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Searching is one of the most fundamental operations in many complex systems. However, the complexity of the search process
would increase dramatically in high-dimensional space. K-dimensional (KD) tree, as a classical data structure, has been widely
used in high-dimensional vital data search. However, at present, common methods proposed for KD tree construction are either
unstable or time-consuming. This paper proposed a new algorithm to construct a balanced KD tree based on presorted results.
Compared with previous similar method, the new algorithm could reduce the complexity of the construction process (excluding
the presorting process) from O (KNlog,N) level to O (Nlog,N) level, where K is the number of dimensions and N is the number of
data. In addition, with the help of presorted results, the performance of the new method is no longer subject to the initial

conditions, which expands the application scope of KD tree.

1. Introduction

How to search quickly is one of the most fundamental
problems in many research fields [1-3], such as grid
remapping, pattern recognition, and ray tracing. However,
the complexity of the search problem would increase dra-
matically in high-dimensional space. Take the basic problem
of finding the nearest point for a target point in a high-
dimensional space as an example. The most intuitive way to
do this is to compute the distance from all the other points,
and then pick out the point with the shortest distance.
However, the higher the dimension is, the more expensive it
is to calculate the distance. Calculating the distances between
the target point and all the other points would soon become
unacceptable in high-dimensional cases. At this point, an
efficient algorithm to avoid unnecessary calculation is
particularly important.

KD tree [4] is a classical data structure that stores
K-dimensional points for quick retrieval by the form of a
binary tree. Different from a standard binary tree, each level of
the KD tree can be divided by different dimensions. Due to its
good performance in solving multidimensional searching
problems, it has been widely used in multidimensional critical

data search (e.g., regional search and nearest neighbor search
(5, 6]).

There are two vital operations in building a KD tree: one
is choosing the dimension to be divided, and the other is
selecting the exact splitting point. In terms of choosing the
splitting dimension, the dimension with the largest variance
or the widest dispersion is generally recommended [7],
because such choices can divide the search space more
evenly. Nevertheless, for the sake of simplicity, it is ac-
ceptable to divide the dimensions in a circular fashion in
many cases, especially when the points are evenly distrib-
uted. As for selecting the splitting point, due to fact that no
effective rebalancing techniques are available for KD tree
reconstruction at present [8], the median point is usually
suggested to be chosen so as to build a balanced tree directly
[9].

A variety of methods, aiming at picking the median point
out quickly and accurately, have been developed at present.
Quicksort [10] is one of the most popular sorting algorithms,
which could find the median in O (Nlog,N) time at best. In
addition, an improved method (i.e., quick select algorithm
[11]) could even reduce the time to O (N) level, which is
regarded as one of the fastest methods. Unfortunately, the
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performance of both methods might degrade to O (N?) level
at worst. Though some of other methods (e.g., merge sort
[12]) may guarantee to obtain the median in O (Nlog,N)
time, their performance is still slightly disappointing.

As we all know, sorting algorithms have been relatively
mature at present. Therefore, it should be an intuitive idea to
build a KD tree based on presorted results. However, few of
previous literature are concerned about this idea. To the best
of the authors” knowledge, Brown [13] is the first one who
proposed a method to build a KD tree based on presorted
results in O (KNlog,N) at worst. Cao [14] further improved
the performance of this method by replacing superkeys with
keys during the presorting and construction. However, both
methods have to maintain K index arrays all the time during
the construction, which degrades the complexity of the
construction process from O (Nlog,N) to O (KNlog,N). In
addition, the selection of the splitting dimension is restricted
for the sake of arrays reusing.

This paper proposed a new method to construct the KD
tree based on presorted results, which can not only build a
KD tree in O (Nlog,N) time under any conditions, but also
arbitrarily choose the splitting dimension. Detailed de-
scription of the new method is given in Section 2. Experi-
ments’ validation and analysis are shown in Section 3.
Finally, the conclusion is drawn in Section 4.

2. Algorithm

2.1. Basic Idea. Brown’s method would prepare an ordered
index array for each partition. Each partition can be
implemented quickly according to the index array it depends
on. Taking the splitting order adopted by Brown as an
example (i.e., split by x, ¥ and z in turn for 3D data), as-
suming that the index array is arranged from small to large,
elements less than the median belong to the left subtree,
while elements greater than the median belong the right
subtree (this rule will be adopted through this paper). The
first partition is based on the x index array. The middle
element of the x index array is just the median point. Ele-
ments in the upper part of the index array belong to the left
subtree, while elements in the lower part of the array belong
to the right subtree. The overhead of selecting the median
point is only O (1). In order to prepare for the second
partition, it needs to form a new y index array after O (N)
comparisons. In theory, with the new y index array, the
second partition has been able to be carried out successfully.
However, z index array is also updated by Brown in the first
partition. In fact, this is accomplished for the preparation of
the third partition. If z index array is not updated during the
first partition, the program will not be able to determine
which subtree the element in z index array belongs to in the
second partition, which would lead to a failure of forming
the new z index array in the third partition. However, such
operations lead to the degradation of the complexity of KD
tree construction from O (Nlog,N) to O (KNlog,N).
Therefore, in order to build a KD tree in O (Nlog,N)
time, only the index array useful for next partition can be
maintained during the construction. To achieve this goal, we
need to ensure that each element clearly knows which
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subtree it belongs to in each partition. Hence, we designed
three additional integer arrays to record the state of cor-
responding elements. They are BN array, SS array, and CUR
array. The size of each array is N. BN[{] is used to record the
starting position of the subtree to which element i belongs.
SS[j] is used to record the number of the remaining elements
in the subtree of the element whose starting position is j.
CUR[k] is used to record the number of elements that have
been arranged in the subtree of the element whose starting
position is k. If CUR[BN[i]] is less than half of SS[BN[i]], it
means that element i should belong to the left subtree of the
current subtree. Similarly, if CUR[BN]i]] is larger than half
of SS[BNIi]], it means that element i should belong to the
right subtree of the current subtree. If CUR[BN[i]] equals
half of SS[BN[i]], it means that element i is the median of the
current subtree. Then, BN[i] should point to the middle of
the domain where the subtree occupies (supposing it points
to M), and SS[M] should be set to 0. When CUR[BN]i]]
equals SS[BN/[i]], it means that all the elements in the current
subtree have been processed, and corresponding elements in
SS and CUR arrays should be reset so as to prepare for the
next split. More specifically, supposing the starting position
of the left subtree and the right subtree of the current subtree
is L and R respectively, then SS[L] and SS[R] should be set to
half of SS[BN[7]], while CUR[L] and CUR([R] should be set
to 0.

Let us take building a KD tree for seven 2D points as an
example. The coordinate information of these seven points is
shown on the left side of Figure 1 under “Tuples.” Index
arrays presorted by values in the x and y coordinates are
listed from small to large and shown under “Presorted
Results.” The initialization of BN, SS, and CUR arrays is
shown under “Initial.” BN is initialized to 0, indicating that
the data set of the current subtree starts from position 0. SS is
initialized to 7, and it means that there are 7 elements in
current subtree, and CUR is initialized to 0, indicating that
none of the elements in the current subtree have been
arranged. It should be noted that, for SS array and CUR
array, only SS[0] and CUR[0] are meaningful, and assign-
ments for other elements have no influence on the final
result.

After the completion of these preparations, the con-
struction of the KD tree formally begins. For the sake of
simplicity, subtrees in each level are divided by x and y
sequentially and cyclically. Then, the first partition is ac-
complished by processing the elements in x index array in
turn from top to bottom. Elements 2, 4, and 3 are less than
the median, so they belong to the left subtree and should be
left in the upper part of the domain occupied by the current
subtree (i.e., their corresponding value in the BN array
should be 0). Element 0 is the median, so it should be located
in the middle of the current subtree (i.e., BN[0] should be 3).
Moreover, as this point will no longer belong to any subtree
after being an intermediate node of the KD tree, SS[3] should
be set to 0. Elements 5, 6, and 1 are greater than the median,
so they belong to the right subtree and should be left in the
lower part of the domain occupied by the current subtree
(i.e., their corresponding value in the BN array should be 4).
In the process of traversing the subtree starting from 0, the
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Tuples Prriiiﬁ::d Initial After first split After second split After third split
(o) x y BN SS CUR BN SS CUR BN SS BN SS F
0 6,1) [ 2]0 017160 31310 311 310 T
1 9,4) 4|2 01710 41710 510 510 T
2 (LL,2) [ 3] 6 01710 0710 011 010 T
3 3,50 [ 0|1 01710 0|10]|O0 110 110 T
4 2,8 | 5] 3 01710 013]0 2|1 210 T
5 (7,9) | 6 | 4 01710 41710 610 610 T
6 8,3 [ 1]5 01710 41710 411 410 T

FIGURE 1: An example to construct the KD tree based on the new method.

value of CUR[0] increases continuously, which is used to
determine whether the current element belongs to the left
subtree or the right subtree. After all the elements in the
current subtree have been visited, CUR[0] is reset to 0. At the
same time, the number of elements in the left and right
subtrees will also be reset; that is, SS[0] and SS[4] will be set
to 3. After the first partition, the values of these three arrays
are shown in Figure 1 under “After First Split.” It can be seen
that the CUR array is an auxiliary array, which only affects
the current partition. After the current partition is com-
pleted, it will return to 0 again. Therefore, its state will no
longer be displayed in the subsequent partition process. The
second partition will be accomplished according to the y
index array. The first element in y index array is 0, and the
beginning position of the current element (i.e., BN[0]) is 3.
SS[3] is zero, which means that the current element does not
need to be processed. The second element is 2, the starting
position of element 2 (i.e., BN[2]) is 0, and the number of
elements in the current subtree is 3. Therefore, element 2
belongs to the left subtree of the current subtree, and BN[2]
should be 0. The third element is 6, starting at 4 and be-
longing to the left subtree of the current subtree, so BN[6] is
4. The fourth element is 1, and the starting position is 4,
which should be the median of the current subtree.
Therefore, BN[4] is set to 5, and SS[5] is set to 0. The
remaining elements can be processed similarly. The results
are shown in Figure 1 under “After Second Split.” When all
the elements are picked out as a node in the KD tree, all the
elements in the SS array will be zero, as shown under “After
Third Split” in Figure 1. Then, the final index array (i.e., F
array in the right side of Figure 1) used to construct the KD
tree can be easily obtained from the BN array (it can be done
by placing i in the position of BN[i] of F array). It can be seen
from the process descripted above that when building a KD
tree, the new method does not manage to prepare a complete
index array for each partition, but only maintains the set of
data to be partitioned next time. This idea enables the new
method no longer need to update K index arrays every time.
Thus, it reduces the time cost.

It should be noted that we have just obtained the final
index array for construction, not the final KD tree. Previous
algorithms use recursive method to build KD tree, so the
child node can easily link back to the parent node. However,
the previous process no longer uses recursion, so it is

impossible to transfer the information of the child node to
the parent node, unless more space is used to store the
information of the parent node. Fortunately, after obtaining
the final index array F, we can visit the index array again
according to the same rules and order recursively as before
to build the KD tree. The difference is that the current re-
cursive traversal process no longer needs to find the median
point but only needs to get the middle point from the array
range occupied by the subtree. It should be noted that if the
selection of the split dimension does not follow some fixed
rules, additional arrays are needed to record the selection
results of the split dimension before building the KD tree
recursively at last.

2.2. Detailed Description. The detailed description of
building a KD tree based on the new method is shown in
Figure 2. The first step is presorting and initialization, after
that, choosing the splitting dimension and processing BN,
SS, and CUR arrays repeatedly, until each element in the SS
array is zero. Subsequently, the final index array F is con-
structed according to the BN array (in fact, the construction
of F array can also be accomplished during the partition
without the help of BN array). Finally, the KD tree is exactly
constructed recursively according to the F array. The main
process of dealing with BN, SS, and CUR arrays is shown in
the large box. Elements in the D index array (i.e., the splitting
dimension) will be visited in turn from the beginning to the
end. Suppose that the current element is tmpi. If the current
element has already been selected (i.e., tmpsize is 0), it no
longer needs to be processed. Otherwise, it is whether it
belongs to the left subtree or the right subtree or is the
median will be judged according to CUR[tmpBN]. If it
belongs to the left subtree or the right subtree, BN[tmpi] will
point to the starting position of the corresponding left or
right subtree. Otherwise, BN[tmpi] will point to the middle
of the segment occupied by the current subtree, and its
corresponding value in the SS array will be set to zero. When
all the elements in the current subtree have been processed,
the corresponding elements in SS and CUR arrays will be
reset as described in the foregoing subsection.

The process of building a KD tree recursively according
to the final index array F is shown in Figure 3. The first step is
to obtain the splitting dimension. The splitting dimension
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{
tmpi=SS[D][i]
tmpBN=BN|[tmpi]
tmpsize=SS[tmpBN]
if(tmpsize==0)

BN[tmpi]=M
SS[M]=0
}

else

continue; to BN array
Y if(tmpi belongs to the left sub-tree)
Choose split R setBN[tmpi] to the beginning of the left sub-tree;
dimension D 4 else if(tmpi is the median point)
{ Y
set M be the middle of current sub-tree Build the KD tree

setBN[tmpi] to the beginning of the right sub-tree;
if(all the elements of current sub-tree have been processed) Y
reset corresponding SS and CUR

Process BN, SS and
CUR arrays

Y
Construct the final
index array F according

recursively according
to the F array

End

FIGURE 2: Building a KD tree based on the new method.

can be obtained either by following the same rules or from
the record of previous partition results. The next step is to
select the median point. In fact, the middle element of the
segment occupied by current subtree is just what we want.
Subsequently, the starting position and the number of el-
ements for the left and right subtrees will be calculated,
respectively. Finally, the left and right subtrees will be
constructed recursively until the number of elements in the
current subtree is zero.

2.3. Complexity Analysis. From the foregoing discussion, it
is known that the whole process of building a KD tree is
comprised of two parts. The first part is to form the final
index array for construction, while the second part is to
exactly build the KD tree according to the final index array.
In the first process, one of the presorted index arrays will be
traversed during each partition. Although each element
might be accessed in a different order, the final result is that
all the elements will be processed once. Therefore, the time
complexity of each partition is O (N). There are O (log,N)
times of partition in need, so the time complexity for the first
process is O (Nlog,N) in total. It is worth noting that al-
though each partition will access some selected nodes, the
overhead is limited, and the impact on the final execution
time is negligible. In the second process, each selection of the
KD node is accomplished in O (1) time. Therefore, it takes O

(N) time to build the KD tree. Adding up the complexity of
these two parts, the final time complexity of the new method
is O (NlogoN +N). When N is large, the total time com-
plexity can be considered as O (Nlog,N). It is notable that
the time complexity of the new method is independent of the
initial order of original elements. It means that, even under
the worst condition, the time complexity of the new method
is still O (Nlog,N) level, which is just what we expected.

3. Experiments

The new method is accomplished in C language. As the
presorting process is not the focus of this paper, for the sake
of simplicity, the function “gsort”, which is provided by the
C standard library, is used for presorting. There are two data
sets used for testing. One owns 2** 6-dimensional real el-
ements, which are randomly generated between 0 and 100
with 6 valid decimal places. The other owns 2'7 6-dimen-
sional real elements with the same range. The main differ-
ence between these two data sets is that the elements in the
latter data set are arranged from large to small in each
dimension.

Figure 4 shows the construction time (seconds) for
2'®<N <2** 4-dimensional randomly generated real ele-
ments based on the new method and the improved method
(more details about the improved method can be seen in
[14]). Since the execution time of these two methods is
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FIGURE 3: Building a KD tree recursively according to the final index array.

supposed to be proportional to N log,N, the x-axis expands
by a factor of log,N, so that the result can be fitted to two
straight lines. The construction time based on the new
method is marked by circles and fitted as the solid line, while
construction time based on the improved method is marked
by diamonds and fitted as the dashed line. It can be seen
clearly from the picture that the execution time of these two
methods increases almost linearly with Nlog,N indeed,
which demonstrates the correctness of our analysis about the
complexity of the new method. What is more, the perfor-
mance of the new method is always better than the improved
method in the current case, which is exactly what we ex-
pected. In addition, the overhead of the construction grows a
little bit faster when the number of elements is too large, and
this might be due to the increase of Cache failure caused by
large scale data.

In order to further verify the performance of the new
method in different dimensions, we carefully compare the
new method with the improved method and the quick select
method (more details about the process of the quick select
method can be found in [15]). Since the construction time of
all the three methods tends to grow linearly with the increase
of the dimension, the results for these three methods are also
fitted to straight lines (see Figure 5). It is pleasing to find that
the new method has almost equivalent performance with the
quick select method. Though the execution time based on
the new method is still slightly larger than that based on the
quick select method, considering that the quick select
method is the best at handling random data, the new ap-
proach has performed well enough. In addition, the im-
proved method performs equivalently in our 3D case and
better in our 2D case, and this is because the improved
method does not maintain unnecessary index arrays when

35 ¢

Time

45
x108

—— New method
--- Improved method

Ficure 4: Construction time (seconds) for 2'8<N <2?* 4-di-
mensional randomly generated real elements.

processing 2D data. Meanwhile, the operation adopted by
the improved method is simpler. The disadvantage of
maintaining all index arrays in the improved method is only
shown when dealing with high-dimensional problems.

The quick select method adopted in this paper always
chooses the first element as the pivot element to partition the
remaining subarray. Therefore, its performance in each
recursion would degrade to O (N?) level when the arrays are
arranged from large to small. Figure 6 shows the con-
struction time (seconds) for 2!7 real elements (the elements
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Figure 6: Construction time (seconds) for 2'7 real elements (the
elements are arranged from large to small in each dimension) in
different dimensions. The execution time based on the new method
is magnified by 100 times.

are arranged from large to small in each dimension) in
different dimensions. As the construction time based on the
new method is approaching zero, the result of the new
method is magnified by 100 times in this figure. Comparing
with Figure 5, it can be seen that the execution time based on
the quick select method in Figure 6 even exceeds the time
cost of processing 2°* elements in Figure 5. In contrast, the
performance of the new method is quite stable, which
performs far better than the quick select method. It illus-
trates that the performance of the new method is not affected
by the initial conditions of the data.
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4. Conclusions

In this paper, we proposed a new method that guarantees to
construct the KD tree in O (Nlog,N) time (excluding the
overhead of presorting process), with the help of three
additional integer arrays. Compared with previous methods,
the new method has almost equivalent performance with
that based on the quick select method for random data and
performs much better under extreme conditions. Though
the improved method [14] performs better in two dimen-
sional cases, the benefits of the new method soon become
apparent in high-dimensional cases.

The new method is suitable for complex systems that
need multidimensional queries of massive data. For ex-
ample, in a cloud storage system based on key-value pair
model, multidimensional queries often require a complete
scan of the entire data set, which is very inefficient. With the
help of KD tree, the efficiency of the query would be im-
proved greatly [16], and our method will improve the effi-
ciency of building the KD tree significantly.

In order to further reduce the execution time of KD tree
construction, parallelism is essential [17-20]. Construction
method based on recursion usually carries out the con-
struction of the left and right subtrees in parallel. However,
the main part of the new method no longer employs the
recursive scheme. Therefore, discovering the characteristics
of the data structure and the process of the new method so as
to develop new parallel algorithms is the focus of our future
research.
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