP Si

j

(25) end if
(26) else
(27) Generate an ACK
(28) end if
(29) end if
(30) end for
(31) end for

ALGORITHM 3: Determine the time-to-live of a SP.

Figure 2: /e graph-based layout of Imperial College’s EEE building. /e black stars represent the exits on the ground floor.
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6. Experiments and Results

To evaluate the effectiveness of our proposed algorithm, we
simulate several hazard environments as it is insufficient to
test the resilience and robustness of the algorithm in normal
conditions without introducing high dynamics of users and
fast changes in network topology. Experiments are con-
ducted on two featured building models with diverse
population densities (30, 60, 90, and 120 civilians, respec-
tively) when fire-related disasters breaking out. /e bio-
inspired mechanisms are combined with the CPN-based
algorithm with distance metric. Dijkstra’s shortest path al-
gorithm (DSP) and the original CPN based algorithm with
distance metric (CPNSP) are performed for comparison
purpose.

Figure 4 summarises the percentage of simulated civil-
ians that evacuate from the Imperial College’s EEE building.
It shows clearly that CPNSP with bioinspired mechanisms
reaches the performance of DSP or CPNSP in lower oc-
cupancy rates (30 or 60 evacuees) although it actually sends
fewer packets. While in higher population densities, both
CPN-based algorithms surpass the performance of DSP.
/is is because DSP is a global optimal algorithm that always
directs all the evacuees to the ideal path and therefore tends
to cause congestion. On the other hand, as a heuristic al-
gorithm, CPN sometimes provides near-optimal routes and
naturally avoids jamming. Moreover, CPNSP with bio-
inspired mechanisms outperforms the original CPNSP as it
is more sensitive to changes in the environment. /is is
because (1) SPs with novelty-seeking behaviour can discover
routes to alternative egresses in advance and redirect
evacuees immediately when the desired exit is blocked by
fire; (2) CPNSP with bioinspired mechanisms sends source-
routed SPs to remeasure the QoS of paths in the mailbox and
is more sensitive to the fire spreading while the top-ranked
path in the original CPNSP may not be remeasured before
being deleted due to timeout;

Figure 5 presents the average percentage of survivors of
five experiments over a CanaryWharf shoppingmall. Unlike
the first building structure in which all the exits are on the

ground floor, one of the exits of the shopping mall is located
on the second floor. We assume a very fast-spreading fire
disaster breaks out near the exit of the ground floor. /e
results indicate that CPNSP does not perform well in this
scenario because it is difficult for normal SPs emitted from
the ground floor to detect the distant exit on the second floor
before the fire blocks the exit on the ground floor. In ad-
dition, constantly sending a large number of SPs when the
network is stable may cause “overtraining” problem (the
neuron which associates with the optimal path may be
frequently reinforced and other neurons may be continu-
ously punished; hence, it may take a short period for SPs to
adapt to a new searching direction when the previous one
suddenly becomes worse or gets disconnected). As a result,
fast-spreading fire will reach evacuees before CPN adjusts
suggested directions to the exit on the second floor and
therefore cause a large number of injuries and causalities. On
the other hand, DSP and CPNSP with bioinspired mecha-
nisms achieve 100% survival rate because both of them can
direct evacuees on the ground floor to the egress on the
second floor promptly when their desired egress is blocked
by the hazard. DSP can discover the optimal path quickly
because it collects hazard information from each node in the
network periodically and compute the global optimal path.
CPNSP with bioinspired mechanisms can switch evacuation
decisions immediately because it continuously monitors
alternative exits by using novelty-seeking SPs as well as
remeasures the current top-ranked path with source-routed
SPs.

Figures 6 and 7 show the energy consumption and the
total CPU cycles of 2 minutes long evacuation process when
using the original CPNSP and CPNSP with bioinspired
mechanisms, respectively. /e results indicate that, by using
the bioinspired mechanisms, CPN can reduce the energy
utilisation and CPU cycles considerably. /is is mainly
because CPNSP with bioinspired mechanisms can adjust the
number of SPs sent with respect to the interested events
observed rather than using a predefined packet rate. When a
CPN node detects spreading of a hazard, it will send more
SPs with a larger drift parameter to measure a broader area

Figure 3: /e graph representative of a Canary Wharf Shopping Mall. /e black stars represent the egresses.
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Figure 5: /e percentage of survivors in the Canary Wharf building model for each scenario. /e results are the average of five randomized
simulation runs, and error bars show the min./max, result in any of the five simulation runs.
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Figure 4: /e percentage of survivors in the Imperial College’s EEE building model for each scenario. /e results are the average of five
randomized simulation runs, and error bars show the min/max result in any of the five simulation runs.
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for the sake of discovering the optimal route; otherwise, it
will mainly send source-routed packets to measure the
obtained optimal paths in the mailbox.

7. Conclusion

In this paper, we propose a bioinspired emergency navi-
gation approach that can reconfigure key parameters based
on the observed information brought back by SPs. Two novel
packet searching motions inspired by social insect behav-
iours are also presented to improve the efficiency in path-
finding and energy-saving. /e experimental results indicate
that the algorithm can achieve self-adaptive in a highly
dynamic emergency environment and effectively increase
survival rates.
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